JPH06182184A - Synthesis of single crystal diamond - Google Patents
Synthesis of single crystal diamondInfo
- Publication number
- JPH06182184A JPH06182184A JP4341940A JP34194092A JPH06182184A JP H06182184 A JPH06182184 A JP H06182184A JP 4341940 A JP4341940 A JP 4341940A JP 34194092 A JP34194092 A JP 34194092A JP H06182184 A JPH06182184 A JP H06182184A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- solvent
- crystal
- synthesis
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は装飾用途や光学部品など
に用いられる無色で透明なダイヤモンド単結晶の合成方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing colorless and transparent diamond single crystals used for decorative purposes and optical parts.
【0002】[0002]
【従来の技術】現在市販されている装飾用ダイヤモンド
は、主に南アフリカ、ロシアより産出されるものの中か
ら、無色透明で内部欠陥の少ないものを選別して用いら
れている。天然装飾用ダイヤモンドは宝石の中でも最も
販売量が多い。また、ダイヤモンドを用いた光学部品と
して、レーザー窓やIRアンビルセルなどがあるが、い
ずれも天然原石の中から赤外領域に光の吸収のない透明
なダイヤモンド(IIa型とよばれる)が選ばれて用いら
れている。しかし、透明無色な原石の産出は極めて少な
く、安定供給や価格に問題がある。一方、人工合成によ
るダイヤモンドは通常、超高圧高温下で合成する際に溶
媒中の窒素が結晶格子内に取り込まれるために黄色く着
色してしまうが、溶媒中に窒素ゲッターを添加すること
で無色透明のダイヤモンドを得ることができる。この窒
素ゲッターとしては、たとえば、The Journal of Physi
cal Chemistry, vol.75, No.12 (1971) p1838 に示され
ているように、Alがよく知られている。具体的には、
米国特許第4034066号明細書には、Fe溶媒にA
lを3〜5重量%添加することにより宝石級の無色透明
なダイヤモンド単結晶が得られると記載されている。A
l以外の窒素ゲッターを用いた例として、たとえば無機
材質研究所研究報告書第39号、p16〜にTiやZr
を溶媒金属に添加することで結晶中の窒素が除去された
という報告がある。2. Description of the Related Art Decorative diamonds currently on the market are used by selecting those which are colorless and transparent and have few internal defects from those mainly produced in South Africa and Russia. Natural ornamental diamonds are the most sold gemstones. Moreover, there are laser windows and IR anvil cells as optical parts using diamond, but in each case, transparent diamond (called type IIa) that does not absorb light in the infrared region is selected from natural rough stones. Is used. However, the production of transparent and colorless rough stones is extremely low, and there are problems with stable supply and prices. On the other hand, artificially synthesized diamond is usually colored yellow because it is incorporated in the crystal lattice of nitrogen in the solvent when synthesized under ultrahigh pressure and high temperature, but it is colorless and transparent by adding a nitrogen getter to the solvent. You can get a diamond. As this nitrogen getter, for example, The Journal of Physi
Al is well known as shown in cal Chemistry, vol.75, No.12 (1971) p1838. In particular,
U.S. Pat. No. 4,034,066 describes Fe solvent as A
It is described that a gem-grade colorless and transparent diamond single crystal can be obtained by adding 3 to 5% by weight of 1. A
Examples of the use of nitrogen getters other than 1 include, for example, Research Report No. 39 of Inorganic Materials Research Institute, p.
There is a report that nitrogen in the crystal was removed by adding the to the solvent metal.
【0003】[0003]
【発明が解決しようとする課題】しかし、特に無色透明
の合成ダイヤモンドは合成コストが天然ダイヤモンドよ
りはるかに高くなるため工業生産は行われていない。こ
の理由は、合成には高価で特殊な装置が必要である上
に、Alなどを窒素ゲッターとして添加した場合、その
添加量の増加に従って溶媒が結晶中に取り込まれ(以下
インクルージョンと呼ぶ)て、不良結晶となることが多
くなるため、良質な結晶とするためには成長速度を大幅
に下げる必要があるからである。とくにTiやZrを窒
素ゲッターとして用いた場合は合成中に溶媒中に生成し
たTiCやZrCなどの炭化物が原因でより多くのイン
クルージョンが結晶中に取り込まれるようになる。However, since the synthetic cost of a colorless and transparent synthetic diamond is much higher than that of natural diamond, industrial production has not been carried out. The reason for this is that, in addition to requiring expensive and special equipment for synthesis, when Al or the like is added as a nitrogen getter, the solvent is taken into the crystal as the amount of addition increases (hereinafter referred to as inclusion), This is because the number of defective crystals increases, and thus the growth rate must be significantly reduced in order to obtain good quality crystals. In particular, when Ti or Zr is used as a nitrogen getter, more inclusions are taken into the crystal due to carbides such as TiC and ZrC formed in the solvent during the synthesis.
【0004】本発明者らが行った実験による結果では、
窒素ゲッターとしてAlを用い、溶媒金属に均一混合し
た場合、無色透明なダイヤモンド結晶を合成するために
は、その添加量は溶媒に対し少なくとも4重量%(約1
2体積%)必要であるが、この場合インクルージョンの
巻き込みなしに結晶成長させるためには成長速度を1m
g/hr以下にする必要があった。この成長速度では、
たとえば1カラット(200mg)の結晶を合成するに
は200時間以上の合成時間を要し、製造コストは膨大
なものとなる。また、Ti、Zrなど、Alより窒素と
の反応性の高い物質を窒素ゲッターとして溶媒に均一添
加した場合、添加量は1重量%でも無色透明な結晶とな
る。しかし、これらは炭化物を形成しやすく、成長速度
を大幅に低下させたとしてもTiCやZrCなどの炭化
物の影響で、良質な結晶は殆ど得られない。本発明はか
かる問題点を解決し、無色透明でインクルージョのほと
んどない結晶を、安価にしかも安定して合成できる方法
を提供し、人工合成ダイヤモンドの装飾用途又は光学部
品用途への使用を可能とするものである。According to the result of the experiment conducted by the present inventors,
When Al is used as a nitrogen getter and uniformly mixed with a solvent metal, in order to synthesize a colorless and transparent diamond crystal, the addition amount thereof is at least 4% by weight (about 1%) with respect to the solvent.
2% by volume), but in this case the growth rate is 1 m in order to grow crystals without inclusion inclusion.
It was necessary to make it g / hr or less. At this growth rate,
For example, it takes 200 hours or more to synthesize 1 carat (200 mg) crystals, and the production cost becomes enormous. Further, when a substance having a higher reactivity with nitrogen than Al, such as Ti or Zr, is uniformly added to the solvent as a nitrogen getter, even if the addition amount is 1% by weight, colorless and transparent crystals are obtained. However, these tend to form carbides, and even if the growth rate is greatly reduced, good quality crystals are hardly obtained due to the influence of carbides such as TiC and ZrC. The present invention solves such a problem, provides a method of synthesizing a colorless and transparent crystal having almost no inclusions stably at low cost, and makes it possible to use an artificial synthetic diamond for a decorative use or an optical component use. To do.
【0005】[0005]
【課題を解決するための手段】本発明者らは、TiやZ
rを窒素ゲッターとして溶媒に添加して成長させたダイ
ヤモンド結晶を観察したところ、インクルージョンのほ
とんどは種結晶を起点として連続して結晶中に取り込ま
れていることがわかった。さらに、詳細に調べると成長
初期に種結晶面上に生成したTiCやZrCなどの炭化
物がインクルージョンの起点となっていることがわかっ
た。そこで本発明者らは、成長初期に種面上に炭化物生
成を防ぐため溶媒と種結晶の間にあらかじめCu,A
g,Au,Zn,Cdなど、それ自体炭化物を作らず、
加えて、TiCやZrCやNbCなどのIVa族もしくは
Va族元素の炭化物を分解する働きのなる金属板を配置
したところ、種面上にほとんど炭化物を生成しないこと
を見いだした。その結果、炭化物を起点としたインクル
ージョンの巻き込みを防ぐことができ、このため、従来
の2倍以上の早い成長速度でも、良質なIIa結晶が得ら
れることを確認した。The present inventors have found that Ti and Z
Observation of a diamond crystal grown by adding r to a solvent as a nitrogen getter showed that most of the inclusions were continuously incorporated into the crystal starting from the seed crystal. Furthermore, detailed examination revealed that carbides such as TiC and ZrC formed on the seed crystal surface at the initial stage of growth were the starting points of inclusion. Therefore, in order to prevent the formation of carbides on the seed surface at the initial stage of growth, the present inventors have previously prepared Cu and A between the solvent and the seed crystal.
g, Au, Zn, Cd, etc. do not form carbides themselves,
In addition, when a metal plate having a function of decomposing carbides of IVa group or Va group elements such as TiC, ZrC, and NbC was arranged, it was found that almost no carbides were formed on the seed surface. As a result, inclusion of inclusions originating from carbides can be prevented, and it has been confirmed that good quality IIa crystals can be obtained even at a growth rate twice or more faster than the conventional one.
【0006】本発明は温度差法によるダイヤモンド結晶
合成において、溶媒金属に、窒素ゲッターとしてTi,
Zr,Hf,V,Nb,Taから選ばれる一種もしくは
二種以上の金属を添加し、さらに前記溶媒金属と種結晶
との間にCu,Ag,Au,Zn,Cdから選ばれる一
種もしくは二種以上からなる金属板を配置した状態でダ
イヤモンドの合成を開始することを特徴とするものであ
る。本発明において溶媒金属と種結晶との間に配置され
る金属板の厚みは0.01mm以上、1mm以下である
ことが好ましい。また、窒素ゲッターとして用いられる
Ti,Zr,Hf,V,Nb,Taから選ばれる一種も
しくは二種以上の金属の含有量は、溶媒金属に対して
0.2〜10重量%であることが好ましい。窒素ゲッタ
ーとしてのこれら金属は、他の金属、例えば、Al、C
u、Si、Sn等との合金の形で添加することもでき
る。また、溶媒金属は、Fe,Co,Ni,Mn,Cr
の中から選ばれる一種もしくは二種以上からなり、且つ
0.1〜6.0重量%の炭素を含むことが好ましい。In the present invention, in the diamond crystal synthesis by the temperature difference method, the solvent metal, Ti as a nitrogen getter,
One or two or more metals selected from Zr, Hf, V, Nb and Ta are added, and one or two metals selected from Cu, Ag, Au, Zn and Cd between the solvent metal and the seed crystal. The present invention is characterized in that the synthesis of diamond is started in a state where the above metal plate is arranged. In the present invention, the thickness of the metal plate arranged between the solvent metal and the seed crystal is preferably 0.01 mm or more and 1 mm or less. The content of one or more metals selected from Ti, Zr, Hf, V, Nb, and Ta used as a nitrogen getter is preferably 0.2 to 10% by weight with respect to the solvent metal. . These metals as nitrogen getters include other metals such as Al, C.
It can also be added in the form of an alloy with u, Si, Sn or the like. The solvent metals are Fe, Co, Ni, Mn, Cr.
It is preferable that it is composed of one or more selected from the above and contains 0.1 to 6.0% by weight of carbon.
【0007】図1は本発明の一具体例であってダイヤモ
ンド結晶合成用の試料室構成を示す概略断面図である。
溶媒金属2には窒素ゲッターとしてTi,Zr,Hf,
V,Nb,Taが添加され、この溶媒金属と種結晶4の
間にCu,Ag,Au,Zn,Cdから選ばれる金属板
3が配置される。1は炭素源、5は絶縁体、6は黒鉛ヒ
ーター、7は圧力媒体である。この金属板3の厚みは
0.01mm未満では効果は不十分で、1mmをこえる
とCu,Ag,Au,Zn,Cdなどの金属がダイヤモ
ンドの結晶成長に悪影響を及ぼし、結晶が多結晶化した
り、埋め残しのある不良結晶となってしまう。また溶媒
2に窒素ゲッターとして添加するTi,Zr,Hf,
V,Nb,Taの添加量としては、0.2重量%未満で
は窒素は十分に除去されず、合成されたダイヤモンドは
黄色みを帯びた結晶となる。一方、10重量%をこえる
と多結晶化や自然核発生が多くなり、良質なダイヤモン
ド結晶が得られなくなる。FIG. 1 is a schematic sectional view showing the structure of a sample chamber for synthesizing a diamond crystal, which is one embodiment of the present invention.
The solvent metal 2 includes Ti, Zr, Hf, as a nitrogen getter,
V, Nb, and Ta are added, and the metal plate 3 selected from Cu, Ag, Au, Zn, and Cd is arranged between the solvent metal and the seed crystal 4. 1 is a carbon source, 5 is an insulator, 6 is a graphite heater, and 7 is a pressure medium. If the thickness of the metal plate 3 is less than 0.01 mm, the effect is insufficient, and if it exceeds 1 mm, metals such as Cu, Ag, Au, Zn, and Cd adversely affect the crystal growth of diamond, and the crystal becomes polycrystalline. , Which results in a defective crystal with an unfilled portion. Further, Ti, Zr, Hf, which is added to the solvent 2 as a nitrogen getter,
If the added amount of V, Nb, or Ta is less than 0.2% by weight, nitrogen is not sufficiently removed, and the synthesized diamond becomes yellowish crystals. On the other hand, if it exceeds 10% by weight, polycrystallization and natural nucleation increase, and a good quality diamond crystal cannot be obtained.
【0008】ここで、2の溶媒金属はFe,Co,N
i,Mn,Crの中から選ばれる一種もしくは二種以上
からなる金属であり、種結晶溶解防止のため0.1〜
6.0重量%の炭素をあらかじめ添加しておくのが好ま
しい。炭素添加量が0.1重量%未満もしくは炭素を含
まない溶媒金属を用いた場合、種結晶上にPtなどの種
結晶溶解防止材を配置する必要があるが、このような種
結晶溶解防止材を配置することは、多結晶化やインクル
ージョンの巻き込みの原因となり好ましくない。また、
炭素添加量が6重量%をこえると、自然核発生がおこり
やすくなり、種結晶以外の部所より結晶成長するため結
晶同士が干渉し、良質な結晶が得られなくなる。Here, the solvent metals of 2 are Fe, Co, N.
It is a metal consisting of one or more selected from i, Mn, and Cr, and is 0.1 to prevent seed crystal dissolution.
It is preferable to add 6.0% by weight of carbon in advance. When a solvent metal containing less than 0.1% by weight of carbon or containing no carbon is used, it is necessary to dispose a seed crystal dissolution inhibitor such as Pt on the seed crystal. It is not preferable to dispose because of causing polycrystallization and inclusion inclusion. Also,
When the amount of carbon added exceeds 6% by weight, spontaneous nucleation is likely to occur, and crystals grow from a portion other than the seed crystal, so that the crystals interfere with each other and a good quality crystal cannot be obtained.
【0009】[0009]
【作用】本発明ではTi,Zr,Hf,V,Nb,Ta
など、窒素との反応性の高い元素を窒素ゲッターとする
ため、少量の添加でほとんど窒素を含まない無色透明な
IIa型のダイヤモンド結晶が得られ、また、溶媒と種結
晶の間に、炭化物生成防止のために、Cu,Ag,A
u,Zn,Cdの金属板をあらかじめ配置した状態で合
成を開始する構成になっているため、インクルージョン
の混入を大幅に抑えることができる。その結果、従来よ
りかなり速い成長速度でも良質なIIa型ダイヤモンド結
晶が得られるようになる。また、本発明に用いる種結
晶、炭素源等はこの種の技術分野で公知のものを用いる
ことができる。また、温度差法による合成の条件等は適
宜選択することができる。In the present invention, Ti, Zr, Hf, V, Nb, Ta are used.
For example, the element that has high reactivity with nitrogen is used as a nitrogen getter.
IIa type diamond crystals are obtained, and Cu, Ag, A are added between the solvent and the seed crystal to prevent carbide formation.
Since the composition is started in the state where the metal plates of u, Zn, and Cd are arranged in advance, inclusion can be greatly suppressed. As a result, good quality IIa type diamond crystals can be obtained even at a much higher growth rate than before. The seed crystal, carbon source, etc. used in the present invention may be those known in the technical field of this type. Further, the conditions for synthesis by the temperature difference method can be appropriately selected.
【0010】[0010]
【実施例】以下実施例により本発明をさらに詳細に説明
する。実施例1 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Co粉末、グラファイト粉末を用い、 Fe:Co:C=60:40:4.5(重量比) となるように配合した。これに、さらに窒素ゲッターと
して平均粒径50ミクロンのTi粉末を1.5重量%添
加し、十分に混合した。この混合粉末を型押し成形し、
脱ガス、焼成したもの(直径20mm、厚み10mm)
を溶媒とした。図1に示す試料室構成で炭素源1にはダ
イヤモンドの粉末、種結晶4には直径500ミクロンの
ダイヤモンド結晶3個を用いた。種結晶4と溶媒2の間
に配置する金属板3としては厚み0.2mmのCu板を
用いた。そして、炭素源1と種結晶4部に約30℃の温
度差がつくように加熱ヒーター6内にセットした。これ
を超高圧発生装置を用いて、圧力5.5GPa、温度1
300℃で70時間保持し、ダイヤモンドの合成を行っ
た。その結果0.7〜0.9カラットの無色透明な、イ
ンクルージョンのほとんどない良質なIIa型のダイヤモ
ンド結晶が得られた。ESRにより、結晶中の窒素濃度
を測定するといずれも0.1ppm以下であった。磁気
天秤によりインクルージョン量を測定するといずれも
0.3重量%以下であった。The present invention will be described in more detail with reference to the following examples. Example 1 High purity F having a particle size of 50 to 100 microns as a raw material of a solvent
e powder, Co powder, and graphite powder were used and blended so that Fe: Co: C = 60: 40: 4.5 (weight ratio). To this, 1.5% by weight of Ti powder having an average particle size of 50 μm was further added as a nitrogen getter, and they were sufficiently mixed. This mixed powder is pressed and molded,
Degassed and fired (20 mm diameter, 10 mm thickness)
Was used as the solvent. In the sample chamber structure shown in FIG. 1, diamond powder was used as the carbon source 1, and three diamond crystals having a diameter of 500 μm were used as the seed crystals 4. As the metal plate 3 arranged between the seed crystal 4 and the solvent 2, a Cu plate having a thickness of 0.2 mm was used. Then, the carbon source 1 and the seed crystal 4 were set in the heater 6 so that there was a temperature difference of about 30 ° C. Using an ultrahigh pressure generator, the pressure was 5.5 GPa and the temperature was 1
The temperature was maintained at 300 ° C. for 70 hours to synthesize diamond. As a result, a colorless and transparent 0.7-0.9 carat type IIa diamond crystal of good quality with almost no inclusion was obtained. When the nitrogen concentration in the crystal was measured by ESR, all were 0.1 ppm or less. When the inclusion amount was measured with a magnetic balance, all were 0.3% by weight or less.
【0011】実施例2 種結晶4と溶媒2の間に配置する金属板3に厚み0.5
mmのCu板を用いた他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。実施例3 種結晶4と溶媒2の間に配置する金属板3に厚み0.2
mmのAg板を用いた他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。実施例4 種結晶4と溶媒2の間に配置する金属板3に厚み0.3
mmのAu板を用いた他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。 Example 2 A metal plate 3 placed between a seed crystal 4 and a solvent 2 has a thickness of 0.5.
Diamond was synthesized in the same manner as in Example 1 except that a Cu plate of mm was used. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained. Example 3 A metal plate 3 arranged between a seed crystal 4 and a solvent 2 has a thickness of 0.2.
Diamond was synthesized in the same manner as in Example 1 except that an Ag plate of mm was used. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained. Example 4 A metal plate 3 arranged between a seed crystal 4 and a solvent 2 has a thickness of 0.3.
Diamond was synthesized in the same manner as in Example 1 except that an Au plate of mm was used. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained.
【0012】実施例5 種結晶4と溶媒2の間に配置する金属板3に厚み0.0
5mmのAu板を用いた他は実施例1と同様にしてダイ
ヤモンドの合成を行った。その結果、実施例1とほとん
ど同じ良質なIIa型ダイヤモンド結晶が得られた。実施例6 種結晶4と溶媒2の間に配置する金属板3に厚み0.2
mmのZn板を用いた他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。実施例7 溶媒2に添加する窒素ゲッターに粒径44ミクロン以下
(平均10ミクロン)のZr粉末を溶媒に対し3重量%
添加した他は実施例1と同様にしてダイヤモンドの合成
を行った。その結果、実施例1とほとんど同じ良質なII
a型ダイヤモンド結晶が得られた。 Example 5 A metal plate 3 placed between a seed crystal 4 and a solvent 2 has a thickness of 0.0
Diamond was synthesized in the same manner as in Example 1 except that a 5 mm Au plate was used. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained. Example 6 A metal plate 3 placed between a seed crystal 4 and a solvent 2 has a thickness of 0.2.
Diamond was synthesized in the same manner as in Example 1 except that a Zn plate of mm was used. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained. Example 7 Zr powder having a particle size of 44 microns or less (average of 10 microns) was added to a nitrogen getter added to solvent 2 in an amount of 3% by weight based on the solvent.
Diamond was synthesized in the same manner as in Example 1 except that the diamond was added. As a result, II of almost the same quality as in Example 1
An a-type diamond crystal was obtained.
【0013】実施例8 溶媒2に添加する窒素ゲッターに粒径44ミクロン以下
(平均10ミクロン)のAlTi合金粉末を溶媒に対し
3重量%添加した他は実施例1と同様にしてダイヤモン
ドの合成を行った。その結果、実施例1とほとんど同じ
良質なIIa型ダイヤモンド結晶が得られた。実施例9 溶媒2に添加する窒素ゲッターとしてAlTi合金粉末
の代わりに、CuTi、SnTi又はSi5 Ti6 合金
粉末を用いた他は実施例8と同様にしてダイヤモンドの
合成を行った。その結果、いずれの場合も、実施例1と
ほとんど同じ良質なIIa型ダイヤモンド結晶が得られ
た。実施例10 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Co粉末、グラファイト粉末を用
い、 Fe:Ni:Co:C=60:30:10:4.2(重
量比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。 Example 8 Synthesis of diamond was carried out in the same manner as in Example 1 except that 3% by weight of AlTi alloy powder having a particle size of 44 microns or less (average of 10 microns) was added to the solvent in the nitrogen getter added to the solvent 2. went. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained. Example 9 Diamond was synthesized in the same manner as in Example 8 except that CuTi, SnTi, or Si 5 Ti 6 alloy powder was used instead of the AlTi alloy powder as the nitrogen getter added to the solvent 2. As a result, in each case, a good quality IIa diamond crystal, which is almost the same as that of Example 1, was obtained. Example 10 High-purity F having a particle size of 50 to 100 microns as a solvent raw material
e powder, Ni powder, Co powder, and graphite powder were used, and blended so as to be Fe: Ni: Co: C = 60: 30: 10: 4.2 (weight ratio), in the same manner as in Example 1. Diamond was synthesized. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained.
【0014】実施例11 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Mn粉末、グラファイト粉末を用
い、 Fe:Ni:Mn:C=60:30:10:4(重量
比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。 実施例12 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、グラファイト粉末を用い、 Fe:Ni:C=70:30:3.5(重量比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。 実施例13 溶媒の原料として粒径50〜100ミクロンの高純度C
o粉末、グラファイト粉末を用い、 Co:C=100:4.7(重量比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。[0014]Example 11 High-purity F with a particle size of 50-100 microns as a solvent raw material
e powder, Ni powder, Mn powder, graphite powder
Fe: Ni: Mn: C = 60: 30: 10: 4 (weight
The same as in Example 1 except that the composition was
The synthesis of Mondo was performed. As a result, almost the same as in Example 1.
The same good quality IIa type diamond crystal was obtained. Example 12 High-purity F with a particle size of 50-100 microns as a solvent raw material
Diamond powder was prepared in the same manner as in Example 1 except that e powder, Ni powder, and graphite powder were used and blended so that Fe: Ni: C = 70: 30: 3.5 (weight ratio).
The synthesis of Mondo was performed. As a result, almost the same as in Example 1.
The same good quality IIa type diamond crystal was obtained. Example 13 High-purity C with a particle size of 50-100 microns as a solvent raw material
Diamond powder was used in the same manner as in Example 1 except that Co powder and graphite powder were blended so that Co: C = 100: 4.7 (weight ratio).
The synthesis of Mondo was performed. As a result, almost the same as in Example 1.
The same good quality IIa type diamond crystal was obtained.
【0015】実施例14 溶媒の原料として粒径50〜100ミクロンの高純度N
i粉末、グラファイト粉末を用い、 Ni:C=100:4.2(重量比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、実施例1とほとんど
同じ良質なIIa型ダイヤモンド結晶が得られた。 Example 14 High-purity N having a particle size of 50 to 100 μm as a solvent raw material
Diamond was synthesized in the same manner as in Example 1 except that the i powder and the graphite powder were used and were mixed so that Ni: C = 100: 4.2 (weight ratio). As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 1, was obtained.
【0016】比較例1 溶媒と種結晶の間に金属板を配置せずに、他は実施例1
と同様にダイヤモンドの合成を試みた。窒素含有量の少
ない(約0.1ppm)の結晶が得られたが、インクル
ージョンの巻き込み量は約1.5重量%と多く、良質な
結晶は得られなかった。実施例15 溶媒と種結晶の間に配置するCu板の厚みを2mmとし
た他は実施例1と同様にダイヤモンドの合成を試みた。
成長したダイヤモンド結晶は表面に埋め残しの多い骸晶
状となった。実施例16 窒素ゲッターとして溶媒に添加するTiの量を15重量
%とした他は実施例1と同様にダイヤモンドの合成を試
みた。種結晶から成長した結晶は多結晶化していた。COMPARATIVE EXAMPLE 1 No metal plate was placed between the solvent and the seed crystal, and the other example was used.
The synthesis of diamond was tried in the same manner as in. Crystals with a low nitrogen content (about 0.1 ppm) were obtained, but the inclusion amount was about 1.5% by weight, and a good quality crystal could not be obtained. Example 15 An attempt was made to synthesize diamond in the same manner as in Example 1 except that the thickness of the Cu plate placed between the solvent and the seed crystal was 2 mm.
The grown diamond crystals were in the form of skeletal crystals with many unfilled surfaces. Example 16 An attempt was made to synthesize diamond as in Example 1, except that the amount of Ti added to the solvent as a nitrogen getter was 15% by weight. The crystal grown from the seed crystal was polycrystallized.
【0017】実施例17 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Co粉末を用い、 Fe:Ni:Co=60:30:10(重量比) となるように配合し、グラファイトを添加しなかった他
は実施例1と同様にしてダイヤモンドの合成を行った。
その結果、種結晶は溶媒中に完全に溶解してしまい、ダ
イヤモンドの成長は不充分であった。実施例18 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Co粉末、グラファイト粉末を用
い、 Fe:Ni:Co:C=60:30:10:7(重量
比) となるように配合した他は実施例1と同様にしてダイヤ
モンドの合成を行った。その結果、種結晶以外の所より
ダイヤモンドが多数自然核発生し、このため結晶同士が
干渉し、良質なダイヤモンド結晶はほとんど得られなか
った。 Example 17 High-purity F having a particle size of 50 to 100 μm as a solvent raw material
e powder, Ni powder, and Co powder were used, blended in such a manner that Fe: Ni: Co = 60: 30: 10 (weight ratio), and graphite was not added. The synthesis was carried out.
As a result, the seed crystal was completely dissolved in the solvent, and the diamond growth was insufficient. Example 18 High-purity F having a particle size of 50 to 100 microns as a solvent raw material
Diamond powder was prepared in the same manner as in Example 1 except that Fe powder, Ni powder, Co powder, and graphite powder were mixed so that Fe: Ni: Co: C = 60: 30: 10: 10 (weight ratio). The synthesis was carried out. As a result, a large number of natural nuclei of diamond were generated from places other than the seed crystal, and the crystals interfered with each other, so that a good quality diamond crystal was hardly obtained.
【0018】[0018]
【発明の効果】以上説明したように、本発明によれば、
無色透明でインクルージョンのほとんどないダイヤモン
ド結晶を、安価に安定して合成できる。本方法によって
合成ダイヤモンドを装飾用途、光学部品などに利用する
ことが可能なものとなる。As described above, according to the present invention,
A colorless and transparent diamond crystal with almost no inclusion can be stably synthesized at low cost. This method makes it possible to use synthetic diamond for decorative purposes, optical parts, and the like.
【図1】図1は本発明の一具体例であって、結晶合成用
の試料室構成を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing the structure of a sample chamber for crystal synthesis, which is one specific example of the present invention.
1:炭素源 2:溶媒金属(窒素ゲッターを含む) 3:金属板 4:種結晶 5:絶縁体 6:黒鉛ヒーター 7:圧力媒体 1: Carbon source 2: Solvent metal (including nitrogen getter) 3: Metal plate 4: Seed crystal 5: Insulator 6: Graphite heater 7: Pressure medium
Claims (4)
おいて、溶媒金属に窒素ゲッターとしてTi,Zr,H
f,V,Nb,Taから選ばれる一種もしくは二種以上
の金属を添加し、かつ、前記溶媒金属と種結晶との間に
Cu,Ag,Au,Zn,Cdから選ばれる一種もしく
は二種以上からなる金属板を配置した状態でダイヤモン
ドの合成を開始することを特徴とするダイヤモンド単結
晶の合成方法。1. In a diamond crystal synthesis by a temperature difference method, Ti, Zr, H as a nitrogen getter is used as a solvent metal.
One or more metals selected from f, V, Nb and Ta, and one or more metals selected from Cu, Ag, Au, Zn and Cd between the solvent metal and the seed crystal. A method for synthesizing a diamond single crystal, characterized in that synthesis of diamond is started in a state where a metal plate made of is placed.
れる金属板の厚みは0.01mm以上、1mm以下であ
ることを特徴とする請求項1記載のダイヤモンド単結晶
の合成方法。2. The method for synthesizing a diamond single crystal according to claim 1, wherein the metal plate arranged between the solvent metal and the seed crystal has a thickness of 0.01 mm or more and 1 mm or less.
i,Zr,Hf,V,Nb,Taから選ばれる一種もし
くは二種以上の金属の含有量が、溶媒金属に対して0.
2〜10重量%であることを特徴とする請求項1または
2記載のダイヤモンド単結晶の合成方法。3. T used as the nitrogen getter
The content of one or more metals selected from i, Zr, Hf, V, Nb and Ta is 0.
The method for synthesizing a diamond single crystal according to claim 1 or 2, wherein the content is 2 to 10% by weight.
n,Crの中から選ばれる一種もしくは二種以上からな
り、且つ0.1〜6.0重量%の炭素を含むことを特徴
とする請求項1または2または3記載のダイヤモンド単
結晶の合成方法。4. The solvent metal is Fe, Co, Ni, M.
The method for synthesizing a diamond single crystal according to claim 1, 2 or 3, which is composed of one or more selected from n and Cr and contains 0.1 to 6.0% by weight of carbon. .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34194092A JP3259384B2 (en) | 1992-12-22 | 1992-12-22 | Method of synthesizing diamond single crystal |
KR1019930013401A KR940014144A (en) | 1992-01-22 | 1993-07-16 | Manufacturing method of diamond single crystal |
EP93306785A EP0603995A1 (en) | 1992-12-22 | 1993-08-26 | Process for the synthesising diamond single crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34194092A JP3259384B2 (en) | 1992-12-22 | 1992-12-22 | Method of synthesizing diamond single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06182184A true JPH06182184A (en) | 1994-07-05 |
JP3259384B2 JP3259384B2 (en) | 2002-02-25 |
Family
ID=18349942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34194092A Expired - Fee Related JP3259384B2 (en) | 1992-01-22 | 1992-12-22 | Method of synthesizing diamond single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3259384B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7323049B2 (en) * | 1997-04-04 | 2008-01-29 | Chien-Min Sung | High pressure superabrasive particle synthesis |
US7368013B2 (en) | 1997-04-04 | 2008-05-06 | Chien-Min Sung | Superabrasive particle synthesis with controlled placement of crystalline seeds |
US7404399B2 (en) | 2003-10-10 | 2008-07-29 | Sumitomo Electric Industries, Ltd. | Diamond tool, synthetic single crystal diamond and method of synthesizing single crystal diamond, and diamond jewelry |
US8974270B2 (en) | 2011-05-23 | 2015-03-10 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US9067301B2 (en) | 2005-05-16 | 2015-06-30 | Chien-Min Sung | CMP pad dressers with hybridized abrasive surface and related methods |
US9138862B2 (en) | 2011-05-23 | 2015-09-22 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US9199357B2 (en) | 1997-04-04 | 2015-12-01 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9221154B2 (en) | 1997-04-04 | 2015-12-29 | Chien-Min Sung | Diamond tools and methods for making the same |
US9238207B2 (en) | 1997-04-04 | 2016-01-19 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9409280B2 (en) | 1997-04-04 | 2016-08-09 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9463552B2 (en) | 1997-04-04 | 2016-10-11 | Chien-Min Sung | Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods |
US9475169B2 (en) | 2009-09-29 | 2016-10-25 | Chien-Min Sung | System for evaluating and/or improving performance of a CMP pad dresser |
US9724802B2 (en) | 2005-05-16 | 2017-08-08 | Chien-Min Sung | CMP pad dressers having leveled tips and associated methods |
US9868100B2 (en) | 1997-04-04 | 2018-01-16 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
WO2021106283A1 (en) * | 2019-11-26 | 2021-06-03 | 住友電気工業株式会社 | Synthetic single crystal diamond, tool equipped with same, and synthetic single crystal diamond production method |
-
1992
- 1992-12-22 JP JP34194092A patent/JP3259384B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7323049B2 (en) * | 1997-04-04 | 2008-01-29 | Chien-Min Sung | High pressure superabrasive particle synthesis |
US7368013B2 (en) | 1997-04-04 | 2008-05-06 | Chien-Min Sung | Superabrasive particle synthesis with controlled placement of crystalline seeds |
US9868100B2 (en) | 1997-04-04 | 2018-01-16 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9199357B2 (en) | 1997-04-04 | 2015-12-01 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9221154B2 (en) | 1997-04-04 | 2015-12-29 | Chien-Min Sung | Diamond tools and methods for making the same |
US9238207B2 (en) | 1997-04-04 | 2016-01-19 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9409280B2 (en) | 1997-04-04 | 2016-08-09 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9463552B2 (en) | 1997-04-04 | 2016-10-11 | Chien-Min Sung | Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods |
US7404399B2 (en) | 2003-10-10 | 2008-07-29 | Sumitomo Electric Industries, Ltd. | Diamond tool, synthetic single crystal diamond and method of synthesizing single crystal diamond, and diamond jewelry |
EP2468392A2 (en) | 2003-10-10 | 2012-06-27 | Sumitomo Electric Industries, Ltd. | Diamond tool, synthetic single crystal diamond and method for synthesizing single crystal diamond, and diamond jewelry |
US9067301B2 (en) | 2005-05-16 | 2015-06-30 | Chien-Min Sung | CMP pad dressers with hybridized abrasive surface and related methods |
US9724802B2 (en) | 2005-05-16 | 2017-08-08 | Chien-Min Sung | CMP pad dressers having leveled tips and associated methods |
US9475169B2 (en) | 2009-09-29 | 2016-10-25 | Chien-Min Sung | System for evaluating and/or improving performance of a CMP pad dresser |
US9138862B2 (en) | 2011-05-23 | 2015-09-22 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US8974270B2 (en) | 2011-05-23 | 2015-03-10 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
WO2021106283A1 (en) * | 2019-11-26 | 2021-06-03 | 住友電気工業株式会社 | Synthetic single crystal diamond, tool equipped with same, and synthetic single crystal diamond production method |
Also Published As
Publication number | Publication date |
---|---|
JP3259384B2 (en) | 2002-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6129900A (en) | Process for the synthesis of diamond | |
JP3259384B2 (en) | Method of synthesizing diamond single crystal | |
US6030595A (en) | Process for the production of synthetic diamond | |
EP0780153B1 (en) | Diamond synthesis | |
IE75364B1 (en) | Diamond synthesis | |
JP3282249B2 (en) | Method of synthesizing diamond single crystal | |
US4406871A (en) | Process for growing diamonds | |
JP3291804B2 (en) | Method of synthesizing diamond single crystal | |
JPH07116494A (en) | Synthetic diamond and manufacture thereof | |
JP3259383B2 (en) | Method of synthesizing diamond single crystal | |
EP0603995A1 (en) | Process for the synthesising diamond single crystals | |
JPH06165929A (en) | Method for synthesizing diamond single crystal | |
JP3206050B2 (en) | Method of synthesizing diamond single crystal | |
JP3205970B2 (en) | Diamond synthesis method | |
EP1890799B1 (en) | Method for growing synthetic diamonds | |
Yan et al. | Behaviour of graphite-diamond conversion using Ni-Cu and Ni-Zn alloys as catalyst-solvent | |
JPH05137999A (en) | Method for synthesizing diamond single crystal | |
JPH0686927A (en) | Method for synthesis of diamond signal crystal | |
JPH06269654A (en) | Synthesis of diamond | |
JPH0576747A (en) | Synthetic method for diamond single crystal | |
JPH1114524A (en) | Diamond indenter | |
JPH0323517B2 (en) | ||
Iizuka et al. | Nucleation and growth of diamond using Ni Ti, Ni Nb and Fe B alloy as solvents | |
JPH1081590A (en) | Diamond comprising carbon isotope at suitable ratio of number of atoms and its production | |
RU2061654C1 (en) | Solvent for synthesis of thermostable monocrystalline diamonds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071214 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111214 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111214 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121214 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |