JPH10306315A - Production of non-heat treated high tensile-strength steel excellent in low temperature toughness - Google Patents

Production of non-heat treated high tensile-strength steel excellent in low temperature toughness

Info

Publication number
JPH10306315A
JPH10306315A JP11224497A JP11224497A JPH10306315A JP H10306315 A JPH10306315 A JP H10306315A JP 11224497 A JP11224497 A JP 11224497A JP 11224497 A JP11224497 A JP 11224497A JP H10306315 A JPH10306315 A JP H10306315A
Authority
JP
Japan
Prior art keywords
temperature
less
cooling
temp
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11224497A
Other languages
Japanese (ja)
Other versions
JP3369435B2 (en
Inventor
Akio Omori
章夫 大森
Yasushi Morikage
康 森影
Kenji Oi
健次 大井
Fumimaru Kawabata
文丸 川端
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11224497A priority Critical patent/JP3369435B2/en
Publication of JPH10306315A publication Critical patent/JPH10306315A/en
Application granted granted Critical
Publication of JP3369435B2 publication Critical patent/JP3369435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel having high tensile strength and excellent in low temp. toughness without adding a large amt. of expensive elements by subjecting a stock having a specified compsn. to hot working under specified conditions to form into an approximately prescribed shape, thereafter subjecting it to air cooling to a specified temp., executing hot working, holding it at a specified temp. range and subsequently executing air cooling. SOLUTION: A stock having a compsn. contg. C, Si, Mn, P, S, Al, V and N, also satisfying 4.0 to 12.0 V/N, and the balance Fe or the like is heated at 1050 to 1250 deg.C and is subjected to hot working at a cumulative draft of >=30% in the temp. range of 1050 to 950 deg.C to form into an approximately prescribed shape. Next, It is air-cooled to a temp. T ( deg.C) satisfying the inequality and is hot-worked at a draft of <=5%. In the formula, Tps is calculated from the relation among the contents of V, N and Ti. Then, it is held or retained in the temp. range of the temp. T ( deg.C) or below to the Ar3 point or above for >=160 sec, the nitrides having 0.02 to 0.20 μm particle size are dispersed into austenite at the density of 10<5> to 10<10> pieces/mm<3> , and after that, it is air-cooled to a room temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、建築構造物、海
洋構造物、ラインパイプ、船舶、貯槽、土木建設機械等
の用途に好適な非調質高張力鋼材の製造方法に関する。
なお、この発明の非調質高張力鋼材には、厚鋼板、鋼
帯、形鋼あるいは棒鋼が含まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-heat-treated high-strength steel material suitable for use in building structures, marine structures, line pipes, ships, storage tanks, civil engineering construction machines, and the like.
It should be noted that the non-heat-treated high-strength steel material of the present invention includes a thick steel plate, a steel strip, a shaped steel bar or a steel bar.

【0002】[0002]

【従来の技術】鋼材の強度、靱性をバランス良く確保す
る方法として、TMCP(ThermoMechanical Control P
rocess)による鋼材の製造方法が知られている。例え
ば、特開平3-223419号公報には、Nbを含有する鋼素材を
(Ar3+150 ℃)以上の再結晶温度域で30%以上の圧下
を施したのち、(Ar3+150 ℃) 〜Ar3の温度域で50%
以上の圧下を加える厚鋼板の製造方法が提案されてい
る。この方法では、未再結晶域での強圧下により変形帯
を導入し組織の微細化を図っている。
2. Description of the Related Art As a method for ensuring the strength and toughness of a steel material in a well-balanced manner, TMCP (Thermo Mechanical Control PTM) is used.
There is known a method for producing a steel material by rocess). For example, JP-A-3-223419, then subjected to reduction of 30% or more in the steel material containing Nb (Ar 3 +150 ℃) above the recrystallization temperature region, (Ar 3 +150 ℃) ~Ar 50% in 3 temperature range
There has been proposed a method of manufacturing a thick steel plate by applying the above reduction. In this method, a deformation zone is introduced by applying a strong pressure in a non-recrystallized region to make the structure finer.

【0003】また、特開平2-25968 号公報には、Ca、Ti
とNbまたはVを含有する鋼片を900〜1100℃に加熱し、9
00 ℃以下の圧下量が30%以上で、かつ圧延仕上温度が6
80〜860 ℃の熱間圧延を施したのち、3〜10℃/secの冷
却速度で500 ℃以下まで冷却する厚肉高張力高の製造方
法が提案されている。しかしながら、上記したような未
再結晶温度域での圧延の効果を十分発揮させる。また、
圧延機に多大な負荷が掛かるため、多大のエネルギーを
消費するうえ、厚肉材の場合には十分な圧下率が確保で
きず、また温度調節の待ち時間が増大して圧延能率が低
下するなどの問題が残されていた。また、極厚鋼板のよ
うに低温での高圧下が確保できない場合には、変形帯の
導入が不十分となりフェライト核が減少し組織の微細化
が達成できない。一方、薄肉鋼板の場合には、集合組織
の形成による音響異方性や、500 ℃以下といった低温ま
で冷却されるため残留応力・残留歪が大きいなどの問題
があった。
[0003] Also, Japanese Patent Application Laid-Open No. 2-25968 discloses Ca, Ti
And a steel slab containing Nb or V are heated to 900-1100 ° C.
The rolling reduction below 00 ° C is 30% or more, and the rolling finish temperature is 6%.
There has been proposed a method of producing a thick-walled high-tension steel plate by performing hot rolling at 80 to 860 ° C and then cooling to 500 ° C or lower at a cooling rate of 3 to 10 ° C / sec. However, the effect of the rolling in the non-recrystallization temperature range as described above is sufficiently exhibited. Also,
Since a large load is applied to the rolling mill, a large amount of energy is consumed, and in the case of a thick material, a sufficient rolling reduction cannot be secured, and the waiting time for temperature adjustment increases, thereby reducing the rolling efficiency. The problem remained. Further, when a high-pressure condition at a low temperature cannot be ensured as in the case of an extremely thick steel plate, the introduction of a deformation zone becomes insufficient, so that ferrite nuclei are reduced and the structure cannot be refined. On the other hand, in the case of a thin steel plate, there are problems such as acoustic anisotropy due to the formation of a texture, and large residual stress and residual strain due to cooling to a low temperature of 500 ° C. or less.

【0004】一方、上記した方法とは異なり、VNを利用
して、組織を微細化して圧延のままの強度・靱性を向上
させた高強度鋼が、従来から知られている(例えば、鉄
と鋼、vol.77(1991)No.1、p171参照)。また、特開平5-
186848号公報には、V、NおよびTiを添加し、TiN-MnS-
VNの複合析出物を分散させ、フェライト生成核を有効に
作用させ溶接熱影響部(HAZ )靱性を向上させる技術が
示されている。しかし、これらの技術では、必ずしもVN
の作用が効率良く発揮されておらず、圧延のままの母材
特性は不十分であるという問題を残していた。
On the other hand, unlike the above-mentioned method, a high-strength steel using VN to refine the structure and improve the strength and toughness of the as-rolled steel has been conventionally known (for example, iron and iron). Steel, vol. 77 (1991) No. 1, p171). In addition, Japanese Unexamined Patent Publication
No. 186848, V, N and Ti are added, and TiN-MnS-
There is disclosed a technique for dispersing VN composite precipitates to effectively act on ferrite-forming nuclei and improve the toughness of a heat affected zone (HAZ). However, with these technologies, VN
Has not been exhibited efficiently, and the properties of the as-rolled base metal have been insufficient.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記した
問題を有利に解決し、高価な元素を多量に添加すること
なく、引張強さ(TS)490MPa以上の強度を有しかつ低
温靱性に優れた非調質高張力鋼材の製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and has a tensile strength (TS) of 490 MPa or more and a low-temperature toughness without adding a large amount of expensive elements. An object of the present invention is to provide a method for producing an excellent non-heat treated high-tensile steel material.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を達成するために、鋭意検討した結果、つぎのような知
見を得た。 V、N量を制御して、VNをオーステナイト中に析出分
散させることにより、これら析出物がフェライトの析出
核として作用し、微細なフェライト+パーライト組織が
形成される。また、フェライトの析出核として作用する
のは0.01〜0.10μm の大きさのVN粒子である。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and have obtained the following findings. By controlling the amounts of V and N to precipitate and disperse VN in austenite, these precipitates act as precipitate nuclei for ferrite, and a fine ferrite + pearlite structure is formed. VN particles having a size of 0.01 to 0.10 μm act as precipitation nuclei of ferrite.

【0007】VNの析出量、粒子の大きさは、V、N量
に関係する特定温度範囲での加工と冷却速度の調整、等
温保持による特定温度範囲の滞留時間の調整により制御
でき、フェライトの析出核として有効に作用するVNが増
加する温度範囲がある。 VNは、フェライト変態後、フェライト中にも多量に微
細析出するため、強度増加に大きく寄与する。また、VN
は比較的緩冷却でも多量に微細析出するため、鋼板断面
内の強度・靱性のばらつきや、残留応力・残留歪の発生
を抑制できる。
The amount of VN precipitated and the size of the particles can be controlled by adjusting the processing and cooling rate in a specific temperature range related to the V and N contents, and by adjusting the residence time in a specific temperature range by maintaining the isothermal temperature. There is a temperature range in which VN effectively acting as precipitation nuclei increases. VN precipitates in ferrite in large quantities after ferrite transformation, and thus greatly contributes to an increase in strength. Also, VN
Since a large amount of fine precipitates even with relatively slow cooling, it is possible to suppress variations in strength and toughness in the cross section of the steel sheet and occurrence of residual stress and residual strain.

【0008】粒界フェライトが生成する温度域を加速
冷却すれば、微細粒内フェライトの生成が促進され組織
が一層微細化される。 この発明は、上記した知見をもとに完成させたものであ
る。すなわち、この発明は、重量%で、C:0.05〜0.18
%、Si:0.10〜0.60%、Mn:0.80〜1.80%、P:0.030
%以下、S:0.015 %以下、Al:0.005 〜0.050 %、
V:0.04〜0.15%、N:0.0050〜0.0150%を含み、かつ
V/N:4.0 〜12.0を満足し、残部Feおよび不可避的不
純物からなる組成の素材を、1050〜1250℃に加熱し、10
50℃以下 950℃以上の温度範囲で累積圧下率30%以上の
熱間加工を施しほぼ所定の形状としたのち、次(1)式 Tps≦T≦Tps−100 ……(1) (ここに、T:温度(℃)、Tps(℃)={V(N−0.
292 Ti)×105 +425 }/0.480 、V、N、Ti:含有量
(wt%))を満足する温度T(℃)まで空冷して、該温
度T(℃)で圧下率:5%以下の熱間加工を施し、つい
で該温度T(℃)以下Ar3点以上の温度範囲で160sec以
上保持または滞留させ、オーステナイト中に粒子径0.02
〜0.20μm のV窒化物を105 〜1010個/mm3 の密度で分
散させたのち、室温まで空冷することを特徴とする低温
靱性に優れた非調質高張力鋼材の製造方法である。
If the temperature range in which grain boundary ferrite is formed is accelerated and cooled, the formation of fine intragranular ferrite is promoted and the structure is further refined. The present invention has been completed based on the above findings. That is, according to the present invention, C: 0.05 to 0.18
%, Si: 0.10 to 0.60%, Mn: 0.80 to 1.80%, P: 0.030
%, S: 0.015% or less, Al: 0.005 to 0.050%,
A material containing V: 0.04 to 0.15%, N: 0.0050 to 0.0150%, and satisfying V / N: 4.0 to 12.0, the balance being composed of Fe and unavoidable impurities is heated to 1050 to 1250 ° C.
After performing hot working with a cumulative rolling reduction of 30% or more in a temperature range of 50 ° C. or less and 950 ° C. or more to obtain a substantially predetermined shape, the following equation (1) Tps ≦ T ≦ Tps−100 (1) , T: temperature (° C.), Tps (° C.) = {V (N−0.
292 Ti) × 10 5 +425 mm / 0.480, V, N, Ti: Content (wt%)) is air-cooled to a temperature T (° C.), and the draft at the temperature T (° C.): 5% or less And then kept or retained for at least 160 seconds in a temperature range of not more than the temperature T (° C.) and not less than 3 points of Ar, and having a particle size of 0.02 in austenite.
After the V nitride ~0.20μm was dispersed at a density of 10 5 to 10 10 cells / mm 3, it is a method for producing a non-tempered high tensile steel having excellent low temperature toughness characterized by air cooling to room temperature .

【0009】また、この発明では、前記温度T(℃)ま
での空冷に代えて、空冷超の冷却速度で加速冷却を施し
てもよい。また、本発明では、前記室温までの空冷に代
えて、空冷超30℃/s以下の冷却速度で(Ar3−60)℃
以下600 ℃以上の任意の温度まで冷却するのが好まし
い。また、本発明では、前記素材は、重量%で、C:0.
05〜0.18%、Si:0.10〜0.60%、Mn:0.80〜1.80%、
P:0.030 %以下、S:0.015 %以下、Al:0.005 〜0.
050 %、V:0.04〜0.15%、N:0.0050〜0.0150%を含
み、さらにNb:0.003〜0.030 %、Ti:0.005 〜0.030
%のうちから選ばれた1種または2種を含有し、かつ
(V+Ti)/N:4.0 〜12.0を満足し、残部Feおよび不
可避的不純物からなる組成の素材とするのが好適であ
り、また、さらにCu:0.05〜0.50%、Ni:0.05〜0.50
%、Cr:0.05〜0.50%、Mo:0.02〜0.20%のうちから選
ばれた1種または2種以上、および/またはB:0.0003
〜0.0020%、REM :0.0010〜0.010 %、Ca:0.0010〜0.
010 %のうちから選ばれた1種または2種以上を含有し
てもよい。
In the present invention, instead of the air cooling up to the temperature T (° C.), accelerated cooling may be performed at a cooling speed exceeding the air cooling. Further, in the present invention, instead of the air cooling to the room temperature, (Ar 3 −60) ° C.
It is preferable to cool to an arbitrary temperature of 600 ° C. or higher. Further, in the present invention, the material is C: 0.
05 ~ 0.18%, Si: 0.10 ~ 0.60%, Mn: 0.80 ~ 1.80%,
P: 0.030% or less, S: 0.015% or less, Al: 0.005-0.
050%, V: 0.04-0.15%, N: 0.0050-0.0150%, Nb: 0.003-0.030%, Ti: 0.005-0.030
% Or more, and (V + Ti) / N: 4.0 to 12.0 is satisfied, and the material is preferably composed of the balance of Fe and unavoidable impurities. , Further Cu: 0.05-0.50%, Ni: 0.05-0.50
%, Cr: 0.05 to 0.50%, Mo: 0.02 to 0.20%, one or more kinds selected from among them, and / or B: 0.0003
~ 0.0020%, REM: 0.0010 ~ 0.010%, Ca: 0.0010 ~ 0.
One or more selected from 010% may be contained.

【0010】[0010]

【発明の実施の形態】本発明において好適な素材の化学
組成について説明する。 C:0.05〜0.18% Cは鋼の高度を増加させる元素であり、強度確保のため
に0.05%以上の添加が必要である。しかし、0.18%を超
えて添加すると、母材靱性およびHAZ 部靱性が低下する
ため、Cは0.05〜0.18%の範囲に制限した。なお、好ま
しくは0.08〜0.16%である。
BEST MODE FOR CARRYING OUT THE INVENTION The chemical composition of a material suitable for the present invention will be described. C: 0.05 to 0.18% C is an element that increases the altitude of steel, and it is necessary to add 0.05% or more to ensure strength. However, if added in excess of 0.18%, the base material toughness and the HAZ toughness decrease, so C was limited to the range of 0.05 to 0.18%. In addition, it is preferably 0.08 to 0.16%.

【0011】Si:0.10〜0.60% Siは脱酸材として作用し、さらに固溶強化により鋼の強
度を増加させる元素である。この効果を得るためには、
0.10%以上の添加を必要とするが、0.60%を超えると、
HAZ 部靱性を著しく劣化させる。このため、Siは0.10〜
0.60%の範囲とした。なお、好ましくは、0.20〜0.45%
である。
Si: 0.10 to 0.60% Si is an element that acts as a deoxidizing material and further increases the strength of steel by solid solution strengthening. To get this effect,
It is necessary to add 0.10% or more, but if it exceeds 0.60%,
Significantly degrades HAZ toughness. For this reason, Si is 0.10 ~
The range was 0.60%. Preferably, 0.20 to 0.45%
It is.

【0012】Mn:0.80〜1.80% Mnは鋼の強度を増加させる元素であり、強度確保のため
0.80%以上の添加が必要である。しかし、1.80%を超え
ると、組織がフェライト+パーライトからベイナイトな
どの低温生成物を主体とする組織になり、母材靱性が低
下する。このため、Mnは0.80〜1.80%に限定した。な
お、好ましくは1.00〜1.70%である。
Mn: 0.80-1.80% Mn is an element that increases the strength of steel.
0.80% or more must be added. However, if it exceeds 1.80%, the structure becomes a structure mainly composed of low-temperature products such as ferrite + pearlite and bainite, and the toughness of the base material decreases. For this reason, Mn was limited to 0.80 to 1.80%. In addition, it is preferably 1.00 to 1.70%.

【0013】P:0.030 %以下 Pは粒界に偏析し、靱性を低下させる。このため、でき
るだけ低減するのが望ましいが、0.030 %までは許容で
きる。なお、好ましくは0.020 %以下である。 S:0.015 %以下 Sは非金属介在物を形成し、延性・靱性を劣化させるた
め、0.015 %以下に制限した。なお、好ましくは0.010
%以下である。
P: not more than 0.030% P segregates at the grain boundaries and lowers toughness. For this reason, it is desirable to reduce as much as possible, but up to 0.030% is acceptable. Incidentally, the content is preferably 0.020% or less. S: 0.015% or less Since S forms nonmetallic inclusions and deteriorates ductility and toughness, it is limited to 0.015% or less. Incidentally, preferably 0.010
% Or less.

【0014】Al:0.005 〜0.050 % Alは脱酸材として作用するが、多量に添加すると非金属
介在物が多くなり、清浄度が低下し靱性が劣化する。ま
た、AlはNと結合しAlN を形成しやすく、VNの安定析出
を阻害する。このため、Alは0.005 〜0.050 %の範囲と
した。 V:0.04〜0.15% Vは、本発明では重要な元素であり、Nと結合しV窒化
物(VN)を形成し、熱間加工中あるいはその後の冷却中
にオーステナイト中に析出する。このV窒化物(VN)は
フェライト析出核として作用し、フェライト結晶粒を微
細化し靱性を向上させる。また、V窒化物(VN)は、フ
ェライト変態後フェライト中にも微細析出し、冷却時、
強冷を行うことなく母材強度を高めることができ、鋼板
板厚内の特性の均一性、残留応力・残留歪を軽減でき
る。これらの効果を得るためには、0.04%以上の添加を
必要とするが、0.15%を超えて添加すると、母材靱性、
溶接性が劣化する。このため、Vは0.04〜0.15%の範囲
に限定した。なお、好ましくは0.04〜0.12%である。
Al: 0.005 to 0.050% Al acts as a deoxidizing agent, but when added in a large amount, non-metallic inclusions increase, thereby lowering cleanliness and deteriorating toughness. In addition, Al bonds with N to easily form AlN, and inhibits stable precipitation of VN. Therefore, the content of Al is set in the range of 0.005 to 0.050%. V: 0.04 to 0.15% V is an important element in the present invention and combines with N to form V nitride (VN), which precipitates in austenite during hot working or subsequent cooling. This V nitride (VN) acts as a ferrite precipitation nucleus, refines ferrite crystal grains, and improves toughness. V nitride (VN) also precipitates finely in ferrite after ferrite transformation,
The strength of the base material can be increased without performing strong cooling, and the uniformity of the properties within the thickness of the steel sheet, the residual stress and the residual strain can be reduced. In order to obtain these effects, it is necessary to add 0.04% or more, but if added over 0.15%, the base material toughness,
Deterioration of weldability. For this reason, V is limited to the range of 0.04 to 0.15%. In addition, it is preferably 0.04 to 0.12%.

【0015】N:0.0050〜0.0150% NはVおよび/またはTiと結合し窒化物を形成し、加熱
時のオーステナイト粒の成長を抑制するとともに、フェ
ライト析出核として作用しフェライト結晶粒を微細化し
靱性を向上させる。これらの効果を得るためには0.0050
%以上の含有を必要とするが、0.0150%を超えると固溶
N量が増加し、母材靱性、HAZ 部靱性を劣化させる。こ
のため、Nは0.0050〜0.0150%の範囲に限定した。な
お、好ましくは0.0060〜0.0120%である。
N: 0.0050 to 0.0150% N combines with V and / or Ti to form a nitride, suppresses the growth of austenite grains during heating, acts as a ferrite precipitation nucleus, refines the ferrite grains, and reduces the toughness. Improve. 0.0050 to get these effects
%, But if it exceeds 0.0150%, the amount of solute N increases, deteriorating the base metal toughness and the HAZ toughness. For this reason, N was limited to the range of 0.0050 to 0.0150%. In addition, it is preferably 0.0060 to 0.0120%.

【0016】V/N、(V+Ti)/N:4.0 〜12.0 この発明では、Tiを添加しない場合にはV/Nで、Tiを
添加する場合には(V+Ti)/Nで計算する。Tiを添加
しない場合にはV、N量を上記した範囲内とし、さらに
V/Nを4.0 〜12.0の範囲に調整する。Tiを添加する場
合にはV、Ti、N量を上記した範囲内とし、さらに(V
+Ti)/Nを4.0 〜12.0の範囲に調整する。V/Nある
いは(V+Ti)/Nが4.0 未満では、固溶N量が増加し
歪時効を生じさせ、さらにHAZ 部靱性を劣化させる。ま
た、V/Nあるいは(V+Ti)/Nが12.0を超えると、
VあるいはVとTiが、Cと結合し過剰に炭化物を生成し
母材を低下させる。このため、V/Nあるいは(V+T
i)/Nを4.0 〜12.0の範囲とした。なお、好ましくは
5.0 〜10.0である。
V / N, (V + Ti) / N: 4.0 to 12.0 In the present invention, the calculation is made by V / N when Ti is not added, and by (V + Ti) / N when Ti is added. When Ti is not added, the amounts of V and N are set within the above ranges, and the V / N is adjusted to a range of 4.0 to 12.0. When Ti is added, the amounts of V, Ti, and N are set within the above ranges, and (V
+ Ti) / N is adjusted in the range of 4.0 to 12.0. If V / N or (V + Ti) / N is less than 4.0, the amount of solute N increases, causing strain aging and further deteriorating the toughness of the HAZ. When V / N or (V + Ti) / N exceeds 12.0,
V or V and Ti combine with C to form excessive carbides and reduce the base material. Therefore, V / N or (V + T
i) / N was in the range of 4.0 to 12.0. Preferably,
5.0 to 10.0.

【0017】Nb:0.003 〜0.030 %、Ti:0.005 〜0.03
0 %のうちから選ばれた1種または2種 Ti、NbはともにV窒化物の析出を促進する作用を有して
いる。Tiは、Nと結合しTiN を形成し、加熱時のオース
テナイト粒の成長を抑制するとともに、さらにオーステ
ナイト中に残留あるいは析出し、VNのオーステナイト中
への析出を促進させる作用を有する。この効果を得るた
めには、0.005 %以上の添加が必要であるが、0.030 %
を超えると、鋼の清浄度を低下させるとともに、V窒化
物の析出を抑制し、母材の靱性を劣化させる。このた
め、Tiは0.005 〜0.030 %の範囲とした。好ましくは、
0.010 〜0.025 %である。
Nb: 0.003 to 0.030%, Ti: 0.005 to 0.03
One or two of Ti and Nb selected from 0% both have an effect of promoting the precipitation of V nitride. Ti combines with N to form TiN, which suppresses the growth of austenite grains during heating, and has the effect of remaining or precipitating in austenite to promote the precipitation of VN in austenite. To obtain this effect, 0.005% or more must be added, but 0.030%
If it exceeds, the cleanliness of the steel is reduced, the precipitation of V nitride is suppressed, and the toughness of the base material is deteriorated. Therefore, Ti is set in the range of 0.005 to 0.030%. Preferably,
0.010 to 0.025%.

【0018】Nbは、細粒化と析出硬化により強度および
靱性を向上させ、Tiと同様V窒化物の析出を促進させ
る。これら効果を得るためには0.003 %以上の添加が必
要であるが、0.030 %を超えると溶接性およびHAZ 部靱
性を劣化させる。このため、Nbは0.003 〜0.030 %の範
囲に限定する。 Cu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.05〜0.50
%、Mo:0.02〜0.20%のうちから選ばれた1種または2
種以上 Cu、Ni、Cr、Moはいずれも焼入れ性を向上させ、強度を
増加させるのに有効な元素であり、1種または2種以上
添加できる。このような効果を発揮させるためにはCu、
Ni、Crはそれぞれ0.05%以上、Moは0.02%以上の添加を
必要とする。しかし、Cu、Niは0.50%を超えて添加して
も効果が飽和し、経済的にも高価となる。このため、C
u、Niとも0.05〜0.50%に限定した。Cr、Moはそれぞれ
0.50%、0.20%を超えると溶接性、靱性が劣化する。こ
のため、Crは0.05〜0.50%、Moは0.02〜0.20%に限定し
た。
Nb improves the strength and toughness by grain refinement and precipitation hardening, and promotes the precipitation of V nitride, similar to Ti. To obtain these effects, it is necessary to add 0.003% or more, but if it exceeds 0.030%, the weldability and the toughness of the HAZ part are deteriorated. Therefore, Nb is limited to the range of 0.003 to 0.030%. Cu: 0.05 to 0.50%, Ni: 0.05 to 0.50%, Cr: 0.05 to 0.50
%, Mo: one or two selected from 0.02 to 0.20%
Any of Cu, Ni, Cr and Mo are effective elements for improving hardenability and increasing strength, and one or more of them can be added. In order to exhibit such effects, Cu,
Ni and Cr each require addition of 0.05% or more, and Mo requires 0.02% or more. However, even if Cu and Ni are added in excess of 0.50%, the effect is saturated and the cost becomes high economically. For this reason, C
Both u and Ni are limited to 0.05 to 0.50%. Cr and Mo are each
If it exceeds 0.50% or 0.20%, weldability and toughness will deteriorate. For this reason, Cr was limited to 0.05 to 0.50%, and Mo was limited to 0.02 to 0.20%.

【0019】B:0.0003〜0.0020%、REM :0.0010〜0.
010 %、Ca:0.0010〜0.010 %のうちから選ばれた1種
または2種以上 B、REM 、Caはいずれもフェライト粒の微細化に寄与す
る作用を有しており必要に応じ1種または2種以上添加
できる。Bは粒界に偏析し、粗大な粒界フェライトの析
出を抑制し、フェライト粒の微細化に寄与する。この効
果を得るためには、0.0003%以上の添加を必要とする
が、0.0020%を超えるて添加すると、靱性を低下させ
る。このため、Bは0.0003〜0.0020%に限定した。
B: 0.0003-0.0020%, REM: 0.0010-0.
010%, Ca: one or more kinds selected from 0.0010 to 0.010% B, REM, and Ca all have an effect of contributing to the refinement of ferrite grains. More than one species can be added. B segregates at the grain boundaries, suppresses the precipitation of coarse grain boundary ferrite, and contributes to the refinement of ferrite grains. To obtain this effect, 0.0003% or more must be added, but if it exceeds 0.0020%, the toughness is reduced. For this reason, B was limited to 0.0003 to 0.0020%.

【0020】REM 、Caは高温においても安定な酸化物を
形成し微細に鋼中に分散し、オーステナイト粒の成長を
抑制し、圧延後のフェライト粒を微細化する。また、HA
Z 部の組織を微細化し、HAZ 部靱性を向上させる効果も
有している。0.0010%未満ではその効果が少なく、0.01
0 %を超えて添加すると酸化物量が増加し、清浄度が低
下し靱性を害する。このため、REM Caともに、0.0010〜
0.010 %に限定した。
REM and Ca form stable oxides even at high temperatures and are finely dispersed in the steel, suppress the growth of austenite grains, and refine the ferrite grains after rolling. Also HA
It also has the effect of refining the structure of the Z part and improving the toughness of the HAZ part. Less than 0.0010% has little effect, 0.01
If it is added in excess of 0%, the amount of oxides increases, the cleanliness decreases and the toughness is impaired. For this reason, both REM Ca
Limited to 0.010%.

【0021】その他、残部Feおよび不可避的不純物であ
る。上記に規定した元素以外の元素では、O:0.010 %
以下、Zr:0.02%以下、Mg:0.02%以下の含有が許容さ
れる。つぎに、製造方法の限定理由について説明する。
上記した組成の鋼の溶製は、転炉、電気炉等通常公知の
溶製方法がいずれも適用でき、とくに限定する必要はな
い。溶製された溶鋼は、連続鋳造法あるいは造塊法によ
り凝固され加工用素材とされる。
Others are Fe and inevitable impurities. For elements other than the elements specified above, O: 0.010%
Below, the content of Zr: 0.02% or less and Mg: 0.02% or less is allowable. Next, the reasons for limiting the manufacturing method will be described.
For the smelting of the steel having the above-mentioned composition, any commonly known smelting method such as a converter and an electric furnace can be applied, and there is no particular limitation. The smelted molten steel is solidified by a continuous casting method or an ingot-making method to be a working material.

【0022】素材は1050〜1250℃に加熱される。加熱温
度が1050℃未満では、V、Nb等の析出元素が十分に固溶
せず、これら元素の効果を十分に発揮することが困難な
うえに、変形抵抗の増加により、所定の圧下量の確保が
困難となる。一方、1250℃を超えると、結晶粒が粗大化
するとともに、スケールロス量の増加や炉の改修頻度の
増加を招く。このため、素材の加熱温度は1050〜1250℃
の範囲に限定した。
The material is heated to 1050-1250 ° C. If the heating temperature is lower than 1050 ° C., the precipitated elements such as V and Nb do not sufficiently form a solid solution, and it is difficult to sufficiently exert the effects of these elements. It becomes difficult to secure. On the other hand, when the temperature exceeds 1250 ° C., the crystal grains become coarse, and the scale loss and the frequency of furnace repair increase. Therefore, the heating temperature of the material is 1050-1250 ° C
Limited to the range.

【0023】加熱された素材は、1050℃以下 950℃以上
の温度範囲で累積圧下率30%以上の熱間加工を施され、
ほぼ所定の形状とされる。1050℃以下950 ℃以上の温度
範囲で累積圧下率30%以上の熱間加工により、オーステ
ナイトは再結晶細粒化される。累積圧下率30%未満で
は、オーステナイトの細粒化が不十分であり、また、加
工温度が1050℃を超えるか、950 ℃未満ではオーステナ
イトの細粒化が不十分となる。
The heated material is subjected to hot working with a cumulative rolling reduction of 30% or more in a temperature range of 1050 ° C. or less and 950 ° C. or more,
It has a substantially predetermined shape. Austenite is recrystallized and refined by hot working with a cumulative rolling reduction of 30% or more in a temperature range of 1050 ° C or lower and 950 ° C or higher. If the cumulative rolling reduction is less than 30%, austenite grain refinement is insufficient, and if the processing temperature exceeds 1050 ° C. or less than 950 ° C., austenite grain refinement becomes insufficient.

【0024】950 ℃以上で熱間加工を施しほぼ所定の形
状とされた素材は、ついで、次(1)式 Tps≦T≦Tps−100 ……(1) (ここに、T:温度(℃)、Tps(℃)={V(N−0.
292 Ti)×105 +425 }/0.480 、V、N、Ti:含有量
(wt%))を満足する温度T(℃)で、圧下率:5%以
上の熱間加工を施し、ついで該温度T(℃)以下Ar3
以上の温度範囲で160sec以上、好ましくは3000sec 以下
保持または滞留させるV窒化物の析出処理を施す。
The material which has been subjected to hot working at a temperature of 950 ° C. or more to have a substantially predetermined shape is then subjected to the following equation (1): Tps ≦ T ≦ Tps−100 (1) (where T: temperature (° C.) ), Tps (° C.) = {V (N−0.
292 Ti) × 10 5 +425 mm / 0.480, V, N, Ti: hot working at a temperature T (° C.) satisfying the content (wt%)) and a draft of 5% or more; A V nitride precipitation treatment is performed to hold or stay at a temperature range of not more than T (° C.) and Ar not less than 3 points for not less than 160 seconds, preferably not more than 3000 seconds.

【0025】これにより、オーステナイト中に粒子径0.
02〜0.20μm のV窒化物が105 〜10 10個/mm3 の密度で
分散する。なお、950 ℃以上での熱間加工後、この温度
Tまでの冷却条件は空冷とするか、あるいは空冷超の冷
却速度で加速冷却してもよい。組織の微細化に有効なV
窒化物は粒子径0.01〜0.10μm のV窒化物である。粒子
径が0.01μm 未満のV窒化物は、微細すぎてフェライト
析出核となりにくく、また、0.10μm を超えるV窒化物
は、破壊の基点となり靱性を劣化させる。しかし、この
ような粒子径のV窒化物が析出していても、その析出密
度が105 個/mm 3 未満では組織微細化効果が少なく、ま
た1010個/mm3 を超えると過度の析出物の存在により靱
性が劣化する。
Thus, the austenite has a particle size of 0.1
V-nitride of 10 ~ 02 ~ 0.20μmFive~Ten TenPieces / mmThreeAt the density of
Spread. After hot working at 950 ° C or more,
The cooling condition up to T is air cooling or air cooling
The cooling may be accelerated at the cooling speed. V effective for microstructural refinement
The nitride is a V nitride having a particle size of 0.01 to 0.10 μm. particle
V nitrides with a diameter of less than 0.01 μm are too fine
V nitrides that are unlikely to become precipitation nuclei and that exceed 0.10 μm
Becomes the starting point of fracture and deteriorates toughness. But this
Even if V nitride with such a particle size is precipitated,
Degree 10FivePieces / mm ThreeIf less, the effect of refining the structure is small.
10TenPieces / mmThreeIf it exceeds, the presence of excessive precipitates
The property is deteriorated.

【0026】加工温度T(℃)が、Tps未満、あるいは
Tps−100 を超えると、その後の等温保持あるいはAr3
点以上の温度範囲での滞留によってもフェライト析出核
となりうるV窒化物の析出が少なく、組織の微細化が不
十分となる。また、温度Tでの圧下量が5%未満では、
フェライト析出核となり得るV窒化物の析出密度が少な
い。温度Tでの圧下量は析出を有効に促進させ、板厚方
向に均一な加工を加える点から10%以上とするのが好ま
しい。
If the processing temperature T (° C.) is lower than Tps or higher than Tps-100, then the isothermal holding or Ar 3
The precipitation of V nitride, which can be a ferrite precipitation nucleus even when staying in a temperature range above the point, is small, and the micronization of the structure becomes insufficient. Also, if the rolling reduction at the temperature T is less than 5%,
The precipitation density of V nitride, which can be a ferrite precipitation nucleus, is low. The amount of reduction at the temperature T is preferably 10% or more from the viewpoint that the precipitation is effectively promoted and uniform processing is performed in the thickness direction.

【0027】このようなV窒化物析出促進のための加工
後、鋼材をその加工温度T(℃)以下Ar3点以上の温度
範囲で等温保持あるいは滞留させる。等温保持とは、上
記した温度範囲内の一定温度で保持する処理をいい、滞
留とは、上記した温度範囲内で所定時間経過させること
をいう。その等温保持時間あるいは滞留時間が160sec未
満では、フェライト析出核となりうるV窒化物の析出が
少なく、一方、3000sec を超えるとV窒化物が凝集・粗
大化して析出密度の低下により組織微細化の効果少なく
なるうえ、粗大な析出物の存在により靱性が劣化する。
After such processing for accelerating the precipitation of V-nitride, the steel material is kept isothermally or retained in a temperature range of not less than its processing temperature T (° C.) and not less than three points of Ar. Isothermal holding refers to a process of holding at a constant temperature within the above-mentioned temperature range, and stagnation refers to elapse of a predetermined time within the above-mentioned temperature range. If the isothermal holding time or residence time is less than 160 seconds, the precipitation of V nitride, which can be a ferrite precipitation nucleus, is small. In addition, the toughness deteriorates due to the presence of coarse precipitates.

【0028】本発明では、Ar3点は、次の(2)式で定
義される値を用いる。 Ar3(℃)=910-230C+25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb ……(2) 鋼材は温度T(℃)以下Ar3点以上の温度範囲で所定時
間、等温保持または滞留させられたのち室温まで空冷さ
れる。空冷のような緩冷却を施すことにより強度・靱性
のばらつき、残留応力・残留歪が軽減される。
In the present invention, the Ar 3 point uses a value defined by the following equation (2). Ar 3 (° C) = 910-230C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb ... (2) The steel material is kept at a temperature T (° C) or less for 3 hours or more in the isothermal state for a predetermined time. After being retained, it is air-cooled to room temperature. Slow cooling such as air cooling reduces variations in strength and toughness, and reduces residual stress and residual strain.

【0029】また、本発明では、室温までの空冷に代え
て、空冷超30℃/s以下の冷却速度で(Ar3−60)℃以
下600 ℃以上の任意の温度まで加速冷却するのが好まし
い。これにより、粒界フェライトの生成が抑制され、オ
ーステナイトが過冷されV窒化物を核とする粒内フェラ
イトの生成による組織微細化効果が顕著となる。しか
し、冷却速度が30℃/sを超えると板厚方向の温度差が
顕著となり強度・靱性のばらつき、残留応力・残留歪の
発生が顕著となる。
In the present invention, instead of air cooling to room temperature, it is preferable to accelerate cooling to an arbitrary temperature of (Ar 3 −60) ° C. or less and 600 ° C. or more at a cooling rate of 30 ° C./s or less. . As a result, generation of grain boundary ferrite is suppressed, austenite is supercooled, and the effect of grain refinement due to generation of intragranular ferrite having V nitride as a nucleus becomes remarkable. However, if the cooling rate exceeds 30 ° C./s, the temperature difference in the thickness direction becomes remarkable, and the strength and toughness vary, and the occurrence of residual stress and residual strain becomes remarkable.

【0030】また、加速冷却を(Ar3−60)℃を超える
温度で停止すると、加速冷却の効果が認められない。一
方、加速冷却を600 ℃未満の温度まで行うと、ベイナイ
ト等の低温生成物が多量に生成し、靱性が劣化する。な
お、本発明で規定する温度、冷却速度は鋼材の板厚中心
での値である。
When accelerated cooling is stopped at a temperature exceeding (Ar 3 -60) ° C., the effect of accelerated cooling is not recognized. On the other hand, when accelerated cooling is performed to a temperature lower than 600 ° C., a large amount of low-temperature products such as bainite are generated, and toughness is deteriorated. The temperature and cooling rate specified in the present invention are values at the center of the thickness of the steel material.

【0031】[0031]

【実施例】表1に示す組成の鋼を転炉で溶製し、連続鋳
造法で240 〜310mm 厚のスラブとした。ついで、これら
スラブを表2に示す温度に加熱し、熱間圧延によりほぼ
所定の形状の厚鋼板としたのち、表2に示す条件でV窒
化物の析出処理を施し、室温まで冷却した。
EXAMPLES Steel having the composition shown in Table 1 was melted in a converter and slabs having a thickness of 240 to 310 mm were produced by continuous casting. Next, these slabs were heated to the temperature shown in Table 2, and after hot rolling to obtain a thick steel plate having a substantially predetermined shape, a precipitation treatment of V nitride was performed under the conditions shown in Table 2 and cooled to room temperature.

【0032】これら厚鋼板について、板厚中央部から試
験片を採取し、母材の引張特性、靱性を調査した。その
結果を表2に示す。
From these thick steel plates, test specimens were taken from the center of the plate thickness, and the tensile properties and toughness of the base metal were examined. Table 2 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】表2から、本発明例では、引張強さ(T
S)が500MPa以上で、vE-20 が 210J以上と強度・靱性
ともに優れている。これに対し、本発明を外れる比較例
は、強度が不足するか、組織の微細化が不十分で靱性が
劣化している。
From Table 2, it can be seen that the tensile strength (T
S) is 500 MPa or more, and vE- 20 is 210 J or more, which is excellent in both strength and toughness. On the other hand, the comparative examples deviating from the present invention have insufficient strength, or have insufficient microstructure to deteriorate toughness.

【0037】[0037]

【発明の効果】この発明によれば、強度・靱性ともに優
れた引張強さ490MPa以上の非調質高張力鋼材を、高価な
元素を多量添加することなく、また低温での強圧下を施
すこともなく工業的に容易に製造でき産業上多大な効果
を奏する。
According to the present invention, a non-refined high-strength steel material having excellent tensile strength of 490 MPa or more in both strength and toughness can be subjected to strong pressure reduction at a low temperature without adding a large amount of expensive elements. It can be easily manufactured industrially and has great industrial effects.

フロントページの続き (72)発明者 大井 健次 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 川端 文丸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内Continuing on the front page (72) Inventor Kenji Oi 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. No address) Inside Mizushima Steel Works of Kawasaki Steel Corporation (72) Inventor Kinichi Amano 1-chome, Kawasaki-dori Mizushima, Kurashiki City, Okayama Prefecture (No address) Inside Mizushima Steel Works of Kawasaki Steel Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.05〜0.18%、 Si:0.10〜0.60%、 Mn:0.80〜1.80%、 P:0.030 %以下、 S:0.015 %以下、 Al:0.005 〜0.050 %、 V:0.04〜0.15%、 N:0.0050〜0.0150% を含み、かつ V/N:4.0 〜12.0 を満足し、残部Feおよび不可避的不純物からなる組成の
素材を、1050〜1250℃に加熱し、1050℃以下950 ℃以上
の温度範囲で累積圧下率30%以上の熱間加工を施しほぼ
所定の形状としたのち、下記(1)式を満足する温度T
(℃)まで空冷して、該温度T(℃)で圧下率:5%以
上の熱間加工を施し、ついで該温度T(℃)以下Ar3
以上の温度範囲で160sec以上保持または滞留させ、オー
ステナイト中に粒子径0.02〜0.20μm のV窒化物を105
〜1010個/mm3 の密度で分散させたのち、室温まで空冷
することを特徴とする低温靱性に優れた非調質高張力鋼
材の製造方法。 記 Tps≦T≦Tps−100 ……(1) ここに、T:温度(℃) Tps(℃)={V(N−0.292 Ti)×105 +425 }/0.
480 V、N、Ti:含有量(wt%)
C .: 0.05 to 0.18%, Si: 0.10 to 0.60%, Mn: 0.80 to 1.80%, P: 0.030% or less, S: 0.015% or less, Al: 0.005 to 0.050%, V : A material containing 0.04 to 0.15%, N: 0.0050 to 0.0150%, and satisfying V / N: 4.0 to 12.0, the balance being composed of Fe and inevitable impurities is heated to 1050 to 1250 ° C, and 1050 ° C to 1050 ° C. After performing hot working with a cumulative rolling reduction of 30% or more in a temperature range of 950 ° C. or more to obtain a substantially predetermined shape, a temperature T satisfying the following equation (1) is obtained.
(° C), subjected to hot working at a reduction rate of 5% or more at the temperature T (° C), and then held or retained for 160 seconds or more in a temperature range of the temperature T (° C) or less and three or more points of Ar. the V nitride particle size 0.02~0.20μm in austenite 105
A method for producing a non-heat-treated, high-strength steel material having excellent low-temperature toughness, which is dispersed at a density of about 10 10 pieces / mm 3 and then air-cooled to room temperature. Note Tps ≦ T ≦ Tps−100 (1) where T: temperature (° C.) Tps (° C.) = {V (N−0.292 Ti) × 10 5 +425} / 0.
480 V, N, Ti: Content (wt%)
【請求項2】 前記温度T(℃)までの空冷に代えて、
空冷超の冷却速度で加速冷却を施すことを特徴とする請
求項1記載の非調質高張力鋼材の製造方法。
2. Instead of air cooling to the temperature T (° C.),
The method for producing a non-heat treated high-strength steel material according to claim 1, wherein accelerated cooling is performed at a cooling rate exceeding air cooling.
【請求項3】 前記室温までの空冷に代えて、空冷超30
℃/s以下の冷却速度で(Ar3−60)℃以下600 ℃以上
の任意の温度まで冷却することを特徴とする請求項1ま
たは2記載の非調質高張力鋼材の製造方法。
3. An air-cooled super-cooler, instead of said air-cooling up to room temperature.
° C. / s or less cooling rate (Ar 3 -60) ℃ claim 1 or 2 non-tempered high tensile method for producing steel wherein cooling to any temperature above the following 600 ° C..
【請求項4】 前記素材が、重量%で、 C:0.05〜0.18%、 Si:0.10〜0.60%、 Mn:0.80〜1.80%、 P:0.030 %以下、 S:0.015 %以下、 Al:0.005 〜0.050 %、 V:0.04〜0.15%、 N:0.0050〜0.0150% を含み、さらに Nb:0.003 〜0.030 %、Ti:0.005 〜0.030 %のうちか
ら選ばれた1種または2種を含有し、かつ (V+Ti)/N:4.0 〜12.0 を満足し、残部Feおよび不可避的不純物からなる組成の
素材であることを特徴とする請求項1ないし3のいずれ
かに記載の非調質高張力鋼材の製造方法。
4. The material is, by weight%, C: 0.05 to 0.18%, Si: 0.10 to 0.60%, Mn: 0.80 to 1.80%, P: 0.030% or less, S: 0.015% or less, Al: 0.005 to 0.005%. 0.050%, V: 0.04 to 0.15%, N: 0.0050 to 0.0150%, Nb: 0.003 to 0.030%, Ti: 0.005 to 0.030%, and (1) 4. The method for producing a non-heat treated high-strength steel material according to claim 1, wherein the material satisfies V + Ti) / N: 4.0 to 12.0, and has a composition comprising the balance of Fe and unavoidable impurities. .
【請求項5】 前記素材が、さらに重量%で、 Cu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.05〜0.50
%、Mo:0.02〜0.20%のうちから選ばれた1種または2
種以上を含有することを特徴とする請求項1ないし4の
いずれかに記載の非調質高張力鋼材の製造方法。
5. The material further comprises, by weight: Cu: 0.05 to 0.50%, Ni: 0.05 to 0.50%, Cr: 0.05 to 0.50%.
%, Mo: one or two selected from 0.02 to 0.20%
The method for producing a non-heat-treated high-strength steel material according to any one of claims 1 to 4, comprising at least one kind.
【請求項6】 前記素材が、さらに重量%で、 B:0.0003〜0.0020%、REM :0.0010〜0.010 %、Ca:
0.0010〜0.010 %のうちから選ばれた1種または2種以
上を含有することを特徴とする請求項1ないし5のいず
れかに記載の非調質高張力鋼材の製造方法。
6. The material further comprises, by weight: B: 0.0003-0.0020%, REM: 0.0010-0.010%, Ca:
The method for producing a non-heat treated high-strength steel material according to any one of claims 1 to 5, further comprising one or more selected from 0.0010 to 0.010%.
JP11224497A 1997-04-30 1997-04-30 Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness Expired - Fee Related JP3369435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11224497A JP3369435B2 (en) 1997-04-30 1997-04-30 Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11224497A JP3369435B2 (en) 1997-04-30 1997-04-30 Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness

Publications (2)

Publication Number Publication Date
JPH10306315A true JPH10306315A (en) 1998-11-17
JP3369435B2 JP3369435B2 (en) 2003-01-20

Family

ID=14581859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11224497A Expired - Fee Related JP3369435B2 (en) 1997-04-30 1997-04-30 Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness

Country Status (1)

Country Link
JP (1) JP3369435B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035222A1 (en) * 1999-03-10 2000-09-13 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
GB2388845A (en) * 2002-05-23 2003-11-26 Corus Uk Ltd Fire resistant steel
CN1332054C (en) * 2005-08-05 2007-08-15 石家庄钢铁有限责任公司 Nontempered carbon structural steel and its production method
JP2009120957A (en) * 2002-06-19 2009-06-04 Nippon Steel Corp Steel for crude oil tank, production method thereof, crude oil tank and method for preventing corrosion thereof
CN103361552A (en) * 2012-03-30 2013-10-23 鞍钢股份有限公司 V-N microalloying 460MPa-level thick plate and manufacturing method thereof
CN103757548A (en) * 2014-01-09 2014-04-30 鞍钢股份有限公司 Low-aging sensitivity hot rolled plate with high strength and toughness and manufacturing method thereof
CN103882295A (en) * 2012-12-21 2014-06-25 鞍钢股份有限公司 Low-temperature high-toughness V-N alloyed ship plate steel and manufacturing method thereof
CN104561792A (en) * 2013-10-10 2015-04-29 鞍钢股份有限公司 A V-N alloyed high-strength steel plate and a manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567726B2 (en) * 1998-03-09 2004-09-22 Jfeスチール株式会社 Structural steel excellent in earthquake resistance and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035222A1 (en) * 1999-03-10 2000-09-13 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
US6358335B1 (en) 1999-03-10 2002-03-19 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
GB2388845A (en) * 2002-05-23 2003-11-26 Corus Uk Ltd Fire resistant steel
JP2009120957A (en) * 2002-06-19 2009-06-04 Nippon Steel Corp Steel for crude oil tank, production method thereof, crude oil tank and method for preventing corrosion thereof
CN1332054C (en) * 2005-08-05 2007-08-15 石家庄钢铁有限责任公司 Nontempered carbon structural steel and its production method
CN103361552A (en) * 2012-03-30 2013-10-23 鞍钢股份有限公司 V-N microalloying 460MPa-level thick plate and manufacturing method thereof
CN103882295A (en) * 2012-12-21 2014-06-25 鞍钢股份有限公司 Low-temperature high-toughness V-N alloyed ship plate steel and manufacturing method thereof
CN104561792A (en) * 2013-10-10 2015-04-29 鞍钢股份有限公司 A V-N alloyed high-strength steel plate and a manufacturing method thereof
CN103757548A (en) * 2014-01-09 2014-04-30 鞍钢股份有限公司 Low-aging sensitivity hot rolled plate with high strength and toughness and manufacturing method thereof

Also Published As

Publication number Publication date
JP3369435B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
CN106756517B (en) A kind of steel plate and its manufacturing method for polar region ship
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
CN112011725A (en) Steel plate with excellent low-temperature toughness and manufacturing method thereof
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP3901994B2 (en) Non-tempered high-strength and high-toughness forged product and its manufacturing method
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP4134355B2 (en) Manufacturing method of continuous cast tempered high strength steel plate with excellent toughness
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JP3851147B2 (en) Non-tempered high strength and high toughness forged product and its manufacturing method
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JP4405026B2 (en) Method for producing high-tensile strength steel with fine grain
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JPH09279233A (en) Production of high tension steel excellent in toughness
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
KR910002941B1 (en) Making method of a hot rolled sheet excellant in tension and in tenacity for oil well-pipes
JPH1088230A (en) Production of high tensile strength steel material excellent in toughness
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
JP3747365B2 (en) Manufacturing method of non-tempered high strength and high toughness forgings
JPH08225883A (en) Production of high tensile strength steel plate excellent in strength and toughness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees