JP2669243B2 - Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy - Google Patents

Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy

Info

Publication number
JP2669243B2
JP2669243B2 JP35577891A JP35577891A JP2669243B2 JP 2669243 B2 JP2669243 B2 JP 2669243B2 JP 35577891 A JP35577891 A JP 35577891A JP 35577891 A JP35577891 A JP 35577891A JP 2669243 B2 JP2669243 B2 JP 2669243B2
Authority
JP
Japan
Prior art keywords
rolling
temperature range
less
points
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35577891A
Other languages
Japanese (ja)
Other versions
JPH05171292A (en
Inventor
常昭 長道
和俊 国重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35577891A priority Critical patent/JP2669243B2/en
Publication of JPH05171292A publication Critical patent/JPH05171292A/en
Application granted granted Critical
Publication of JP2669243B2 publication Critical patent/JP2669243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、面内異方性が小さ
く、かつ高ランクフォ−ド値(r値)を示す深絞り性に
優れた冷延鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel sheet having a small in-plane anisotropy and a high rank-order value (r value) and an excellent deep drawability.

【0002】[0002]

【従来技術とその課題】冷延鋼板は、一般に熱間圧延に
よって得られた熱延鋼板を素材とし、これに冷間圧延及
び再結晶焼鈍を施して製造されており、例えば自動車や
家電製品等の外装材といった加工性が強く求められる分
野で多用されている。
2. Description of the Related Art Cold rolled steel sheets are generally made of hot rolled steel sheets obtained by hot rolling, and are manufactured by cold rolling and recrystallization annealing. It is widely used in fields where workability is strongly required, such as exterior materials.

【0003】ところで、この冷延鋼板の加工性は素材で
ある熱延鋼板の特性に大きく依存しており、このため、
近年、深絞り性に優れた冷延鋼板を得るべく熱延段階で
の製造条件に関する検討が盛んに行われるようになって
きた。
By the way, the workability of this cold-rolled steel sheet largely depends on the characteristics of the hot-rolled steel sheet as a raw material.
In recent years, studies on the manufacturing conditions in the hot rolling stage have been actively conducted in order to obtain a cold-rolled steel sheet having excellent deep drawability.

【0004】例えば、特開昭58−133325号公報
には、C含有量が0.0045%以下(以降、 成分割合を表す
%は重量%とする)の極低炭素鋼を素材とし、その熱間
圧延条件を規制することで深絞り性に優れた冷延鋼板を
製造する方法が開示されている。
For example, Japanese Unexamined Patent Publication (Kokai) No. 58-133325 discloses that ultra-low carbon steel having a C content of 0.0045% or less (hereinafter, “%” representing a component ratio is referred to as “weight%”) is used as a material, and hot-rolled. A method for producing a cold-rolled steel sheet excellent in deep drawability by controlling the conditions is disclosed.

【0005】ただ、この提案では、鋼板の加工性を左右
する析出物や組織についての検討がなされておらず、そ
のためか、該方法に従って得られる冷延鋼板の特性値は
意図するほどのものとは言い難かった。即ち、特開昭5
8−133325号公報で提案された上記方法は、加熱
から仕上げ圧延までの間における炭窒化物や硫化物の析
出状況、またオ−ステナイト(以降“γ”と略称する)
からフェライト(以降“α”と略称する)への変態挙
動、更には仕上げ圧延から巻取り間での加工αの変化等
に着目した検討の上に立って完成されたものとは言え
ず、これが十分に満足できる結果につながらない原因で
あると考えられた。
However, in this proposal, the precipitates and microstructures which influence the workability of the steel sheet have not been examined, and for that reason, the characteristic values of the cold rolled steel sheet obtained according to the method are not intended. Was hard to say. That is, JP-A-5
The above method proposed in Japanese Patent Application Laid-Open No. 8-133325 discloses a method of depositing carbonitrides and sulfides from heating to finish rolling and austenite (hereinafter abbreviated as “γ”).
It cannot be said that it was completed based on an examination focusing on the transformation behavior from ferritic to ferrite (hereinafter abbreviated as “α”) and the change in processing α between finish rolling and winding. It was thought to be the cause that did not lead to satisfactory results.

【0006】また、一方、面内異方性が小さくて高r値
を示す“加工性が良好な冷延鋼板”を得るためには、再
結晶処理後のαにおいて{111}集合組織を発達させ
ることが望ましいとされている。ここで、前記{11
1}集合組織はα粒界の近傍から生じるため、{11
1}集合組織を円滑に安定して発達させるには、熱延時
の変態により生じるα粒径を小さくしてα粒界面積を大
きくすることが必要であった。
[0006] On the other hand, in order to obtain a “cold rolled steel sheet with good workability” having a small in-plane anisotropy and a high r-value, {111} texture develops in α after recrystallization treatment. It is desirable to make it. Where the {11
Since the 1} texture is generated near the α grain boundary,
In order to smoothly and stably develop the 1 組織 texture, it was necessary to reduce the α grain size caused by transformation during hot rolling and increase the α grain boundary area.

【0007】そこで、高加工性冷延鋼板の実現につなが
る“α粒径の小さな熱延鋼板”を製造するための試みと
して、鋼をオ−ステナイト域で仕上げ圧延した後に急冷
し、これによりγ→α変態後のα粒を細粒化しようとし
た試験の結果も報告されている{「CAMP−ISI
J」Vol.3(1990),第785〜786頁}。
Therefore, as an attempt to manufacture a "hot-rolled steel sheet having a small α grain size" which leads to the realization of a high workability cold-rolled steel sheet, the steel is finish-rolled in the austenite region and then rapidly cooled, whereby γ → The results of the test to refine the α-grains after α-transformation have also been reported {“CAMP-ISI
J "Vol. 3 (1990), pp. 785-786}.

【0008】確かに、上記方法によると比較的微細なα
粒組織を有した熱延鋼板を得ることができるが、それで
もα粒の細粒化には限界があり、例えばα粒径が10μ
mを下回るほどに微細化された均一組織を得ることは困
難であった。そのため、これを素材とした冷延鋼板に対
し、全体の面内異方性(0°,45°,90°の各方向のr
値であるr0,r45, r90のうちの最大値たるrmax と最小
値たるrmin との差)を小さくして、十分に高くて均一
なr値を安定して付与するまでには至っていなかった。
Certainly, according to the above method, a relatively fine α
Although a hot-rolled steel sheet having a grain structure can be obtained, there is a limit to the refinement of α grains, and for example, α grain size is 10 μm.
It was difficult to obtain a uniform structure that was finer than m. Therefore, for cold-rolled steel sheet made of this material, the in-plane anisotropy (r for each direction of 0 °, 45 °, 90 °)
Of the values r 0 , r 45, and r 90 , which is the difference between the maximum value r max and the minimum value r min ), until a sufficiently high and uniform r value is stably provided. Was not here.

【0009】これは、α粒の粒径は結局は変態前のγ粒
の大きさに大きく影響されることによるものと考えら
れ、最近では、α粒の更なる微細化のためには変態前の
γ粒の微細化も欠かせないとされるようになってきた。
This is considered to be due to the fact that the particle size of α grains is ultimately greatly affected by the size of γ grains before transformation. It has come to be said that the miniaturization of γ grains is essential.

【0010】現在、長年にわたって研究され築かれてき
た“γ粒の微細化手段”として、イ ) 制御圧延,ロ ) 大圧下圧延(例えば特開昭62−253733号公
報,特開昭63−145720号公報を参照) 等の組織微細化技術が知られている。しかしながら、こ
れら各技術にも次のような問題が指摘された。
At present, as "means for refining gamma grains" which have been studied and built for many years, a) controlled rolling, b) large rolling reduction (for example, JP-A-62-253733, JP-A-63-145720) (Refer to Japanese Patent Publication No.) and the like are known. However, the following problems were pointed out in each of these technologies.

【0011】即ち、制御圧延技術の場合は、“制御圧
延”という熱間加工によって作り出されるγ粒はある程
度まで微細になると実際上もはやそれ以上に微細化する
ことができず、そのため制御圧延のみでは、やはり“前
記γ粒から変態するαの粒径が10μm程度の均一な微
細組織”を得ることさえ困難であった。
That is, in the case of the controlled rolling technique, the γ grains produced by the hot working called "controlled rolling" cannot actually be further refined when it becomes fine to a certain extent. However, it is still difficult to obtain "a uniform microstructure in which the grain size of α transformed from the γ grains is about 10 μm".

【0012】一方、大圧下圧延による組織微細化技術
は、γ未再結晶温度域で1パス当りの圧下率30%以上
の大圧下を加えてγ粒を“変形帯を粒内に含む加工硬化
γ”とし、その後γ→α変態を生じさせて組織の微細化
を図るものであるが、この方法での“γ→α変態前のγ
粒”は大圧下圧延により単に伸長しているだけで等方的
な微細粒となっていないことから、微細α組織実現の前
提としてのγ組織の微細化に限界があり、そのため変態
後のα粒径が例えば5μmを下回るほどの均一微細組織
を実現することは叶わなかった。
On the other hand, the microstructure refinement technique by the large rolling reduction is a work hardening method in which a large reduction with a rolling reduction of 30% or more per pass is applied in a γ non-recrystallization temperature range to cause γ grains to “work hardening including a deformation zone in the grains”. γ ”, and then the γ → α transformation is performed to reduce the size of the structure. In this method,“ γ before the γ → α transformation ”is used.
The “grain” is simply elongated by the large rolling reduction and is not an isotropic fine grain, so there is a limit to the refinement of the γ structure as a prerequisite for realizing a fine α structure. It has not been possible to achieve a uniform fine structure having a particle size of, for example, less than 5 μm.

【0013】上述のように、冷延鋼板の深絞り性を向上
させるのに必要な{111}集合組織を発達させるべく
熱延時の変態によって生じるα粒径を小さくしように
も、従来技術では限界があり、従ってこれが面内異方性
の小さい高r値冷延鋼板を製造する上での大きな障害に
なっていると考えられた。
As described above, even if the α grain size generated by the transformation during hot rolling is reduced in order to develop the {111} texture necessary for improving the deep drawability of the cold rolled steel sheet, there is a limit in the prior art. Therefore, it is considered that this is a major obstacle in producing a high r-value cold-rolled steel sheet having a small in-plane anisotropy.

【0014】このようなことから、本発明が目的とした
のは、従来法では実現が困難であった熱延段階での“超
微細均一組織”を安定して現出させ、これを基に優れた
加工性を示す面内異方性の小さい高r値冷延鋼板を工業
規模で安定製造し得る手段を確立することであった。
In view of the above, an object of the present invention is to stably produce an “ultrafine uniform structure” at the hot rolling stage, which was difficult to realize by the conventional method. It is an object of the present invention to establish means capable of stably producing a high r-value cold-rolled steel sheet exhibiting excellent workability and having a small in-plane anisotropy on an industrial scale.

【0015】[0015]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく様々な観点に立って鋭意研究を重ねた結
果、次のような知見を得ることができた。
Means for Solving the Problems The inventors of the present invention have obtained the following findings as a result of earnest studies from various viewpoints in order to achieve the above object.

【0016】A) C含有量が0.05%以下でN含有量が0.0
1%以下の低炭素アルミキルド鋼、又はこれに更にTi,N
b,Zr,Vの1種以上を添加した低炭素アルミキルド鋼
の連続鋳造鋳片又はインゴット等(以降“熱鋼片”と総
称する)を素材とし、これに大圧下圧延を含む一次圧延
を施してから所定の温度域に保持する“析出処理”を施
すと、前記一次圧延により導入された析出サイトのため
に炭窒化物や硫化物が迅速かつ円滑に析出し深絞り性に
好適な素地が得られる,
A) C content of 0.05% or less and N content of 0.0
1% or less low carbon aluminum killed steel, or Ti, N
A continuous cast slab or ingot of low carbon aluminum killed steel to which at least one of b, Zr, and V is added (hereinafter referred to as "hot slab") is subjected to primary rolling including large rolling. After that, when the “precipitation treatment” of maintaining the temperature in a predetermined temperature range is performed, carbonitrides and sulfides precipitate quickly and smoothly due to the precipitation sites introduced by the primary rolling, and a base material suitable for deep drawability is obtained. can get,

【0017】B) そして、析出処理後はそのまま冷却し
てαを含む組織を前以って現出して置き、続いてこの組
織に所定圧下率の圧延を施してから急速昇温しαをγへ
と逆変態させると、現れるγ組織は従来の圧延等では到
底得られないような超微細均一組織となる,
B) After the precipitation treatment, the structure is cooled as it is, and a structure containing α is exposed and placed in advance. Subsequently, this structure is rolled at a predetermined reduction ratio, and then the temperature is rapidly raised to set α to γ. When the reverse transformation is performed, the γ structure that appears becomes an ultrafine uniform structure that cannot be obtained by conventional rolling.

【0018】C) そこで、この超微細均一γ組織をその
まま冷却するか、或いはこれを更に再結晶が生じない程
度に圧延してから冷却すると、変態生成するαは超微細
γ組織を出発組織としているために極めて微細なものと
なり、従来は実現が極めて困難であった“α粒径10μ
mを遥かに下回る等方的な均一微細組織”が得られる,
C) Therefore, when this ultrafine uniform γ structure is cooled as it is or rolled to such an extent that recrystallization does not occur again, and then cooled, the transformation-generated α becomes the ultrafine γ structure as a starting structure. Since it is extremely fine, it was extremely difficult to realize "α particle diameter 10μ.
An isotropic uniform microstructure well below m can be obtained.

【0019】D) そして、この微細α粒組織を有した鋼
板を冷間圧延した後に再結晶処理すると{111}集合
組織が十分に発達し、面内異方性が小さくr値の高い冷
延鋼板を安定して得ることができる。
D) Then, when the steel sheet having the fine α-grain structure is cold-rolled and then recrystallized, {111} texture is sufficiently developed, and the cold-rolled steel sheet has a small in-plane anisotropy and a high r value. A steel sheet can be obtained stably.

【0020】本発明は、上記知見事項等を基にして完成
されたものであり、 「C:0.05%以下, Si: 0.3%以下, Mn:0.01
〜 0.4%, S:0.02%以下, sol.Al:0.01〜0.08%, N:0.
01%以下 を含むか、 又は更に B:0.0001〜0.0050% をも含有するか、 或いはこれらに加えて Ti,Nb,Zr及びVの1種以上:合計で 0.015〜 0.350% も式 〔C当量〕−〔Ti当量/4〕≦ 0.0020 を満たす割合で含むと共に残部がFe及び不可避的不純物
から成る熱鋼片を、 少なくとも a) 最終パスの圧延を1200〜900℃の温度域にて
圧下率30%以上で実施するところの一次圧延を行う, b) 一次圧延後、1200℃〜900℃の温度域に1〜
60分間保持して析出処理を行う, c) Ar3点を下回る温度域で合計圧下率30%以上の圧
延を行う, d) Ac3点〜〔Ac3点+100℃〕の温度域まで5℃/s
以上の加熱速度で昇温し、フェライトからオ−ステナイ
トへの逆変態を生じさせる, e) 該オ−ステナイト相温度域から冷却し、合計圧下率
が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶焼鈍を行う, なる処理を含む工程で順次加工・熱処理することによ
り、 面内異方性の小さい高r値冷延鋼板を安定して製造
し得るようにした点」に大きな特徴を有している。
The present invention has been completed based on the above findings and the like. "C: 0.05% or less, Si: 0.3% or less, Mn: 0.01
~ 0.4%, S: 0.02% or less, sol.Al: 0.01 ~ 0.08%, N: 0.
01% or less, or B: 0.0001 to 0.0050%, or in addition to one or more of Ti, Nb, Zr, and V: 0.015 to 0.350% in total [C equivalent] − [Ti equivalent / 4] ≦ 0.0020 The primary rolling, in which at least a) the final pass rolling is performed at a rolling reduction of 30% or more in a temperature range of 1200 to 900 ° C., with the balance including Fe and unavoidable impurities. B) After the primary rolling, 1 to 1300 in the temperature range of 1200 ° C to 900 ° C.
Holds for 60 minutes to perform precipitation treatment. C) Rolls with a total reduction of 30% or more in a temperature range below Ar 3 points. D) 5 ° C. to a temperature range from Ac 3 points to [Ac 3 points + 100 ° C]. / s
The temperature is raised at the above heating rate to cause a reverse transformation of ferrite to austenite, e) cooling from the austenite phase temperature range and cold rolling with a total reduction of 50 to 97%, f) Perform recrystallization annealing at a temperature of 550 to 900 ° C. By sequentially processing and heat-treating in steps including the following steps, a high r-value cold-rolled steel sheet with small in-plane anisotropy can be stably manufactured. It has a great feature in the point that it was made.

【0021】[0021]

【作用】以下、本発明において素材鋼の成分組成及び加
工・熱処理条件を前記の如くに限定した理由を、その作
用効果と共に具体的に説明する。
The reason why the component composition of the raw material steel and the working / heat treatment conditions are limited as described above in the present invention will be specifically explained together with its function and effect.

【0022】〈素材鋼の成分組成〉 Cは鋼板の深絞り性に悪影響を及ぼす元素であるため、
その含有量は少ない方が望ましい。そして、特にC含有
量が0.05%を超えると深絞り性の劣化が著しくなること
から、その含有量は0.05%以下と限定した。
<Ingredient Composition of Raw Steel> C C is an element that adversely affects the deep drawability of the steel sheet,
It is desirable that the content is small. Especially, when the C content exceeds 0.05%, the deep drawability deteriorates remarkably, so the content is limited to 0.05% or less.

【0023】Si Siも鋼板の深絞り性に悪影響を及ぼす元素であるため可
及的に少ない方が好ましい。特に、Si含有量が 0.3%を
超えると深絞り性が劣化が著しくなるのみならず、スケ
−ル性状も劣化して製品品質を損なうようになることか
ら、その含有量は 0.3%以下と限定した。
Si Since Si is also an element which adversely affects the deep drawability of the steel sheet, it is preferable that Si is as small as possible. In particular, when the Si content exceeds 0.3%, not only the deep drawability deteriorates remarkably, but also the scale properties deteriorate and the product quality is impaired, so the content is limited to 0.3% or less. did.

【0024】Mn Mnには鋼板の靭性を改善する作用があるが、その含有量
が0.01%未満では前記作用による効果が十分でなくて熱
間脆性が発生するようになり、一方、 0.4%を超えて含
有させると深絞り性が著しく劣化することから、Mn含有
量は0.01〜 0.4%と定めた。
Mn Mn has an effect of improving the toughness of the steel sheet, but if its content is less than 0.01%, the effect of the above-mentioned effect is not sufficient and hot brittleness occurs, while 0.4% Since the deep drawability deteriorates remarkably if it is contained in excess, Mn content was set to 0.01 to 0.4%.

【0025】 Sは低ければ低いほど鋼板の深絞り性が向上するが、0.
02%程度にまで低減されるとその悪影響はそれほど顕著
ではなくなることから、S含有量は0.02%以下と定め
た。
The lower S S is, the more the deep drawability of the steel sheet is improved.
Since the adverse effect is not so remarkable when it is reduced to about 02%, the S content is set to 0.02% or less.

【0026】sol.Al Alは脱酸及び炭窒化物形成元素の歩留向上のために添加
されるが、その含有量がsol.Al量で0.01%よりも低いと
前記作用効果が十分に得られず、一方、0.08%を超えて
含有させても効果が飽和して不経済となることから、Al
含有量はsol.Al量で0.01〜0.08%と定めた。
Sol.Al Al is added for deoxidation and for improving the yield of carbonitride forming elements. When the content is less than 0.01% by sol.Al, the above-mentioned effects are sufficiently obtained. On the other hand, if the content exceeds 0.08%, the effect is saturated and it becomes uneconomical.
The content was determined to be 0.01 to 0.08% in sol.Al amount.

【0027】 N含有量は低ければ低いほど炭窒化物形成元素の添加量
が少なくて済むので好ましい。特に、その含有量が0.01
%を超えた場合には炭窒化物形成元素を添加しても鋼板
のr値低下が避けられないことから、N含有量は0.01%
以下と定めた。
The lower the N 2 N content is, the smaller the amount of carbonitride forming element added is, which is preferable. In particular, its content is 0.01
%, The addition of carbonitride-forming elements inevitably reduces the r-value of the steel sheet, so the N content is 0.01%.
It is determined as follows.

【0028】Ti,Nb,Zr及びV これらの成分には、何れも炭窒化物を形成することで固
溶C,Nを減少させると共に、その析出物によって結晶
粒を適度に微細化する作用があるので、必要により単独
又は複合で添加される。しかし、これらの合計含有量が
0.015%よりも少ないと前記作用による所望の効果が得
られず、一方、合計含有量が 0.350%よりも多いと強度
が上昇し過ぎて加工用の鋼板として適さなくなると共
に、経済的にも不利となる。従って、これら成分の含有
量は合計で 0.015〜 0.350%と定めた。
Each of Ti, Nb, Zr and V has an effect of reducing solid solution C and N by forming carbonitrides and appropriately reducing the size of crystal grains by the precipitates. As necessary, they are added alone or in combination. However, the total content of these
If the content is less than 0.015%, the desired effect cannot be obtained, while if the total content is more than 0.350%, the strength becomes too high to be suitable as a steel sheet for processing, and it is economically disadvantageous. Become. Therefore, the content of these components was determined to be 0.015 to 0.350% in total.

【0029】また、式「〔C当量〕−〔Ti当量/4〕≦
0.0020 」は固溶C,Nを0.0020%以下とし、残りの
C,Nを炭窒化物として析出させるための関係を示した
ものであって、「〔C当量〕−〔Ti当量/4〕」の値が
0.0020を超えると固溶C,Nが多くなるため{111}
再結晶集合組織が発達せず、鋼板の深絞り性が劣化する
ようになる。
In addition, the formula "[C equivalent]-[Ti equivalent / 4] ≤
"0.0020" indicates the relationship for making the solid solution C and N 0.0020% or less and precipitating the remaining C and N as carbonitrides, and "[C equivalent]-[Ti equivalent / 4]" The value of
If it exceeds 0.0020, solute C and N increase, so {111}
The recrystallization texture does not develop and the deep drawability of the steel sheet deteriorates.

【0030】 Bは、絞り加工部品で問題となる“縦割れ”を防止する
作用を有しているので必要により添加されるが、その含
有量が0.0001%未満では前記作用による所望の効果が得
られず、一方、0.0050%を超えて含有させてもその効果
は飽和してしまい経済的に不利となることから、B含有
量は0.0001〜0.0050%と定めた。
[0030] B B is added as necessary so has the effect of preventing to become "vertical cracks" problem drawing part, the desired effect due to the content of the working is less than 0.0001% On the other hand, if the content exceeds 0.0050%, the effect is saturated and it becomes economically disadvantageous. Therefore, the B content is set to 0.0001 to 0.0050%.

【0031】〈加工・熱処理条件〉熱間圧延に供される
上記成分組成の素材鋼片は、連続鋳造により製造された
ものであっても良く、インゴットから分解圧延により製
造されたものであっても良い。また、素材鋼片は連続鋳
造又は分塊圧延後の冷鋼片を所定温度に加熱してから熱
間圧延に供しても良いし、“直送圧延”と称される「連
続鋳造又は分塊圧延のラインから高温のまま送られてく
る鋼片をそのまま、 或いは多少の補助加熱を施して熱間
圧延に供する方法」を採用しても良い。
<Working / Heat Treatment Conditions> The raw material billet having the above-described composition used for hot rolling may be one produced by continuous casting, or one produced by decomposition rolling from an ingot. Is also good. In addition, the raw steel slab may be subjected to hot rolling after heating a cold steel slab after continuous casting or slab rolling to a predetermined temperature, or “continuous casting or slab rolling” referred to as “direct feed rolling”. The method in which the steel slab sent from the line at high temperature is used as it is, or is subjected to hot rolling with some auxiliary heating ”may be employed.

【0032】(a) 最終パスの圧延を1200〜900℃
の温度域にて圧下率30%以上で実施するところの一次
圧延 一次圧延の目的は、次の析出処理で迅速に炭窒化物や硫
化物を析出させるための析出サイトを導入すること、及
び二次圧延に至るまでの冷却過程でα粒を微細化するた
めにγ粒を再結晶により微細化し、更にγ粒に加工歪を
導入してα粒の析出サイトを増加することにある。その
ため、一次圧延は、最終パスを1200〜900℃の温
度域で、かつ30%以上の大圧下率で行う必要があり
(好ましくは45%以上の圧下率とするのが良い)、こ
の条件を満たさないと上記目標が達せられない。
(A) Final pass rolling is performed at 1200 to 900 ° C.
Primary in a temperature range of 30% or more
The purpose of the rolled primary rolling, introducing the precipitation sites for depositing the rapidly carbonitride in the following precipitation treatment and sulfides, and for refining the α particle in the course of cooling up to the secondary rolling In addition, the γ grains are refined by recrystallization, and further processing strain is introduced into the γ grains to increase the precipitation sites of α grains. For this reason, it is necessary to perform the primary rolling in the final pass in a temperature range of 1200 to 900 ° C. and a large rolling reduction of 30% or more (preferably, a rolling reduction of 45% or more is good). If not, the above goal cannot be achieved.

【0033】即ち、最終パスの圧下率が30%よりも小
さいと、得られる加工歪が少なくて析出物の析出サイト
が導入されず、次工程で1200〜900℃の温度域に
保持する処理を行っても効果的な析出物の生成が困難と
なる。加えて、最終パスの圧下率が小さいとγが再結晶
微細化しないだけでなく加工歪も小さいため、続く冷却
過程でα粒が微細化しない。また、最終パス温度が12
00℃よりも高いと加工歪が蓄積されずに炭窒化物や硫
化物の析出サイトが導入されないばかりか、圧延による
αの細粒効果が得られず、一方、該温度が900℃より
も低いと次工程での析出処理温度の確保が困難となる。
That is, if the rolling reduction of the final pass is less than 30%, the processing strain obtained is small and no precipitation sites for precipitates are introduced, and the process of maintaining the temperature in the temperature range of 1200 to 900 ° C. in the next step is performed. Even if it is carried out, it is difficult to form an effective precipitate. In addition, when the rolling reduction of the final pass is small, not only does γ not recrystallize and refine, but also the processing strain is small, so that α grains do not refine in the subsequent cooling process. The final pass temperature is 12
If the temperature is higher than 00 ° C., not only the precipitation site of carbonitride and sulfide is not introduced without accumulating the processing strain, but also the fine grain effect of α by rolling cannot be obtained, while the temperature is lower than 900 ° C. In addition, it becomes difficult to secure the temperature for the precipitation treatment in the next step.

【0034】なお、この一次圧延は1パス以上実施し、
そのうちの最終パスを上記の条件で行うようにするのが
良い。勿論、最終パス前の圧延は特に条件を限定する必
要はなく、通常の圧延でも構わない。
Incidentally, this primary rolling is carried out for one or more passes,
It is advisable to make the final pass of the above conditions. Of course, the rolling before the final pass does not need to be particularly limited, and ordinary rolling may be used.

【0035】(b) 一次圧延後に行う析出処理 析出処理の目的は、鋼中のC,N,Sを炭窒化物や硫化
物として析出させて深絞り性を向上させることにある。
そのためには、一次圧延後の粗圧延材を常温まで冷却す
ることなく、圧延後直ちに1200〜900℃の温度域
で1〜60分間保持するのが良い。なぜなら、この温度
範囲にγ域の析出ノ−ズが存在するからである。従っ
て、1200℃よりも高い温度で保持すると、溶解度が
大きいために析出が迅速に進まないばかりでなく、γ粒
が成長して粗大化し、結果として次の二次圧延前のα粒
を粗大化することになり最終製品の深絞り性が向上しな
い。一方、900℃よりも低いγ域の温度で保持する
と、析出速度が著しく遅いことから同様に析出が迅速に
進まず、やはり深絞り性の向上効果を確保できない。そ
して、この時の保持時間が1分未満では析出量が十分で
なく、一方、60分を超える時間保持しても析出が飽和
してしまって製造コストの上昇を招くことになる。
(B) Precipitation Treatment Performed After Primary Rolling The purpose of the precipitation treatment is to precipitate C, N and S in steel as carbonitrides or sulfides to improve deep drawability.
For this purpose, it is preferable that the rough rolled material after the primary rolling is kept in a temperature range of 1200 to 900 ° C. for 1 to 60 minutes immediately after the rolling without cooling to a room temperature. This is because there are precipitation noises in the γ region in this temperature range. Therefore, if kept at a temperature higher than 1200 ° C, not only the precipitation does not proceed rapidly due to the large solubility, but also the γ grains grow and become coarse, and as a result, the α grains before the next secondary rolling become coarse. Therefore, the deep drawability of the final product is not improved. On the other hand, when the temperature is maintained in the γ range lower than 900 ° C., the precipitation rate is remarkably slow and similarly the precipitation does not proceed rapidly, so that the effect of improving the deep drawability cannot be secured. If the holding time at this time is less than 1 minute, the amount of precipitation will not be sufficient. On the other hand, if the holding time is more than 60 minutes, the precipitation will be saturated and the production cost will increase.

【0036】なお、前記一次圧延後の鋼材を圧延ライン
において上記温度域に保持する手段は特に限定されない
が、例えば近年開発された“コイルボックス”を使用す
るのが効果的である。また、一次圧延後に鋼材を所定の
析出処理温度としたり、析出処理後に二次圧延の開始温
度まで冷却するために鋼材の急冷を行うことは何ら差支
えがない。むしろ、急冷することにより製造時間の短縮
が図られると共に、α粒の粗大化も防ぐことができて深
絞り性が向上する。
The means for maintaining the steel material after the primary rolling in the above-mentioned temperature range in the rolling line is not particularly limited. For example, it is effective to use a recently developed "coil box". In addition, it does not matter at all that performing the quenching of the steel material after the primary rolling to a predetermined precipitation treatment temperature or to cool the steel material to the starting temperature of the secondary rolling after the precipitation treatment. Rather, the rapid cooling shortens the production time, prevents the α grains from becoming coarse, and improves the deep drawability.

【0037】(c) Ar3点を下回る温度域に冷却して実施
する圧延(二次圧延) 析出処理後に鋼材を一旦Ar3点よりも低い温度域に冷却
して圧延を行うのは、本発明法が“αを含む組織に塑性
加工を加えてからα相をγ相に逆変態させること”を主
要な要件としているからであり、そのためには一旦α相
を生成させることが必要となる。この際の冷却温度につ
いてはAr3点を下回れば格別に制限されないが、現実的
な操業性の面からするとAr3点未満近傍のなるべく高温
の領域、即ち「Ar3点〜〔Ar3点−100℃〕」の範囲
の温度とするのが好ましいと言える。しかしながら、α
を含む組織に塑性加工を加えてからα相をγ相に逆変態
させるに当っては、塑性加工時におけるα相の体積率が
多いほど逆変態後のγ粒が微細になることから、製品性
能面よりα相の体積率を増大させるべく前記冷却温度は
Ar1点以下とするのが望ましい。
(C) Cooling to a temperature range below the Ar 3 point
After rolling (secondary rolling) precipitation treatment, the steel material is once cooled to a temperature range lower than the Ar 3 point and then rolled. This is because the method of the present invention applies the plastic working to the structure containing α and then forms the α phase. The main requirement is to “reversely transform into a γ phase”, and for that purpose, it is necessary to once generate an α phase. Although the cooling temperature at this time is not particularly restricted if falls below three points Ar, realistic as possible high temperature region near Ar less than 3 points From workability surface, i.e. "Ar 3 point - [Ar 3 point - 100 ° C.] ”. However, α
In reverse transforming the α phase into a γ phase after plastic working on the structure containing, the larger the volume fraction of the α phase at the time of plastic working, the finer the γ grains after reverse transformation, the more the product From the viewpoint of performance, it is desirable that the cooling temperature is set at Ar 1 point or lower in order to increase the volume ratio of α phase.

【0038】そして、Ar3点を下回る温度域で行う圧延
加工の合計圧下率を30%以上としたのは、この際の圧
下率が30%以上となった場合に初めて逆変態による微
細γ粒の安定形成が達成できるからである。
The reason why the total rolling reduction in the rolling process performed in the temperature range lower than the Ar 3 point is set to 30% or more is that the fine γ grains by the reverse transformation are first obtained when the rolling reduction is 30% or more. This is because stable formation of can be achieved.

【0039】即ち、Ar3点を下回る温度域で圧延加工す
ると、この圧延によりαが加工硬化してγへの逆変態核
が増加する。そして、この逆変態核の数が極度に多けれ
ばその後のγ域への急速昇温で極めて微細なγ粒が生成
する。しかるに、上記逆変態核の数は圧下率が合計で3
0%以上となった時に初めて顕著な急増傾向を示し、所
望の超微細γ粒の安定生成が叶うようになることから、
Ar3点を下回る温度域での合計圧下率は30%以上と定
めたが、出来れば50%以上とするのが望ましい。
That is, when rolling is performed in a temperature range lower than the Ar 3 point, α is work hardened by this rolling, and the number of reverse transformation nuclei to γ increases. If the number of the reverse transformation nuclei is extremely large, extremely fine γ grains are generated by the subsequent rapid temperature rise to the γ region. However, the number of the inverse transformation nuclei is 3
Only when it becomes 0% or more, a remarkable rapid increase tendency is shown, and the desired ultrafine γ grains can be stably produced.
Although the total reduction ratio in the temperature range below the Ar 3 point is set to 30% or more, it is preferably 50% or more if possible.

【0040】(d) Ac3点〜〔Ac3点+100℃〕の温度
域への昇温 Ac3点以上に昇温するのは「加工硬化したαから逆変態
により非常に微細なγ粒が生成する」という本発明に係
わる方法での特徴的な作用・効果を十分に発揮させるた
めである。この場合、昇温温度の上限を〔Ac3点+10
0℃〕としたのは、この温度を超えて昇温するとγが粒
成長して最終的に所望の均一超微細組織鋼板が得られ
ず、従って所望の加工性及び強度を確保することができ
なくなることによる。
(D) Temperature from Ac 3 point to [Ac 3 point + 100 ° C]
The temperature rise to the region Ac is raised to 3 points or more because the characteristic action and effect of the method according to the present invention that “very fine γ grains are generated by reverse transformation from work-hardened α” is sufficient. It is to show it. In this case, the upper limit of the temperature rise is [Ac 3 points +10
0 ° C.] is that if the temperature is raised beyond this temperature, γ grains grow and finally a desired uniform ultra-fine structure steel sheet cannot be obtained, and thus desired workability and strength can be secured. Due to disappearance.

【0041】そして、Ac3点〜〔Ac3点+100℃〕の
温度域にまで昇温する際の加熱速度が5℃/s未満である
と、逆変態核導入の原因になる加工による歪がα→γ逆
変態に先立って解放されてしまい、所望の微細γ粒組織
を実現できなくなる。このため、上記加熱速度を5℃/s
以上と定めた。なお、昇温の手段としては“加工熱の利
用”又は“外部からの積極的加熱(通電加熱等)"、或い
は両者の併用等、何れの方法を採用しても良い。
If the heating rate at the time of raising the temperature to the temperature range of from Ac 3 points to [Ac 3 points + 100 ° C.] is less than 5 ° C./s, distortion due to processing which causes the introduction of reverse transformation nuclei may occur. It is released prior to the α → γ reverse transformation, and the desired fine γ grain structure cannot be realized. For this reason, the above heating rate is set to 5 ° C / s
It was decided above. As the means for raising the temperature, any method such as "utilization of processing heat" or "active heating from the outside (electric heating)" or a combination of both may be adopted.

【0042】(e) γ相温度域から冷却して実施する冷間
圧延 γ相温度域に急速加熱して逆変態を起こさせた鋼は、そ
の後の冷却により等方的で均一超微細なα組織とされ、
更に冷間圧延が施されるが、好ましくは上記冷却に先立
ってγ相温度域で合計圧下率50%以下の圧延を行うの
が良い。なぜなら、γ相温度域にて圧延を施すと逆変態
により生じるγ粒は更に微細化し、その後の冷却によっ
て生成するα含有組織も一層微細化されるので、その特
性が一段と向上するからである。この場合、γ相温度域
での圧延は上述のように合計圧下率で50%以下(好ま
しくは30%以下)の圧下に止めて置くのが望ましい。
これは、合計圧下率が50%を超えるとγが再結晶・粒
成長してしまい、その後の冷却によって生成するαが十
分に微細化しないからである。
(E) Cold performed by cooling from the γ phase temperature range
Steel that has undergone reverse transformation by rapidly heating to the rolling γ-phase temperature range is made into an isotropic and uniform ultrafine α-structure by subsequent cooling,
Further, although cold rolling is performed, it is preferable to perform rolling with a total reduction of 50% or less in the γ phase temperature region prior to the cooling. This is because, when rolling is performed in the γ phase temperature range, γ grains generated by the reverse transformation are further refined, and the α-containing structure generated by the subsequent cooling is further refined, so that the characteristics are further improved. In this case, it is desirable that the rolling in the γ phase temperature range is stopped at a total reduction of 50% or less (preferably 30% or less) as described above.
This is because γ is recrystallized and grain-grown when the total rolling reduction exceeds 50%, and α generated by subsequent cooling is not sufficiently miniaturized.

【0043】なお、γ相温度域からの冷却は、Ar3点〜
〔Ar3点−150℃〕の温度域を5℃/s以上の冷却速度
で冷却することが望ましい。これによって、γ域での加
工により微細化されかつ加工歪が蓄積したγから多数の
α核を生じさせ、微細なα粒を得ることができる。この
ように、次工程の冷間圧延前にα粒を微細化することに
よりα粒界の面積を増加することができ、α粒界から生
じてr値の向上に好ましい{111}再結晶集合組織を
十分に発達させることができる。そして、上記条件で冷
却することによって、ASTMの粒度番号で11以上の
微細なα粒が得られる。
Cooling from the γ-phase temperature range is performed at Ar 3 points or more.
It is desirable to cool the temperature range of [Ar 3 points -150 ° C] at a cooling rate of 5 ° C / s or more. As a result, a large number of α nuclei can be generated from γ that has been miniaturized by processing in the γ region and has accumulated processing strain, and fine α grains can be obtained. As described above, the area of the α grain boundary can be increased by refining the α grain before the cold rolling in the next step, and the {111} recrystallization aggregate generated from the α grain boundary is preferable for improving the r value. The tissue can be fully developed. By cooling under the above conditions, fine α grains having an ASTM particle number of 11 or more can be obtained.

【0044】ところで、“前記 (a)項で説明した圧延",
"前記 (b)乃至 (d)項で説明した処理及び圧延" 並びに
“逆変態時にγ相温度域で行う上記圧延”を熱間圧延ラ
インの何処で行うかについては制約はないが、“前記
(a)項で説明した圧延" は粗圧延工程で実施し、その後
の処理及び圧延は仕上げ圧延工程で行うのが設備上有利
である。なお、この際の巻取り温度は問うものではな
い。
By the way, "rolling explained in the item (a)",
Although there is no limitation on where the “treatment and rolling described in the above (b) to (d)” and “the above-mentioned rolling performed in the γ-phase temperature range during reverse transformation” are performed in the hot rolling line,
The rolling described in the section (a) is carried out in a rough rolling step, and the subsequent processing and rolling are preferably performed in a finishing rolling step from the viewpoint of equipment. The winding temperature at this time does not matter.

【0045】γ相温度域からの冷却の後は、合計圧下
率:50〜97%の冷間圧延が施されて最終板厚とされ
るが、この冷間圧延の狙いは「圧延集合組織を発達さ
せ、 次の再結晶焼鈍工程においてr値を向上させること
と、 面内異方性の最小化に好ましい{111}集合組織
を発達させること」にある。なお、この冷間圧延におけ
る合計圧下率が50%を下回る場合或いは97%を上回
る場合には、再結晶焼鈍を行っても{111}集合組織
が発達しない。
After cooling from the γ-phase temperature range, cold rolling is performed with a total draft of 50 to 97% to obtain a final sheet thickness. To improve the r-value in the next recrystallization annealing step, and to develop {111} texture which is preferable for minimizing in-plane anisotropy. " When the total rolling reduction in this cold rolling is less than 50% or more than 97%, the {111} texture does not develop even if recrystallization annealing is performed.

【0046】(f) 再結晶焼鈍 再結晶焼鈍は、αの集合組織を制御して深絞り性に優れ
た冷延鋼板を製造する上で不可欠な工程である。そのた
めには、550〜900℃の温度範囲で焼鈍を行い、α
を再結晶させるのが望ましい。550℃より低い温度で
は長時間の焼鈍であるバッチ焼鈍でも再結晶が十分に生
ぜず、900℃を超える温度ではγ化が著しく進行して
所望のαの再結晶集合組織制御が困難となる。再結晶焼
鈍の実施方法については特に制限はなく、例えば通常の
連続焼鈍プロセス,バッチ焼鈍プロセス等の何れによっ
ても差支えはない。なお、再結晶焼鈍後に行われるスキ
ンパス圧下時には、補助的に10%未満の圧下を加えて
も良い。
(F) Recrystallization annealing Recrystallization annealing is an indispensable step in controlling the texture of α to produce a cold-rolled steel sheet excellent in deep drawability. For that purpose, annealing is performed in the temperature range of 550 to 900 ° C., and α
It is desirable to recrystallize. At a temperature lower than 550 ° C., recrystallization does not sufficiently occur even in batch annealing which is a long-time annealing, and at a temperature higher than 900 ° C., γ-formation remarkably progresses, and it becomes difficult to control a desired α recrystallization texture. There is no particular limitation on the method for carrying out the recrystallization annealing, and there is no problem with using any of a normal continuous annealing process and a batch annealing process. During the skin pass reduction performed after the recrystallization annealing, a reduction of less than 10% may be supplementarily added.

【0047】次いで、本発明を実施例により更に具体的
に説明する。
Next, the present invention will be described more specifically by way of examples.

【実施例】50kg真空溶解炉で表1に示す化学組成のア
ルミキルド鋼を溶製した後、これを鋳造して60mm厚の
スラブとした。続いて、これらのスラブを表2に示す条
件で熱間圧延し、冷却して巻取った。そして、巻取り後
の熱延鋼板を酸洗し、冷間圧延を施してから、「800
℃×2min の連続焼鈍(処理イ)」又は「750℃×5
hrのバッチ焼鈍(処理ロ)」により再結晶処理を行っ
た。
[Examples] Aluminum-killed steel having the chemical composition shown in Table 1 was melted in a 50 kg vacuum melting furnace and then cast into a slab having a thickness of 60 mm. Subsequently, these slabs were hot-rolled under the conditions shown in Table 2, cooled, and wound. Then, the hot-rolled steel sheet after winding is pickled, cold-rolled, and then “800
C. x 2 min continuous annealing (treatment b) "or" 750 C x 5 min.
hr batch annealing (processing b) ".

【0048】このようにして得られた冷延鋼板から試験
片を採取し、“降伏強さ", "伸び”並びに“r値”を調
査した。これらの結果を表3に示す。
Test specimens were obtained from the thus obtained cold-rolled steel sheets, and "yield strength", "elongation" and "r value" were examined. Table 3 shows the results.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】表3に示される結果からも明らかなよう
に、本発明で規定する条件に従って製造された熱延鋼板
は優れたr値及び伸びを示しており、しかも面内異方性
が極めて小さいことが分かる。更に、本発明に係わる鋼
板は何れも降伏点が低目であり、非常に優れた加工性を
有しているとが明らかである。
As is clear from the results shown in Table 3, the hot-rolled steel sheet manufactured according to the conditions specified in the present invention has excellent r-value and elongation, and has extremely small in-plane anisotropy. I understand. Further, it is clear that all the steel sheets according to the present invention have a low yield point and have very excellent workability.

【0053】これに対して、製造条件が本発明の規定に
従わない場合にはα組織が十分に微細化せず、得られる
鋼板の特性が劣る結果となることが分かる。
On the other hand, when the manufacturing conditions do not comply with the requirements of the present invention, it can be seen that the α structure is not sufficiently refined, resulting in inferior properties of the obtained steel sheet.

【0054】[0054]

【効果の総括】以上に説明した如く、この発明によれ
ば、面内異方性が小さくr値の高い冷延鋼板を安定して
製造することができるなど、産業上極めて有用な効果が
もたらされる。
[Summary of Effects] As described above, according to the present invention, it is possible to stably manufacture a cold-rolled steel sheet having a small in-plane anisotropy and a high r value. Be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造工程を示す模式図である。FIG. 1 is a schematic view showing a manufacturing process of the present invention.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量割合にて C:0.05%以下, Si: 0.3%以下, Mn:0.01〜
0.4%, S:0.02%以下, sol.Al:0.01〜0.08%, N:0.
01%以下 を含み、残部がFe及び不可避的不純物から成る熱鋼片
を、少なくとも下記a)〜f)の処理を含む工程で順次加工
・熱処理することを特徴とする、面内異方性の小さい高
r値冷延鋼板の製造方法。 a) 最終パスの圧延を1200〜900℃の温度域にて
圧下率30%以上で実施するところの一次圧延を行う, b) 一次圧延後、1200℃〜900℃の温度域に1〜
60分間保持して析出処理を行う, c) Ar3点を下回る温度域で合計圧下率30%以上の圧
延を行う, d) Ac3点〜〔Ac3点+100℃〕の温度域まで5℃/s
以上の加熱速度で昇温し、フェライトからオ−ステナイ
トへの逆変態を生じさせる, e) 該オ−ステナイト相温度域から冷却し、合計圧下率
が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶焼鈍を行う。
1. A weight ratio of C: 0.05% or less, Si: 0.3% or less, Mn: 0.01 to
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%, N: 0.
A hot steel slab containing at most 01% and the balance consisting of Fe and unavoidable impurities is sequentially worked and heat-treated at least in a process including the following processes a) to f). Manufacturing method of small high r value cold rolled steel sheet. a) Perform primary rolling in which rolling in the final pass is performed in a temperature range of 1200 to 900 ° C at a rolling reduction of 30% or more. b) After primary rolling, a primary rolling is performed in a temperature range of 1200 ° C to 900 ° C.
Holds for 60 minutes to perform precipitation treatment. C) Rolls with a total reduction of 30% or more in a temperature range below Ar 3 points. D) 5 ° C. to a temperature range from Ac 3 points to [Ac 3 points + 100 ° C]. / s
The temperature is raised at the above heating rate to cause a reverse transformation of ferrite to austenite, e) cooling from the austenite phase temperature range and cold rolling with a total reduction of 50 to 97%, f) Perform recrystallization annealing at a temperature of 550 to 900 ° C.
【請求項2】 重量割合にて C:0.05%以下, Si: 0.3%以下, Mn:0.
01〜 0.4%, S:0.02%以下, sol.Al:0.01〜0.08%, N:0.
01%以下, B:0.0001〜0.0050% を含み、残部がFe及び不可避的不純物から成る熱鋼片
を、少なくとも下記a)〜f)の処理を含む工程で順次加工
・熱処理することを特徴とする、面内異方性の小さい高
r値冷延鋼板の製造方法。 a) 最終パスの圧延を1200〜900℃の温度域にて
圧下率30%以上で実施するところの一次圧延を行う, b) 一次圧延後、1200℃〜900℃の温度域に1〜
60分間保持して析出処理を行う, c) Ar3点を下回る温度域で合計圧下率30%以上の圧
延を行う, d) Ac3点〜〔Ac3点+100℃〕の温度域まで5℃/s
以上の加熱速度で昇温し、フェライトからオ−ステナイ
トへの逆変態を生じさせる, e) 該オ−ステナイト相温度域から冷却し、合計圧下率
が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶焼鈍を行う。
2. A weight ratio of C: 0.05% or less, Si: 0.3% or less, Mn: 0.
01 to 0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%, N: 0.
01% or less, B: 0.0001 to 0.0050%, the balance being characterized in that a hot steel slab consisting of Fe and unavoidable impurities is processed and heat-treated sequentially in a process including at least the following processes a) to f). A method for producing a high r-value cold-rolled steel sheet having a small in-plane anisotropy. a) Perform primary rolling in which rolling in the final pass is performed in a temperature range of 1200 to 900 ° C at a rolling reduction of 30% or more. b) After primary rolling, a primary rolling is performed in a temperature range of 1200 ° C to 900 ° C.
Holds for 60 minutes to perform precipitation treatment. C) Rolls with a total reduction of 30% or more in a temperature range below Ar 3 points. D) 5 ° C. to a temperature range from Ac 3 points to [Ac 3 points + 100 ° C]. / s
The temperature is raised at the above heating rate to cause a reverse transformation of ferrite to austenite, e) cooling from the austenite phase temperature range and cold rolling with a total reduction of 50 to 97%, f) Perform recrystallization annealing at a temperature of 550 to 900 ° C.
【請求項3】 重量割合にて C:0.05%以下, Si: 0.3%以下, Mn:0.01〜
0.4%, S:0.02%以下, sol.Al:0.01〜0.08%, N:0.
01%以下 を含有すると共に、更に Ti,Nb,Zr及びVの1種以上:合計で 0.015〜 0.350% をも式 〔C当量〕−〔Ti当量/4〕≦ 0.0020 を満たす割合で含み、残部がFe及び不可避的不純物から
成る熱鋼片を、少なくとも下記a)〜f)の処理を含む工程
で順次加工・熱処理することを特徴とする、面内異方性
の小さい高r値冷延鋼板の製造方法。 a) 最終パスの圧延を1200〜900℃の温度域にて
圧下率30%以上で実施する一次圧延を行う, b) 一次圧延後、1200℃〜900℃の温度域に1〜
60分間保持して析出処理を行う, c) Ar3点を下回る温度域で合計圧下率30%以上の圧
延を行う, d) Ac3点〜〔Ac3点+100℃〕の温度域まで5℃/s
以上の加熱速度で昇温し、フェライトからオ−ステナイ
トへの逆変態を生じさせる, e) 該オ−ステナイト相温度域から冷却し、合計圧下率
が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶焼鈍を行う。
3. By weight ratio, C: 0.05% or less, Si: 0.3% or less, Mn: 0.01-
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%, N: 0.
Not more than 01%, and at least one of Ti, Nb, Zr and V: 0.015 to 0.350% in total, also in the formula [C equivalent]-[Ti equivalent / 4] ≦ 0.0020 In the in-plane anisotropy, characterized by sequentially processing and heat-treating a hot steel slab containing Fe and unavoidable impurities at least in the steps including the following processes a) to f). Manufacturing method of small high r value cold rolled steel sheet. a) Perform primary rolling in which the rolling of the final pass is performed at a rolling reduction of 30% or more in a temperature range of 1200 to 900 ° C. b) After the primary rolling, the primary rolling is performed in a temperature range of 1200 to 900 ° C.
Holds for 60 minutes to perform precipitation treatment. C) Rolls with a total reduction of 30% or more in a temperature range below Ar 3 points. D) 5 ° C. to a temperature range from Ac 3 points to [Ac 3 points + 100 ° C]. / s
The temperature is raised at the above heating rate to cause a reverse transformation of ferrite to austenite, e) cooling from the austenite phase temperature range and cold rolling with a total reduction of 50 to 97%, f) Perform recrystallization annealing at a temperature of 550 to 900 ° C.
【請求項4】 重量割合にて C:0.05%以下, Si: 0.3%以下, Mn:0.
01〜 0.4%, S:0.02%以下, sol.Al:0.01〜0.08%, N:0.
01%以下, B:0.0001〜0.0050% を含有すると共に、更に Ti,Nb,Zr及びVの1種以上:合計で 0.015〜 0.350% をも式 〔C当量〕−〔Ti当量/4〕≦ 0.0020 を満たす割合で含み、残部がFe及び不可避的不純物から
成る熱鋼片を、少なくとも下記a)〜f)の処理を含む工程
で順次加工・熱処理することを特徴とする、面内異方性
の小さい高r値冷延鋼板の製造方法。 a) 最終パスの圧延を1200〜900℃の温度域にて
圧下率30%以上で実施する一次圧延を行う, b) 一次圧延後、1200℃〜900℃の温度域に1〜
60分間保持して析出処理を行う, c) Ar3点を下回る温度域で合計圧下率30%以上の圧
延を行う, d) Ac3点〜〔Ac3点+100℃〕の温度域まで5℃/s
以上の加熱速度で昇温し、フェライトからオ−ステナイ
トへの逆変態を生じさせる, e) 該オ−ステナイト相温度域から冷却し、合計圧下率
が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶焼鈍を行う。
4. A weight ratio of C: 0.05% or less, Si: 0.3% or less, Mn: 0.
01 to 0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%, N: 0.
01% or less, B: 0.0001 to 0.0050%, and one or more of Ti, Nb, Zr and V: 0.015 to 0.350% in total is also represented by the formula [C equivalent]-[Ti equivalent / 4] ≤0.0020. In the in-plane anisotropy, characterized by sequentially processing and heat-treating a hot steel slab containing Fe and unavoidable impurities at least in the steps including the following processes a) to f). Manufacturing method of small high r value cold rolled steel sheet. a) Perform primary rolling in which the rolling of the final pass is performed at a rolling reduction of 30% or more in a temperature range of 1200 to 900 ° C. b) After the primary rolling, the primary rolling is performed in a temperature range of 1200 to 900 ° C.
Holds for 60 minutes to perform precipitation treatment. C) Rolls with a total reduction of 30% or more in a temperature range below Ar 3 points. D) 5 ° C. to a temperature range from Ac 3 points to [Ac 3 points + 100 ° C]. / s
The temperature is raised at the above heating rate to cause reverse transformation from ferrite to austenite. E) Cooling is performed from the austenite phase temperature range, and cold rolling is performed at a total draft of 50 to 97%. f) Perform recrystallization annealing at a temperature of 550 to 900 ° C.
JP35577891A 1991-12-21 1991-12-21 Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy Expired - Lifetime JP2669243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35577891A JP2669243B2 (en) 1991-12-21 1991-12-21 Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35577891A JP2669243B2 (en) 1991-12-21 1991-12-21 Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy

Publications (2)

Publication Number Publication Date
JPH05171292A JPH05171292A (en) 1993-07-09
JP2669243B2 true JP2669243B2 (en) 1997-10-27

Family

ID=18445706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35577891A Expired - Lifetime JP2669243B2 (en) 1991-12-21 1991-12-21 Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy

Country Status (1)

Country Link
JP (1) JP2669243B2 (en)

Also Published As

Publication number Publication date
JPH05171292A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
JP2000336455A (en) High ductility hot rolled steel sheet and its production
JP2669243B2 (en) Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2669231B2 (en) Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy
JPH05112831A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in workability
JP2669172B2 (en) Method for producing high r-value hot rolled steel sheet with small in-plane anisotropy
JP2776203B2 (en) Manufacturing method of cold rolled steel sheet excellent in non-aging at normal temperature
JP3212348B2 (en) Manufacturing method of fine grain thick steel plate
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JPS6148531A (en) Manufacture of hot-rolled low-carbon steel sheet having superior deep drawability
JP3362739B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability
JP3596045B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability
JPH06184645A (en) Production of cold rolled steel sheet reduced in inplane ansotropy and having high r-value
JP3603563B2 (en) Method for producing hot-rolled steel sheet and cold-rolled steel sheet having ultrafine grains
JPH0665647A (en) Effective production of cold rolled steel sheet extremely excellent in deep drawability
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH05202424A (en) Production of hot rolled steel plate reduced in plane anisotropy and having high r-value
JPH09177243A (en) Reinforcing bar rod steel with high yielding point and its manufacture
JP2510367B2 (en) Method for producing non-aging cold rolled steel sheet excellent in bake hardenability and workability
JPH06184646A (en) Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
JPH03267314A (en) Production of hot rolled high tensile strength steel plate excellent in workability
JP3212349B2 (en) Manufacturing method of fine grain high toughness structural steel sheet
JPH1192825A (en) Production of hot-rolled steel plate for working having ultra fine grain