JPH06184646A - Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value - Google Patents

Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value

Info

Publication number
JPH06184646A
JPH06184646A JP35617692A JP35617692A JPH06184646A JP H06184646 A JPH06184646 A JP H06184646A JP 35617692 A JP35617692 A JP 35617692A JP 35617692 A JP35617692 A JP 35617692A JP H06184646 A JPH06184646 A JP H06184646A
Authority
JP
Japan
Prior art keywords
temperature range
less
point
rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35617692A
Other languages
Japanese (ja)
Inventor
Tokiaki Nagamichi
常昭 長道
Kazutoshi Kunishige
和俊 国重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35617692A priority Critical patent/JPH06184646A/en
Publication of JPH06184646A publication Critical patent/JPH06184646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To stably produce a hot rolled steel plate excellent in workability, reduced in inplane anisotropy, and having high r-value on an industrial scale. CONSTITUTION:A hot steel slab which has a composition containing <=0.0-8% C, <=0.3% Si, 0.01-0.5% Mn, <=0.02% S, 0.01-0.08% solAl, and <=0.01% N or further containing one or more kinds among prescribed amounts of B, Ti, Nb, Zr, V, and Mo in the percentages satisfying an inequality [C equivalent]-[Ti equivalent/4]<=0.0020 is successively treated by means of a process including at least the following treatments: (a) cooling down to a temp. in the region lower than the A3 point; (b) precipitation treatment consisting of holding at a temp. lower than the A3 point for 1-60min; (c) temp. rise up to a temp. ion the region between the A3 point and [A3 point+200 deg.C] to cause inverse transformation from alpha to gamma; (d) cooling from the gamma-phase temp. region; (e) rolling at a temp. between [A3 point-100 deg.C] and 450 deg.C at 70-97% total draft; and (f) recrystallization treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、面内異方性が小さ
く、かつ高ランクフォ−ド値(r値)を示す深絞り性に
優れた熱延鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hot-rolled steel sheet having a small in-plane anisotropy and a high rank-order value (r value) and an excellent deep drawability.

【0002】[0002]

【従来技術とその課題】近年、多方面からなされるよう
になった鋼材コスト低減に対する要望と、熱延鋼板製造
技術の向上とが相俟って、従来は“冷延鋼板”が使用さ
れていた分野にも“熱延鋼板”を適用する試みがなされ
るようになってきた。なぜなら、周知の通り、冷延鋼板
は“熱間圧延で得られた熱延板”から「酸洗→冷間圧延
→焼鈍→調質圧延」なるプロセスを経て製造されるもの
で、この製造プロセスからも明らかなように熱延鋼板と
比べて製造コストが格段に嵩むという不利を余儀無くさ
れていたからである。
2. Description of the Related Art In recent years, "cold rolled steel sheet" has been used in combination with the demand for cost reduction of steel materials, which has been made in various fields in recent years, and the improvement of hot rolled steel sheet manufacturing technology. Attempts have also been made to apply "hot rolled steel sheets" to other fields. Because, as is well known, cold-rolled steel sheet is manufactured from "hot-rolled sheet obtained by hot rolling" through a process of "pickling → cold rolling → annealing → temper rolling". As is apparent from the above, the disadvantage was that the manufacturing cost was significantly higher than that of the hot-rolled steel sheet.

【0003】なお、従来、熱延鋼板の適用分野が“冷延
鋼板や溶接鋼管等の素材用”或いは“それほど高い加工
性を必要としない部材用”等に限られていた理由の1つ
として「加工性(特に深絞り性)に劣る点」が挙げられ
るが、上述した通り、熱延鋼板の加工性を向上させる技
術が幾つか提案されたことが冷延鋼板から熱延鋼板への
代替を促す大きな推進力となった。
One of the reasons that the field of application of hot-rolled steel sheets is conventionally limited to "for materials such as cold-rolled steel sheets and welded steel pipes" or "for members that do not require such high workability" Although "the point of inferior workability (especially deep drawability)" is mentioned, as mentioned above, several technologies for improving the workability of hot-rolled steel sheets were proposed instead of cold-rolled steel sheets to hot-rolled steel sheets. It became a great driving force to encourage

【0004】この「熱延鋼板の加工性向上に関する技
術」の1つに、例えば特開昭59−153836号とし
て開示された方法がある。これは、C,Mn及びsol.Alを
含むアルミキルド鋼をAlNの析出処理後に特定の条件で
熱間圧延し、次いで酸洗,軽圧下圧延並びに再結晶処理
を順次施して深絞り性の良好な熱延鋼板を得ようという
技術である。しかし、この方法には、AlN析出処理時の
加熱に100分以上の長時間を要するので製造能率が著
しく悪いといった問題が指摘される。
As one of the "techniques for improving the workability of hot rolled steel sheet", there is a method disclosed in, for example, Japanese Patent Laid-Open No. 59-153836. This is because aluminum-killed steel containing C, Mn and sol.Al is hot-rolled under specific conditions after precipitation treatment of AlN, then pickled, light-rolled and re-crystallized in order to obtain good deep drawability. It is a technology to obtain hot rolled steel sheet. However, it is pointed out that this method requires a long time of 100 minutes or more for heating during the AlN precipitation treatment, so that the production efficiency is extremely poor.

【0005】一方、これとは別に、高温域で大圧下の熱
間圧延を行ってから比較的低温の温度域で潤滑圧延を行
うことを骨子とした“加工性が改善された熱延鋼板”の
製造手段も提案されている(例えば特開昭61−384
4号公報,特開昭61−3845号公報参照)。そし
て、この方法によるとr値が 1.0以上の深絞り性に優れ
た熱延鋼板が得られると報告されている。しかし、実際
には、上記方法によっても鋼板全体に面内異方性(0
°,45°,90°の各方向のr値r0,r45 ,r90 のうちの
最大値であるrmax と最小値であるrmin との差)を小
さくし、均一な高いr値を安定して付与することは難し
く、冷延鋼板に匹敵する加工性を実現するには至ってい
ない。
On the other hand, apart from this, "hot-rolled steel sheet with improved workability" is characterized in that hot rolling under a large pressure in a high temperature range is performed, and then lubrication rolling is performed in a relatively low temperature range. Is also proposed (for example, JP-A-61-384).
No. 4, Japanese Patent Laid-Open No. 61-3845). According to this method, it is reported that a hot-rolled steel sheet having an r value of 1.0 or more and excellent in deep drawability can be obtained. However, in reality, the in-plane anisotropy (0
The difference between the maximum value r max and the minimum value r min among the r values r 0 , r 45 , and r 90 in each direction of °, 45 °, and 90 °) is made small to obtain a uniform high r value. It is difficult to stably impart the workability, and workability comparable to that of cold-rolled steel sheet has not been realized yet.

【0006】また、熱延鋼板の加工性を向上させる他の
試みとして、微量のTi又はNbを添加した極低炭素鋼の鋼
片をAr3点以上の温度域で粗圧延した後、800℃以下
のフェライト(以降“α”と略示する)域で合計圧下率
が73%の仕上げ圧延を行う方法も報告されている{鉄
と鋼,74(1988),第1617〜1624頁}。しかしながら、本
発明者等の検討結果によると、この方法では確かに薄鋼
板でのプレス成形性(深絞り性)は確保されるものの、
薄鋼板とした場合の面内異方性はやはり 0.5以上と非常
に大きく、とても冷延鋼板並の性能を期待できるもので
はなかった。
As another attempt to improve the workability of hot-rolled steel sheet, an extremely low carbon steel slab containing a trace amount of Ti or Nb is roughly rolled in a temperature range of Ar 3 or more and then 800 ° C. A method of performing finish rolling with a total reduction of 73% in the following ferrite (hereinafter abbreviated as “α”) region has also been reported {Iron and Steel, 74 (1988), pp. 1617-1624}. However, according to the examination results of the present inventors, although this method surely ensures press formability (deep drawability) on a thin steel sheet,
The in-plane anisotropy in the case of thin steel sheets was still as large as 0.5 or more, and the performance equivalent to that of cold-rolled steel sheets could not be expected.

【0007】この原因は、得られた薄鋼板に特定方向を
向いた結晶が優先的に存在しているため、この結晶の方
向と変形方向との関係により変形状態に変化が生じてし
まうことにあると考えられる。それ故、このような方法
により製造された薄鋼板は、各方向におけるr値の平均
値としてのr値{ (r0+2r45+r90)/4で定義される}か
らすれば「プレス成形性が優れている」とされはするも
のの、鋼板の面内異方性(「rmax −rmin 」 の絶対値)
は劣悪な値となってしまい、任意の方向に均一な伸びや
強度が要求されるプレス加工用鋼板としては要求される
性能を十分満足しないことになる。
The cause is that crystals obtained in a specific direction preferentially exist in the obtained thin steel sheet, and therefore the deformation state changes depending on the relationship between the direction of the crystal and the deformation direction. It is believed that there is. Therefore, a thin steel sheet manufactured by such a method has a "press formability" in terms of the r value {defined as (r 0 + 2r 45 + r 90 ) / 4} as an average value of r values in each direction. Is said to be “excellent”, but the in-plane anisotropy of the steel sheet (absolute value of “r max −r min ”)
Is an inferior value, which does not sufficiently satisfy the performance required as a steel sheet for press working that requires uniform elongation and strength in any direction.

【0008】ところで、これまでの研究により、面内異
方性の小さい高r値鋼板を得るためには最終的なαにお
いて{111}集合組織を発達させることが望ましいこ
とが分かっている。なお、前記{111}集合組織は再
結晶処理の際にα粒界の近傍から生じるので、{11
1}集合組織を発達させるには再結晶処理前の加工α粒
径を小さくしてα粒界面積を大きくすることが必要であ
る。そして、上記α粒径の小径化を実現するためには、
オ−ステナイト(以降“γ”と略示する)からαに変態
する前のγ粒径を微細化しておくことが好ましいと言え
る。
By the way, it has been found from the studies so far that it is desirable to develop a {111} texture in the final α in order to obtain a high r-value steel sheet having a small in-plane anisotropy. Since the {111} texture is generated near the α grain boundary during the recrystallization process, {11}
1) In order to develop a texture, it is necessary to reduce the processed α grain size before the recrystallization treatment and increase the α grain boundary area. Then, in order to realize the reduction of the α particle diameter,
It can be said that it is preferable to refine the γ grain size before transformation from austenite (hereinafter abbreviated as “γ”) to α.

【0009】γ粒を微細化する手段についても長年にわ
たる研究が続けられてきたが、その成果として、 I) 制御圧延, II) 大圧下圧延(例えば特開昭62−253733号公報,特開
昭63−145720号公報参照), 等の組織微細化技術が生み出されている。しかし、これ
ら各技術にも次のような問題が指摘された。
Studies on means for refining γ grains have also been carried out for many years, and as a result, I) controlled rolling, II) high pressure rolling (for example, JP-A-62-253733, JP-A-SHO) 63-145720 gazette), etc. have been created. However, the following problems were pointed out for each of these technologies.

【0010】a) 制御圧延による組織微細化技術の場合 “制御圧延”という熱間加工によって作り出されるγ粒
には或る程度まで微細になると実際上もはやそれ以上に
微細化することができないという性質があり、従って制
御圧延のみではγ粒の微細化に限界があるため、このγ
粒から変態するαの粒径が例えば20μm程度の均一な
微細組織でさえも実現することは困難であった。
A) In the case of the structure refining technique by controlled rolling, the property that the γ grains produced by hot working called "controlled rolling" cannot actually be further refined when it becomes fine to a certain extent. Therefore, there is a limit to the refinement of γ grains only with controlled rolling.
It was difficult to realize even a uniform microstructure in which the grain size of α transformed from grains is, for example, about 20 μm.

【0011】b) 大圧下圧延による組織微細化技術の場
合 これは、γの未再結晶温度域で1パス当りの圧下率が3
0%以上の大圧下を加えてγ粒を“変形帯を粒内に含む
加工硬化γ”とし、その後でγ→α変態を生じさせて組
織の微細化を図る技術であるが、この手段における“γ
→α変態前のγ粒”は大圧下圧延により単に伸長してい
るだけで「微細粒」となっていないことから、やはり組
織微細化に限界があり、そのため変態後のα粒径が20
μmを下回るほどの均一微細組織の実現は叶わなかっ
た。
B) In the case of the structure refining technology by large reduction rolling, this is because the reduction ratio per pass is 3 in the non-recrystallization temperature region of γ.
This is a technique for refining the structure by applying a large reduction of 0% or more to make the γ grains “work hardening γ containing a deformation zone in the grains” and then causing the γ → α transformation to refine the structure. "Γ
→ The “γ-grain before α transformation” is simply elongated by large reduction rolling and does not become “fine grain”. Therefore, there is a limit to the refinement of the structure. Therefore, the α-grain size after transformation is 20
It was not possible to realize a uniform fine structure of less than μm.

【0012】このように、鋼板の深絞り性を向上させる
のに必要な{111}集合組織を発達させるべく、熱延
時の変態によって生じるα粒径を小さくしようにも限界
がある。従って、これが面内異方性の小さい高r値熱延
鋼板を製造する上での大きな障害になっていると考えら
れた。
As described above, in order to develop the {111} texture necessary for improving the deep drawability of the steel sheet, there is a limit in reducing the α grain size caused by the transformation during hot rolling. Therefore, it is considered that this is a major obstacle in producing a high r-value hot-rolled steel sheet having a small in-plane anisotropy.

【0013】このようなことから、本発明が目的とした
のは、従来法では実現が困難であったγ段階での“超微
細均一組織”を安定して現出させ、これを基に優れた加
工性を示す面内異方性の小さい高r値熱延鋼板を工業規
模で安定製造し得る手段を確立することであった。
Therefore, the object of the present invention is to stably reveal the "ultrafine uniform structure" in the γ stage, which was difficult to realize by the conventional method, and is excellent on the basis of this. It was to establish means for stably producing a high r-value hot-rolled steel sheet having small in-plane anisotropy exhibiting workability on an industrial scale.

【0014】[0014]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく様々な観点に立って鋭意研究を重ねた結
果、次のような知見を得ることができた。
Means for Solving the Problems The inventors of the present invention have obtained the following findings as a result of earnest studies from various viewpoints in order to achieve the above object.

【0015】A) C含有量が0.08%以下(以降、 成分割
合を表わす%は重量%とする)でN含有量が0.01%以下
の低炭素アルミキルド鋼、或いは更にTi,Nb,Zr,V,
Moの1種以上を添加した低炭素アルミキルド鋼の連続鋳
造鋳片(通常厚スラブや薄スラブ)又はインゴット等
(以降“熱鋼片”と総称する)を温度調整(A3 点未満
に温度降下)してα組織を現出させると共に、この温度
域で析出処理を行い炭窒化物や硫化物の迅速析出を図っ
てマトリックスを純化させた後、これをそのまま昇温し
てα相をγ相に逆変態させるか、又は所定圧下率の圧延
を施してから昇温してα相をγ相に逆変態させるか、或
いは熱鋼片のγ粒径が200μm以上である場合には
“αを現出させる前の熱鋼片”にγ温度域で一旦所定圧
下率の圧延を施してから上記工程の熱処理又は加工熱処
理を施してαをγへと逆変態させると、現れるγ組織は
従来の制御圧延等では到底得られないような超微細組織
となる。
A) A low carbon aluminum killed steel having a C content of 0.08% or less (hereinafter,% representing a component ratio is% by weight) and an N content of 0.01% or less, or further Ti, Nb, Zr, V,
Temperature control of continuous cast slabs (usually thick slabs and thin slabs) or ingots (generally referred to as "hot steel slabs") of low carbon aluminum killed steel containing one or more types of Mo (A temperature drop below 3 points) ) To reveal the α-structure and perform precipitation treatment in this temperature range for rapid precipitation of carbonitrides and sulfides to purify the matrix, and then raise the temperature as it is to convert the α-phase to the γ-phase. Reverse transformation, or by rolling at a predetermined reduction rate and then raising the temperature to reverse transform the α phase to the γ phase, or if the γ grain size of the hot steel billet is 200 μm or more, “α When the "hot steel slab before being exposed" is once rolled at a predetermined reduction rate in the γ temperature range and then subjected to the heat treatment or thermomechanical treatment in the above step to reverse transform α into γ, the γ structure that appears is The ultrafine structure cannot be obtained by controlled rolling.

【0016】B) そこで、この超微細γ組織をそのま
ま、或いは更に圧延加工してから冷却すると、変態生成
するαは超微細γ組織を基にしているのでやはり極めて
微細なものとなり、従来は実現が極めて困難であった
“α粒径が20μmを遙に下回る等方的な均一微細α組
織”が得られる。
B) Therefore, when this ultrafine γ structure is cooled as it is or after further rolling, the α produced by transformation is based on the ultrafine γ structure, so that it is also extremely fine and is conventionally realized. It was extremely difficult to obtain an “isotropic uniform fine α-structure having an α-grain size much smaller than 20 μm”.

【0017】C) そして、この析出物が粗大化し、かつ
マトリックスが純化した微細α組織を有する中間素材
に、α未再結晶温度域で圧下率が70〜97%の圧延を
施して所望寸法の鋼板とした場合には、再結晶処理後に
{111}集合組織が十分発達するようになり、面内異
方性が小さくr値の高い熱延鋼板を安定して得ることが
可能となる。
C) Then, the intermediate material having a fine α structure in which the precipitate is coarse and the matrix is purified is rolled at a reduction rate of 70 to 97% in the α non-recrystallization temperature range to obtain a desired size. When the steel sheet is used, the {111} texture is sufficiently developed after the recrystallization treatment, and it becomes possible to stably obtain a hot-rolled steel sheet having a small in-plane anisotropy and a high r value.

【0018】本発明は、上記知見事項等を基に更なる検
討を重ねて完成されたものであり、「C:0.08%以下,
Si: 0.3%以下, Mn:0.01〜 0.4%,S:0.02
%以下, sol.Al:0.01〜0.08%, N:0.01%以下
を含むか、 又は更にB:0.0001〜0.0050%をも含有する
か、 或いはこれらに加えてTi,Nb,Zr,V及びMoの1種
以上:合計で 0.015〜 0.350%も式 〔C当量〕−〔Ti当量/4〕≦ 0.0020 を満たす割合で含むと共に残部がFe及び不可避的不純物
から成る熱鋼片を、 少なくとも a) A3 点(即ちAe3点)を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、フェライトからオ−ステナイトへの逆変態を生じさ
せる, d) 該オ−ステナイト相温度域から冷却する, e) 〔A3 点−100℃〕〜450℃の温度域にて合計
圧下率が70〜97%の圧延を行う, f) 再結晶処理を行う, なる処理を含む工程で順次加工・熱処理することによ
り、 面内異方性の小さい高r値熱延鋼板を安定して製造
し得るようにした点」に大きな特徴を有している。
The present invention has been completed through further studies based on the above findings and the like. "C: 0.08% or less,
Si: 0.3% or less, Mn: 0.01 to 0.4%, S: 0.02
% Or less, sol.Al: 0.01 to 0.08%, N: 0.01% or less, or further B: 0.0001 to 0.0050%, or in addition to these, Ti, Nb, Zr, V and Mo One or more: 0.015 to 0.350% in total is also the formula [C equivalent]-[Ti equivalent / 4] ≤ 0.0020 A hot steel slab that contains Fe and unavoidable impurities with the balance satisfying the following conditions is cooled to at least a) below the A 3 point (ie Ae 3 point), b) above the A 3 point performing deposition by keeping 1-60 minutes, c) the temperature to a temperature range of a 3 point - [a 3-point + 200 ° C.] was raised, a ferrite OH - effect reverse transformation to austenite, d)該O -Cooling from the temperature range of the austenite phase, e) Rolling with a total reduction of 70 to 97% in the temperature range of [A 3 points-100 ° C] to 450 ° C, f) Recrystallization treatment, It is possible to stably manufacture a high r-value hot-rolled steel sheet having a small in-plane anisotropy by sequentially processing and heat treating in a process including ".

【0019】なお、図1は、本発明に係る冷延鋼板製造
工程の一例を示した模式図である。以下、本発明におい
て素材鋼の成分組成及び加工・熱処理条件を前記の如く
に限定した理由を、その作用効果と共に具体的に説明す
る。
FIG. 1 is a schematic view showing an example of the cold-rolled steel sheet manufacturing process according to the present invention. Hereinafter, the reason why the component composition of the material steel and the working / heat treatment conditions are limited as described above in the present invention will be specifically described together with the action and effect.

【0020】[0020]

【作用】[Action]

〈素材鋼の成分組成〉 Cは鋼板の深絞り性に悪影響を及ぼす元素であるため、
その含有量は少ない方が望ましい。そして、特にC含有
量が0.08%を超えると深絞り性の劣化が著しくなること
から、その含有量は0.08%以下と限定した。
<Ingredient composition of raw steel> C C is an element that adversely affects the deep drawability of the steel sheet,
The smaller the content, the better. In particular, when the C content exceeds 0.08%, the deep drawability deteriorates remarkably, so the content was limited to 0.08% or less.

【0021】Si Siも鋼板の深絞り性に悪影響を及ぼす元素であるため可
及的に少ない方が好ましい。特に、Si含有量が 0.3%を
超えると深絞り性の劣化が著しくなるのみならず、スケ
−ル性状も劣化して製品品質を損なうようになることか
ら、その含有量は 0.3%以下と限定した。
Si Since Si is also an element that adversely affects the deep drawability of the steel sheet, it is preferable that the content of Si is as small as possible. In particular, if the Si content exceeds 0.3%, not only the deep drawability will deteriorate significantly, but also the scale properties will deteriorate and the product quality will be impaired, so the content is limited to 0.3% or less. did.

【0022】Mn Mnには鋼板の靭性を改善する作用があるが、その含有量
が0.01%未満では前記作用による効果が十分でなくて熱
間脆性が発生するようになり、一方、 0.4%を超えて含
有させると深絞り性が著しく劣化することから、Mn含有
量は0.01〜 0.4%と定めた。
Mn Mn has an effect of improving the toughness of the steel sheet, but if the content thereof is less than 0.01%, the effect due to the above effect is not sufficient and hot brittleness occurs, while 0.4% is added. Since the deep drawability deteriorates remarkably if it is contained in excess, Mn content was set to 0.01 to 0.4%.

【0023】 Sは低ければ低いほど鋼板の深絞り性が向上するが、0.
02%程度にまで低減されるとその悪影響はそれほど顕著
ではなくなることから、S含有量は0.02%以下と定め
た。
The lower S S is, the more the deep drawability of the steel sheet is improved.
Since the adverse effect is not so remarkable when it is reduced to about 02%, the S content is set to 0.02% or less.

【0024】sol.Al Alは脱酸元素及び炭窒化物形成元素の歩留向上のために
添加されるが、その含有量がsol.Al量で0.01%より低い
と前記作用効果が十分に得られず、一方、0.08%を超え
て含有させても効果が飽和して不経済となることから、
Al含有量はsol.Al量で0.01〜0.08%と定めた。
Sol.Al Al is added to improve the yield of deoxidizing element and carbonitride forming element. If the content of sol.Al is less than 0.01%, the above-mentioned action and effect are sufficiently obtained. On the other hand, on the other hand, if the content exceeds 0.08%, the effect will be saturated and it will be uneconomical,
The Al content was defined as 0.01 to 0.08% in terms of sol.Al content.

【0025】 N含有量は低ければ低いほど炭窒化物や硫化物の形成元
素の添加量が少なくて済むので好ましい。特に、その含
有量が0.01%を超えた場合には炭窒化物や硫化物の形成
元素を添加しても鋼板のr値低下が避けられないことか
ら、N含有量は0.01%以下と定めた。
The lower the N 2 N content is, the smaller the amount of carbonitride or sulfide forming element added is preferable. In particular, when the content exceeds 0.01%, it is unavoidable that the r-value of the steel sheet decreases even if the carbonitride and sulfide forming elements are added, so the N content was set to 0.01% or less. .

【0026】 Bは、絞り加工部品で問題となる“縦割れ”を防止する
作用を有しているので必要により添加されるが、その含
有量が0.0001%未満では前記作用による所望の効果が得
られず、一方、0.0050%を超えて含有させてもその効果
は飽和してしまい経済的に不利となることから、B含有
量は0.0001〜0.0050%と定めた。
[0026] B B is added as necessary so has the effect of preventing to become "vertical cracks" problem drawing part, the desired effect due to the content of the working is less than 0.0001% On the other hand, if the content exceeds 0.0050%, the effect is saturated and it is economically disadvantageous. Therefore, the B content is set to 0.0001 to 0.0050%.

【0027】Ti,Nb,Zr,V及びMo これらの成分には、炭窒化物や硫化物を形成することで
固溶C,N,Sを減少させると共に、その析出物によっ
て結晶粒を適度に微細化する作用があるので、必要によ
り単独或いは複合で添加される。しかしながら、これら
の合計含有量が0.015 %よりも少ないと前記作用による
所望の効果が得られず、一方、合計含有量が 0.350%よ
り多いと強度が上昇し過ぎて加工用の鋼板として適さな
くなると共に、経済的にも不利となる。従って、これら
成分の含有量は、合計で 0.015〜0.350 %と定めた。
Ti, Nb, Zr, V, and Mo. These components reduce the solute C, N, and S by forming carbonitrides and sulfides, and at the same time, the precipitates make the crystal grains moderate. Since it has the effect of making the particles finer, they are added individually or in combination as required. However, if the total content of these is less than 0.015%, the desired effect due to the above action cannot be obtained, while if the total content is more than 0.350%, the strength increases too much and it becomes unsuitable as a steel sheet for working. , Is also disadvantageous economically. Therefore, the total content of these components was set to 0.015 to 0.350%.

【0028】また、「〔C当量〕−〔Ti当量/4〕≦
0.0020 」なる式は固溶C,N,Sを0.0020%以下と
し、残りのC,N,Sを炭窒化物や硫化物として析出さ
せるための関係を示したものであって、「〔C当量〕−
〔Ti当量/4〕」の値が0.0020を超えると固溶C,N,
Sが多くなるため{111}再結晶集合組織が発達せ
ず、鋼板に所望の深絞り性を付与することができない。
In addition, "[C equivalent]-[Ti equivalent / 4] ≤
The formula "0.0020" represents the relationship for making solid solution C, N, S 0.0020% or less and precipitating the remaining C, N, S as carbonitrides or sulfides. ] −
When the value of [Ti equivalent / 4] exceeds 0.0020, solid solution C, N,
Since the amount of S increases, the {111} recrystallized texture does not develop, and the desired deep drawability cannot be imparted to the steel sheet.

【0029】〈加工・処理条件〉熱間圧延に供される上
記成分組成の素材鋼片は、連続鋳造により製造されたも
の(通常厚スラブや薄スラブ)であっても良く、インゴ
ットから分塊圧延により製造されたものであっても良
い。また、素材鋼片は連続鋳造又は分塊圧延後の冷鋼片
を所定温度に加熱してから熱間圧延に供しても良いし、
“直送圧延”と称される「連続鋳造又は分塊圧延のライ
ンから高温のまま送られてくる鋼片をそのまま、 或いは
多少の補助加熱を施して熱間圧延に供する方法」を採用
しても良い。なお、図2は、再加熱圧延又は直送圧延を
採用した場合での“本発明に係る冷延鋼板製造工程”の
別例を示す模式図である。
<Processing / Treatment Conditions> The raw material billet having the above-mentioned composition to be subjected to hot rolling may be one produced by continuous casting (usually thick slab or thin slab), and slabbed from an ingot. It may be manufactured by rolling. Further, the raw steel billet may be subjected to hot rolling after heating the cold steel billet after continuous casting or slab rolling to a predetermined temperature,
Even if the "direct rolling" method is used, in which "steel slabs sent from a continuous casting or slab rolling line at a high temperature are used as they are, or with some auxiliary heating, they are subjected to hot rolling" good. Note that FIG. 2 is a schematic view showing another example of the “cold rolled steel sheet manufacturing process according to the present invention” when the reheating rolling or the direct feeding rolling is adopted.

【0030】本発明では、このような熱鋼片は前述した
条件で順次加工・熱処理されるが、この際の処理条件は
次の理由によって指定される。
In the present invention, such hot steel pieces are sequentially processed and heat-treated under the above-mentioned conditions, and the processing conditions at this time are specified for the following reasons.

【0031】(a) 熱鋼片をA3 点(Ae3点)を下回る温
度域まで冷却する理由 熱鋼片を一旦A3 点を下回る温度域に冷却するのは、本
発明の方法が“α相からγ相に逆変態させること”を主
要な要件としているからであり、そのためにはα相の生
成を必要とするからである。なお、この際の冷却後の温
度はA3 点未満の温度であれば格別に制限されるもので
はないが、現実的な操業性の面からすると、A3 点未満
近傍のなるべく高温の領域{A3 点〜〔A3 点−200
℃〕}にすることが好ましいと言える。
( A ) The temperature of the hot steel piece below A 3 point (Ae 3 point)
Reason for cooling to the temperature range The reason why the hot steel billet is once cooled to the temperature range below the A 3 point is that the method of the present invention has “reverse transformation from α phase to γ phase” as a main requirement. This is because it requires the generation of the α phase. The temperature after cooling at this time is not particularly limited as long as it is a temperature of less than A 3 point, but in terms of practical operability, a region of a temperature as high as possible near less than A 3 point { A 3 points to [A 3 points-200
C]} is preferable.

【0032】ただ、連続鋳造或いはインゴット鋳造した
鋼片のγ粒径が200μm以上となっているような場合
には、その熱鋼片をそのままA3 点を下回る温度域に冷
却して圧延後にα→γ逆変態を起こさせても、所望の均
一超微細組織が得られない恐れがある。
However, when the γ grain size of the continuously cast or ingot-cast steel slab is 200 μm or more, the hot steel slab is cooled as it is to a temperature range below the A 3 point, and α is obtained after rolling. → Even if the γ reverse transformation is caused, the desired uniform ultrafine structure may not be obtained.

【0033】しかし、このような場合でも、図2に示す
ように上記熱鋼片を冷却する前にそのまま或いは一旦加
熱炉へ挿入後、最終パスの圧延をA3 点以上の温度域で
かつ最終パスの圧下率を30%以上とする圧延を行うこ
とにより、γ粒を再結晶させて微細化(γ粒径:200μm
以下)し、更にγ粒に加工歪を導入することができるた
め、α粒の析出サイトを増加することができ、次の冷却
過程でα粒を微細化することができる。
However, even in such a case, as shown in FIG. 2, before cooling the hot steel slab as it is or after once inserting it into the heating furnace, rolling in the final pass is performed in the temperature range of A 3 points or more and finally. By rolling with a pass reduction of 30% or more, the γ grains are recrystallized and refined (γ grain size: 200 μm
Since the processing strain can be introduced into the γ grains, the precipitation sites of the α grains can be increased, and the α grains can be refined in the subsequent cooling process.

【0034】好ましくは、最終パスの圧下率を45%以
上とする。なお、最終パスの圧下率が30%未満である
とγ粒が再結晶微細化しないばかりか加工歪が小さいた
め、次の冷却工程でα粒が微細化しない。また、最終パ
スの圧延がA3 点より低い温度になるとα相が混在する
ようになり、加工歪が柔らかいα相に集中しγ相に加工
歪が蓄積されず、次の冷却工程でγ→α変態により生成
するα粒が微細化されない。この圧延は1パス以上実施
し、そのうちの最終パスを上記の条件で行うのが良い。
最終パス前の圧延は特に条件を限定する必要はなく、通
常の圧延でも構わない。
Preferably, the rolling reduction in the final pass is 45% or more. If the rolling reduction in the final pass is less than 30%, not only the γ grains will not be recrystallized into fine grains but also the processing strain will be small, so that the α grains will not be fined in the next cooling step. Further, when the temperature of the rolling in the final pass is lower than the A 3 point, the α phase is mixed and the working strain is concentrated in the soft α phase, and the working strain is not accumulated in the γ phase. The α grains generated by α transformation are not refined. It is preferable that this rolling is carried out for one or more passes, and the final pass is performed under the above conditions.
For the rolling before the final pass, it is not necessary to particularly limit the conditions, and ordinary rolling may be used.

【0035】(b) 3 点未満の温度域で1〜60分間保
持して析出処理を行う理由 析出処理の目的は、鋼中のC,N,Sを炭窒化物や硫化
物として析出させて深絞り性を向上させることにある。
そのためには、A3 点未満の温度域で保持すれば良い。
なぜなら、析出物の溶解度は一般にγ相に比べてα相で
は小さいため、A3 点未満の温度域に冷却して保持する
と析出が迅速に進行するからである。その結果、焼鈍処
理後の{111}集合組織の発達が容易になって最終製
品の深絞り性が向上する。この際の保持時間は1〜60
分間とすれば良い。なぜなら、保持時間が1分未満では
析出量が少なく、60分より長いと析出が飽和し、製造
コストの上昇を招くことになるからである。
(B) A 1 to 60 minutes in a temperature range of less than 3 points
Reason for carrying out the precipitation treatment by holding it The purpose of the precipitation treatment is to precipitate C, N and S in the steel as carbonitrides or sulfides to improve the deep drawability.
For that purpose, the temperature may be maintained in the temperature range of less than A 3 .
This is because the solubility of the precipitates is generally smaller in the α phase than in the γ phase, so that precipitation will proceed rapidly if cooled and held in the temperature range below the A 3 point. As a result, the development of the {111} texture after annealing is facilitated and the deep drawability of the final product is improved. The holding time at this time is 1 to 60
It should be minutes. This is because if the holding time is less than 1 minute, the amount of precipitation will be small, and if it is longer than 60 minutes, the precipitation will be saturated, resulting in an increase in manufacturing cost.

【0036】本発明において、前記“A3 点以下の温度
域に冷却した後の鋼板”を圧延ラインにおいて上記温度
域に保持する手段は特に限定されないが、例えば近年開
発された“コイルボックス”を使用することができる。
また、所定の析出処理温度とするため、鋼板を急冷して
も良い。急冷することにより製造時間の短縮が図られる
と共に、γ→α変態で生じる熱延板のα粒を微細化する
ことができて深絞り性を向上することができる。
In the present invention, the means for holding the "steel plate after being cooled to the temperature range of A 3 point or less" in the above temperature range in the rolling line is not particularly limited, but, for example, a recently developed "coil box" is used. Can be used.
Further, the steel plate may be rapidly cooled in order to attain a predetermined precipitation treatment temperature. By quenching, the manufacturing time can be shortened, and the α grains of the hot-rolled sheet produced by the γ → α transformation can be made finer, and the deep drawability can be improved.

【0037】(c) 3 点〜〔A3 点+200℃〕の温度
域まで昇温する理由 上述のように、熱鋼片を一旦A3 点を下回る温度域に冷
却してα相を生成させた後、再度A3 点以上に加熱する
と、α→γ逆変態によりγ粒を微細化することかでき
る。即ち、A3 点以上の温度域まで昇温する理由は、
「αから逆変態により非常に微細なγ粒を生成させる」
という本発明に係わる方法での特徴的な作用・効果を十
分に発揮させることにある。この場合、昇温温度の上限
を〔A3 点+200℃〕としたのは、この温度を超えて
昇温するとγが粒成長してしまい、最終的に所望の均一
超微細組織鋼板が得られず、従って所望の加工性及び強
度を確保することができなくなることによる。
(C) Temperature from A 3 point to [A 3 point + 200 ° C.]
Reason for heating up to the temperature range As described above, when the hot steel billet is once cooled to a temperature range below the A 3 point to generate the α phase and then heated to the A 3 point or higher, the α → γ reverse transformation causes It is possible to make the γ grains finer. That is, the reason why the temperature is raised to the temperature range of A 3 point or higher is
“Generates very fine γ grains from α by reverse transformation”
That is to fully exhibit the characteristic actions and effects of the method according to the present invention. In this case, the upper limit of the temperature rise is [A 3 point + 200 ° C.] because the grain growth of γ occurs when the temperature rises above this temperature and finally the desired uniform ultrafine structure steel sheet is obtained. Therefore, the desired workability and strength cannot be ensured.

【0038】なお、この昇温に先立ってA3 点未満の温
度域で圧延加工を施しておくと、この圧延によりαに歪
が蓄積されてγへの逆変態核が増加するため、無加工の
場合に比べより一層γ粒を微細化することができる。従
って、A3 点未満の温度域で圧延を施してから加熱を行
っても良い。
If rolling is performed in a temperature range of less than the A 3 point prior to this temperature rise, strain is accumulated in α and the reverse transformation nuclei to γ are increased by this rolling. It is possible to further reduce the size of the γ grains as compared with the case. Therefore, it may be heated after performing rolling in the temperature range of A less than 3 points.

【0039】また、A3 点を下回る温度域からA3 点〜
〔A3 点+200℃〕の温度域まで昇温する際の加熱速
度は 0.1℃/sec以上とすることが望ましい。これによっ
て、αから多数のγ核を生じさせ、逆変態後のγ粒成長
を抑制できると共に、A3 点以下の温度域での加工歪が
α→γ逆変態に先立って解放されることがないため、所
望の微細γ粒を実現することができる。昇温の手段とし
ては、“加工熱の利用”又は“外部からの積極的加熱
(通電加熱等)"、或いは両者の併用等、何れの方法を採
用しても良い。
From the temperature range below A 3 point, A 3 point to
The heating rate when raising the temperature to the temperature range of [A 3 point + 200 ° C.] is preferably 0.1 ° C./sec or more. As a result, a large number of γ nuclei can be generated from α, the γ grain growth after the reverse transformation can be suppressed, and the processing strain in the temperature range of A 3 point or lower can be released prior to the α → γ reverse transformation. Therefore, it is possible to realize a desired fine γ grain. As a means for raising the temperature, any method such as "utilization of processing heat" or "active heating from the outside (electric heating)" or a combination of both may be adopted.

【0040】(d) γ相温度域から冷却する理由 γ相温度域に急速加熱して逆変態を起こさせた鋼は、そ
の後の冷却により等方的で均一超微細なα組織とされる
が、好ましくは上記冷却に先立ってγ相温度域で合計圧
下率50%以下の圧延を行うのが良い。なぜなら、γ相
温度域にて圧延を施すと逆変態により生じたγ粒に加工
歪が蓄積され、その後の冷却によって生成するα含有組
織も一層微細化されるので、その特性が一段と向上する
からである。この場合、γ相温度域での圧延は、上述し
たように合計圧下率で50%以下(好ましくは30%以
下)の圧下に止めて置くのが望ましい。これは、合計圧
下率が50%を超えるとγが再結晶・粒成長してしま
い、その後の冷却によって生成するαが十分に微細化し
ないからである。そして、上述の加工熱処理を施して板
材とした鋼を任意手段によって冷却することにより、A
STM粒度番号で8以上の微細なα粒が得られる。
(D) Reason for cooling from the γ-phase temperature range The steel that is rapidly heated to the γ-phase temperature range to cause the reverse transformation has an isotropic and uniform ultrafine α-structure due to subsequent cooling. It is preferable to perform rolling with a total reduction of 50% or less in the γ-phase temperature region prior to the cooling. This is because when rolling is performed in the γ-phase temperature range, the processing strain is accumulated in the γ grains generated by the reverse transformation, and the α-containing structure generated by subsequent cooling is further refined, so that its characteristics are further improved. Is. In this case, it is desirable that the rolling in the γ phase temperature range is stopped at a total reduction of 50% or less (preferably 30% or less) as described above. This is because γ is recrystallized and grain-grown when the total rolling reduction exceeds 50%, and α generated by subsequent cooling is not sufficiently miniaturized. Then, the steel which has been subjected to the above-described thermomechanical treatment and is made into a plate material is cooled by an arbitrary means, whereby A
Fine α particles having an STM particle size number of 8 or more can be obtained.

【0041】なお、γ相温度域からの冷却は、A3 点〜
〔A3 点−100℃〕の温度域を5℃/s以上の冷却速度
で冷却することが望ましい。これにより、微細なγから
多数のα核を生じさせα粒の成長を抑制することができ
るため、微細なα粒を得ることができる。次工程の圧延
前にα粒を微細化することにより、α粒界の面積を増加
することができ、α粒界から生じ、r値の向上に好まし
い{111}再結晶集合組織を十分に発達させることが
できる。
The cooling from the γ phase temperature range is from A 3 point
It is desirable to cool the temperature range of [A 3 points-100 ° C] at a cooling rate of 5 ° C / s or more. This makes it possible to generate a large number of α nuclei from fine γ and suppress the growth of α grains, so that fine α grains can be obtained. By refining the α grains before rolling in the next step, the area of the α grain boundaries can be increased, and the {111} recrystallized texture that is generated from the α grain boundaries and is favorable for improving the r value is sufficiently developed. Can be made.

【0042】(e) γ相温度域から〔A3 点−100℃〕
〜450℃の温度域に冷却して圧延を行う理由 上述のように、γ相温度域まで加熱して逆変態を起こさ
せた鋼はその後〔A3点−100℃〕〜450℃の温度
域にまで冷却されるが、この温度域において合計圧下
率:70〜97%の圧延が施されて最終板厚とされる。
なお、この圧延の目的は、次の再結晶処理工程において
“r値の向上”と“r値の面内異方性の最小化”に好ま
しい{111}集合組織を発達させるべく、圧延集合組
織を発達させることにある。
(E) From the γ phase temperature range [A 3 points −100 ° C.]
The reason why the steel is cooled to a temperature range of ~ 450 ° C and rolled as described above, the steel heated to the γ phase temperature range to cause reverse transformation is then [A 3 point-100 ° C] to a temperature range of 450 ° C. Although it is cooled to, the total rolling reduction in this temperature range: 70 to 97% is performed to obtain the final plate thickness.
The purpose of this rolling is to develop a {111} texture that is favorable for "improving the r value" and "minimizing the in-plane anisotropy of the r value" in the next recrystallization treatment step. To develop.

【0043】そのため、この圧延はα未再結晶温度域で
ある〔A3 点−100℃〕以下で行うことが望ましい。
しかし、450℃未満の温度域では変形抵抗の増大によ
って圧延に要するエネルギ−が大きくなり、経済的メリ
ットが少なくなる。また、上記圧延での圧下率が70%
を下回ったり或いは97%を超えたりすると、再結晶処
理を行っても{111}集合組織が十分発達しない。
Therefore, it is desirable that this rolling is carried out in the temperature range of α unrecrystallized temperature [A 3 point −100 ° C.] or lower.
However, in the temperature range below 450 ° C., the energy required for rolling increases due to the increase in deformation resistance, and the economic merit decreases. The rolling reduction in the above rolling is 70%.
If it is less than 100% or exceeds 97%, the {111} texture is not sufficiently developed even if the recrystallization treatment is performed.

【0044】つまり、〔A3 点−100℃〕〜450℃
の温度域にて圧下率が70〜97%の圧延を行った後に
再結晶処理を施すことにより、{111}集合組織が十
分に発達して、r値が高く面内異方性の小さい熱延鋼板
が実操業で安定に得られる訳である。
That is, [A 3 points-100 ° C] to 450 ° C
By performing recrystallization treatment after rolling with a rolling reduction of 70 to 97% in the temperature range of 1, the {111} texture is sufficiently developed, and the r value is high and the in-plane anisotropy is small. That is, the rolled steel sheet can be stably obtained in the actual operation.

【0045】なお、r値を向上させるには、圧延時に生
成する{110}集合組織の発達を抑制し、歪を板厚方
向で均一に分布させて、板厚中心部と表層部の集合組織
の相違を小さくすることが好ましい。このためには、鋼
板と圧延ロ−ルとの間の摩擦係数(μ)を0.20以下、望
ましくは0.15以下となるように潤滑を施しながら圧延を
行うのが良い。
In order to improve the r value, the development of {110} texture generated during rolling is suppressed and the strain is evenly distributed in the thickness direction so that the texture at the center of the thickness and the surface portion It is preferable to reduce the difference between. For this purpose, it is preferable to carry out rolling while lubricating so that the friction coefficient (μ) between the steel sheet and the rolling roll is 0.20 or less, preferably 0.15 or less.

【0046】ところで、上記圧延後に再結晶処理した鋼
板のr値、換言すれば集合組織の形成に対しては上記圧
延時の歪速度も大きく影響する。即ち、熱間圧延に関す
る実験結果から、最終パスにおける歪速度を100s-1
以上とした場合には30%以上の圧下率を確保するだけ
で{111}集合組織の発達が可能であることも判明し
た。
By the way, the r-value of the steel sheet recrystallized after the rolling, in other words, the formation of texture has a great influence on the strain rate during the rolling. That is, from the experimental results on hot rolling, the strain rate in the final pass was 100 s −1.
In the above cases, it was also found that the {111} texture can be developed only by securing a reduction rate of 30% or more.

【0047】上記圧延のパスは1回以上で、素材の板厚
と製品板厚とを勘案してパス回数を決めれば良い。この
圧延では、上記潤滑大圧下圧延のみならず、通常の無潤
滑圧延を付け加えることは任意である。
The rolling pass is performed once or more, and the number of passes may be determined in consideration of the plate thickness of the raw material and the product plate thickness. In this rolling, it is optional to add not only the above-mentioned lubricated large reduction rolling but also ordinary non-lubricated rolling.

【0048】ところで、“前記 (a)項で説明した圧延"
並びに "前記 (c)乃至 (e)項で説明した圧延熱処理”を
熱間圧延ラインの何処で行うかについては制約はない
が、前者を粗圧延工程で実施し、後者を仕上げ圧延工程
で行うのが設備上有利である。その際、熱延巻取り温度
は問わない。
By the way, "rolling explained in the item (a)"
Also, there is no restriction on where in the hot rolling line the "rolling heat treatment described in (c) to (e)" is performed, but the former is performed in the rough rolling process and the latter is performed in the finish rolling process. Is advantageous in terms of equipment. At that time, the hot rolling winding temperature does not matter.

【0049】(f) 再結晶処理 再結晶処理は、圧延終了後の鋼板に優れた加工性を与え
るのに不可欠な工程である。なお、再結晶処理方法につ
いては特に限定されるものではなく、熱間圧延終了後の
冷却途中やコイルに巻き取った状態での自己焼鈍により
再結晶させても良く、また巻取り後に加熱して再結晶さ
せても良い。
(F) Recrystallization Treatment Recrystallization treatment is an essential step for giving excellent workability to the steel sheet after rolling. The recrystallization method is not particularly limited, and may be recrystallized by self-annealing during cooling after completion of hot rolling or in a state of being wound on a coil, or by heating after winding. It may be recrystallized.

【0050】そして、上述した条件に従って製造された
熱延鋼板は、熱延鋼板であるにもかかわらず“従来の冷
延鋼板”に匹敵する極めて優れた加工性を有する。
The hot-rolled steel sheet manufactured according to the above-mentioned conditions has extremely excellent workability comparable to that of the "conventional cold-rolled steel sheet" despite being a hot-rolled steel sheet.

【0051】次いで、本発明を実施例によって更に具体
的に説明する。
Next, the present invention will be described more specifically by way of examples.

【実施例】50kg真空溶解炉で表1に示す化学組成のア
ルミキルド鋼を溶製した後、これを鋳造して20mm厚と
100mm厚のスラブとした。続いて、これらのスラブを
表2に示す条件で熱間圧延し冷却して巻取った後、下記
a)〜d)に示す何れかの条件で再結晶処理を行った。
[Examples] Aluminum-killed steel having the chemical composition shown in Table 1 was melted in a 50 kg vacuum melting furnace and then cast into slabs of 20 mm thickness and 100 mm thickness. Subsequently, these slabs were hot-rolled under the conditions shown in Table 2, cooled and wound up, and then
The recrystallization treatment was performed under any of the conditions shown in a) to d).

【0052】〔再結晶処理条件〕 a) コイルに巻取った後、徐冷中に自己の保有熱で再結
晶させる [処理a] , b) 巻取り後、一度常温まで冷却してから800℃の温
度で2分間保持の連続焼鈍に相当する熱履歴を付与して
再結晶させる [処理b] , c) 巻取り後、一度常温まで冷却してから850℃の温
度で10秒間保持の溶融亜鉛めっきラインでの連続焼鈍
に相当する熱履歴を付与して再結晶させる[処理c] , d) 巻取り後、一度常温まで冷却してから700℃の温
度で5時間保持のバッチ焼鈍に相当する熱履歴を付与し
て再結晶させる [処理d] 。
[Recrystallization Treatment Conditions] a) After being wound on a coil, recrystallized by its own heat during slow cooling [treatment a], b) After winding, once cooled to room temperature and then at a temperature of 800 ° C. Apply a heat history equivalent to continuous annealing held for 2 minutes to recrystallize [treatment b], c) After winding, cool to room temperature once, and then hold for 10 seconds at a temperature of 850 ° C for hot dip galvanizing line Re-crystallize by applying a heat history equivalent to continuous annealing at [process c], d) After winding, cool to room temperature once, and then hold at 700 ° C for 5 hours To recrystallize [treatment d].

【0053】このようにして得られた熱延鋼板から試験
片を採取し、“降伏強さ", "伸び”並びに“r値”を調
査した。これらの結果を表3に示す。
Test pieces were taken from the hot-rolled steel sheet thus obtained, and the "yield strength", "elongation" and "r value" were investigated. The results are shown in Table 3.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【0056】[0056]

【表3】 [Table 3]

【0057】表3に示される結果からも明らかなよう
に、本発明で規定する条件に従って製造された熱延鋼板
は優れたr値及び伸びを示しており、しかも面内異方性
が極めて小さいことが分かる。更に、本発明に係わる鋼
板は何れも降伏点が低目であり、非常に優れた加工性を
有しているとが明らかである。
As is clear from the results shown in Table 3, the hot-rolled steel sheet produced according to the conditions specified in the present invention exhibits excellent r value and elongation, and has extremely small in-plane anisotropy. I understand. Further, it is clear that all the steel sheets according to the present invention have a low yield point and have very excellent workability.

【0058】これに対して、製造条件が本発明の規定条
件を満たしていない場合には、試験番号16〜22で得られ
た熱延鋼板に指摘されるようにα組織が十分に微細化せ
ず、得られる鋼板の特性が劣る結果となることが分か
る。また、α組織が微細であってもα域圧延の圧下率や
圧延終了温度が不適当であると、試験番号23〜25で得ら
れた熱延鋼板に見られるように鋼板特性が劣ることが分
かる。
On the other hand, when the manufacturing conditions do not satisfy the specified conditions of the present invention, the α structure must be sufficiently refined as pointed out in the hot-rolled steel sheets obtained in Test Nos. 16-22. In other words, it can be seen that the obtained steel sheet has poor properties. Further, even if the α structure is fine, if the reduction ratio and the rolling end temperature of the α region rolling are inappropriate, the steel sheet properties may be inferior as seen in the hot rolled steel sheets obtained in Test Nos. 23 to 25. I understand.

【0059】[0059]

【効果の総括】以上に説明した如く、この発明によれ
ば、面内異方性が小さくr値の高い熱延鋼板を安定して
製造することができるなど、産業上極めて有用な効果が
もたらされる。
[Summary of Effects] As described above, according to the present invention, it is possible to stably produce a hot-rolled steel sheet having a small in-plane anisotropy and a high r value, and it is possible to obtain an extremely useful effect in industry. Be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱延鋼板製造工程の一例を示す模
式図である。
FIG. 1 is a schematic view showing an example of a hot-rolled steel sheet manufacturing process according to the present invention.

【図2】本発明に係る熱延鋼板製造工程の別例を示す模
式図である。
FIG. 2 is a schematic view showing another example of the hot-rolled steel sheet manufacturing process according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて C:0.08%以下, Si: 0.3%以下, Mn:0.01〜
0.4%,S:0.02%以下, sol.Al:0.01〜0.08%,
N:0.01%以下を含み、残部がFe及び不可避的不純物
から成る熱鋼片を、少なくとも下記a)〜f)の処理を含む
工程で順次加工・熱処理することを特徴とする、面内異
方性の小さい高r値熱延鋼板の製造方法。 a) A3 点を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、フェライトからオ−ステナイトへの逆変態を生じさ
せる, d) 該オ−ステナイト相温度域から冷却する, e) 〔A3 点−100℃〕〜450℃の温度域にて合計
圧下率が70〜97%の圧延を行う, f) 再結晶処理を行う。
1. A weight ratio of C: 0.08% or less, Si: 0.3% or less, Mn: 0.01 to
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%,
N: In-plane anisotropic, characterized by sequentially processing and heat treating a hot steel slab containing 0.01% or less and the balance Fe and unavoidable impurities in a step including at least the treatments a) to f) below. A method for producing a high r-value hot-rolled steel sheet having low properties. cooled to a temperature range below a) A 3-point, b) performs the A precipitation treatment to hold 1-60 minutes at a temperature range of less than 3 points, c) the temperature of the A 3 point - [A 3 point + 200 ° C.] Up to the temperature range to cause the reverse transformation of ferrite to austenite, d) cooling from the temperature range of the austenite phase, e) in the temperature range of [A 3 points-100 ° C] to 450 ° C. Rolling with a total reduction of 70 to 97%, f) Recrystallization treatment is performed.
【請求項2】 重量割合にて C:0.08%以下, Si: 0.3%以下, Mn:0.01〜
0.4%,S:0.02%以下, sol.Al:0.01〜0.08%,
N:0.01%以下 B:0.0001〜0.0050%を含み、残部がFe及び不可避的不
純物から成る熱鋼片を、少なくとも下記a)〜f)の処理を
含む工程で順次加工・熱処理することを特徴とする、面
内異方性の小さい高r値熱延鋼板の製造方法。 a) A3 点を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、フェライトからオ−ステナイトへの逆変態を生じさ
せる, d) 該オ−ステナイト相温度域から冷却する, e) 〔A3 点−100℃〕〜450℃の温度域にて合計
圧下率が70〜97%の圧延を行う, f) 再結晶処理を行う。
2. A weight ratio of C: 0.08% or less, Si: 0.3% or less, Mn: 0.01 to
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%,
N: 0.01% or less B: 0.0001 to 0.0050%, the balance being Fe and inevitable impurities, hot steel slabs are sequentially processed and heat treated in a process including at least the following a) to f). A method for producing a high r-value hot-rolled steel sheet having small in-plane anisotropy. cooled to a temperature range below a) A 3-point, b) performs the A precipitation treatment to hold 1-60 minutes at a temperature range of less than 3 points, c) the temperature of the A 3 point - [A 3 point + 200 ° C.] Up to the temperature range to cause the reverse transformation of ferrite to austenite, d) cooling from the temperature range of the austenite phase, e) in the temperature range of [A 3 points-100 ° C] to 450 ° C. Rolling with a total reduction of 70 to 97%, f) Recrystallization treatment is performed.
【請求項3】 重量割合にて C:0.08%以下, Si: 0.3%以下, Mn:0.01〜
0.4%,S:0.02%以下, sol.Al:0.01〜0.08%,
N:0.01%以下を含有すると共に、更にTi,Nb,Zr,
V及びMoの1種以上:合計で 0.015〜 0.350%をも式 〔C当量〕−〔Ti当量/4〕≦ 0.0020 を満たす割合で含み、残部がFe及び不可避的不純物から
成る熱鋼片を、少なくとも下記a)〜f)の処理を含む工程
で順次加工・熱処理することを特徴とする、面内異方性
の小さい高r値熱延鋼板の製造方法。 a) A3 点を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、フェライトからオ−ステナイトへの逆変態を生じさ
せる, d) 該オ−ステナイト相温度域から冷却する, e) 〔A3 点−100℃〕〜450℃の温度域にて合計
圧下率が70〜97%の圧延を行う, f) 再結晶処理を行う。
3. By weight ratio, C: 0.08% or less, Si: 0.3% or less, Mn: 0.01 to
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%,
N: 0.01% or less is contained and Ti, Nb, Zr,
One or more types of V and Mo: 0.015 to 0.350% in total is also represented by the formula [C equivalent]-[Ti equivalent / 4] ≤ 0.0020. A hot steel slab that contains Fe and unavoidable impurities with the balance satisfying the following conditions, characterized by sequentially processing and heat treating in a step including at least the following treatments a) to f). A method for manufacturing a small high-r hot-rolled steel sheet. cooled to a temperature range below a) A 3-point, b) performs the A precipitation treatment to hold 1-60 minutes at a temperature range of less than 3 points, c) the temperature of the A 3 point - [A 3 point + 200 ° C.] Up to the temperature range to cause the reverse transformation of ferrite to austenite, d) cooling from the temperature range of the austenite phase, e) in the temperature range of [A 3 points-100 ° C] to 450 ° C. Rolling with a total reduction of 70 to 97%, f) Recrystallization treatment is performed.
【請求項4】 重量割合にて C:0.08%以下, Si: 0.3%以下, Mn:0.01〜
0.4%,S:0.02%以下, sol.Al:0.01〜0.08%,
N:0.01%以下 B:0.0001〜0.0050%を含有すると共に、更にTi,Nb,
Zr,V及びMoの1種以上:合計で 0.015〜 0.350%をも
式 〔C当量〕−〔Ti当量/4〕≦ 0.0020 を満たす割合で含み、残部がFe及び不可避的不純物から
成る熱鋼片を、少なくとも下記a)〜f)の処理を含む工程
で順次加工・熱処理することを特徴とする、面内異方性
の小さい高r値熱延鋼板の製造方法。 a) A3 点を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、フェライトからオ−ステナイトへの逆変態を生じさ
せる, d) 該オ−ステナイト相温度域から冷却する, e) 〔A3 点−100℃〕〜450℃の温度域にて合計
圧下率が70〜97%の圧延を行う, f) 再結晶処理を行う。
4. By weight ratio, C: 0.08% or less, Si: 0.3% or less, Mn: 0.01 to
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%,
N: 0.01% or less B: 0.0001 to 0.0050%, Ti, Nb,
One or more types of Zr, V and Mo: 0.015 to 0.350% in total is also represented by the formula [C equivalent]-[Ti equivalent / 4] ≤0.0020. A hot steel slab that contains Fe and unavoidable impurities with the balance satisfying the following conditions, characterized by sequentially processing and heat treating in a step including at least the following treatments a) to f). A method for manufacturing a small high-r hot-rolled steel sheet. cooled to a temperature range below a) A 3-point, b) performs the A precipitation treatment to hold 1-60 minutes at a temperature range of less than 3 points, c) the temperature of the A 3 point - [A 3 point + 200 ° C.] Up to the temperature range to cause the reverse transformation of ferrite to austenite, d) cooling from the temperature range of the austenite phase, e) in the temperature range of [A 3 points-100 ° C] to 450 ° C. Rolling with a total reduction of 70 to 97%, f) Recrystallization treatment is performed.
JP35617692A 1992-12-18 1992-12-18 Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value Pending JPH06184646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35617692A JPH06184646A (en) 1992-12-18 1992-12-18 Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35617692A JPH06184646A (en) 1992-12-18 1992-12-18 Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value

Publications (1)

Publication Number Publication Date
JPH06184646A true JPH06184646A (en) 1994-07-05

Family

ID=18447720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35617692A Pending JPH06184646A (en) 1992-12-18 1992-12-18 Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value

Country Status (1)

Country Link
JP (1) JPH06184646A (en)

Similar Documents

Publication Publication Date Title
JPH0635619B2 (en) Manufacturing method of high strength steel sheet with good ductility
JP3901994B2 (en) Non-tempered high-strength and high-toughness forged product and its manufacturing method
JPH0713257B2 (en) Method for manufacturing soft wire without as-rolled surface abnormal phase
JPH10306315A (en) Production of non-heat treated high tensile-strength steel excellent in low temperature toughness
JP2669172B2 (en) Method for producing high r-value hot rolled steel sheet with small in-plane anisotropy
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
JPH06184646A (en) Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value
JP3362739B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability
JP2669231B2 (en) Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy
JP2669243B2 (en) Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH05202424A (en) Production of hot rolled steel plate reduced in plane anisotropy and having high r-value
JPH073332A (en) Production of cold rolled steel sheet excellent in cold nonaging property
JPH02267219A (en) Production of steel plate excellent in carburizability
JP3224732B2 (en) Cold rolled steel sheet having good aging resistance and method for producing the same
JPS61124533A (en) Manufacture of nonaging cold rolled steel sheet having good workability by continuous annealing
JPH06336619A (en) Production of high gamma value cold rolled steel sheet small in plane anisotropy
JPH06184645A (en) Production of cold rolled steel sheet reduced in inplane ansotropy and having high r-value
JPH10265845A (en) Production of hot rolled alloy steel sheet excellent in cold workability
JPH03267314A (en) Production of hot rolled high tensile strength steel plate excellent in workability
JPH0525549A (en) Production of cold rolled steel sheet excellent in baking hardenability
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
JP2532643B2 (en) Method for manufacturing high r-value hot rolled steel sheet by thin cast piece
JPH02263950A (en) Hot rolled steel sheet for deep drawing and its manufacture