JP3205970B2 - Diamond synthesis method - Google Patents

Diamond synthesis method

Info

Publication number
JP3205970B2
JP3205970B2 JP24492491A JP24492491A JP3205970B2 JP 3205970 B2 JP3205970 B2 JP 3205970B2 JP 24492491 A JP24492491 A JP 24492491A JP 24492491 A JP24492491 A JP 24492491A JP 3205970 B2 JP3205970 B2 JP 3205970B2
Authority
JP
Japan
Prior art keywords
solvent
diamond
nitrogen
crystal
getter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24492491A
Other languages
Japanese (ja)
Other versions
JPH0558786A (en
Inventor
周一 佐藤
均 角谷
靖 郷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24492491A priority Critical patent/JP3205970B2/en
Priority to EP92905002A priority patent/EP0525207B1/en
Priority to PCT/JP1992/000149 priority patent/WO1992014542A1/en
Priority to US08/307,493 priority patent/US6129900A/en
Priority to DE69215021T priority patent/DE69215021T2/en
Priority to IE920846A priority patent/IE920846A1/en
Publication of JPH0558786A publication Critical patent/JPH0558786A/en
Application granted granted Critical
Publication of JP3205970B2 publication Critical patent/JP3205970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、装飾や光学部品に用い
る高純度(IIa型)ダイヤモンド単結晶の合成方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing a high-purity (IIa type) diamond single crystal used for decoration and optical parts.

【0002】[0002]

【従来の技術】The Journal of Physical Chemistry, V
ol.75, No.12, 1971の第1838〜1843頁に、研究所製ダイ
ヤモンドについて一連の報告がなされている。そのう
ち、第1841頁右欄下から5〜3行目に記載されているよ
うに、ダイヤモンド単結晶の成長に、アルミニウムは窒
素に対して重要なゲッターとなるとの実験報告がなされ
ていたとの記述があり、研究所製のダイヤモンドでは窒
素含有のため黄色を呈するが、アルミニウムをゲッター
として用いることによって黄色を呈するダイヤモンドを
無色に合成できるものとされ、又、米国特許第 4034066
号の「種ダイヤモンドによるダイヤモンド成長の品質管
理の方法と高圧反応容器」を発明の表題とする明細書の
実施例6,7,8に、Fe溶媒に、Alを3wt%、5wt%添
加することにより、宝石級の準無色、又は無色ダイヤモ
ンドの合成ができることが示されている。
[Prior Art] The Journal of Physical Chemistry, V
ol. 75, No. 12, 1971, pages 1838-1843, a series of reports on laboratory diamonds. Among them, as described in the right column of page 1841, from the lower right column, the fifth to third lines, it was described that an experimental report that aluminum was an important getter for nitrogen in growing a diamond single crystal was made. In the laboratory, diamond produced by research laboratories exhibits a yellow color due to nitrogen content, but the use of aluminum as a getter makes it possible to synthesize a yellow diamond in a colorless manner.
No. 3, "Method of Quality Control of Diamond Growth by Seed Diamond and High-Pressure Reaction Vessel", to Examples 6, 7, and 8 of the specification entitled "Addition of 3 wt% and 5 wt% of Al to Fe solvent." Shows that a gem-grade semi-colorless or colorless diamond can be synthesized.

【0003】上記のように、従来の準無色又は無色ダイ
ヤモンド合成において、窒素のゲッターとしては、Feに
Alを添加したものが殆んどであり、温度差法によって種
結晶上に、大型ダイヤモンドの合成に成功している。な
お、温度差法によるダイヤモンドの合成法については前
記米国特許第 4034066号明細書ならびに図面に開示され
ている。
[0003] As described above, in the conventional synthesis of semi-colorless or colorless diamond, Fe is used as a getter for nitrogen.
Almost all of them have been added, and large diamonds have been successfully synthesized on seed crystals by the temperature difference method. The method of synthesizing diamond by the temperature difference method is disclosed in the above-mentioned U.S. Pat. No. 4,340,066 and the drawings.

【0004】Al以外の窒素ゲッターを用いた例として
は、無機材研研究部報告第39号にTiやZrをFe,Ni,Co,
Mn,Cr等の金属又は合金溶媒に添加してのダイヤモンド
の合成が報告されている。
[0004] As an example of using a nitrogen getter other than Al, an inorganic material research institute report No. 39 discloses that Ti and Zr are replaced with Fe, Ni, Co,
It has been reported that diamond is synthesized by being added to a metal or alloy solvent such as Mn or Cr.

【0005】しかしながら、無色のダイヤモンドができ
た組み合せは、Fe−Zr、(Fe−Ni)合金−Zr、
(Ni−Mn)合金−Zrであり、他の組合せを溶媒として用
いたものにおいてはできていない。上記〜の組合せ
のうち、500nm 以下の波長域で、全く吸収がなかったも
のは、Fe−Zrの組合わせによるものだけである。 500nm
以下の波長域で吸収が生じることは窒素原子が完全に除
去されていないことを示唆している。
[0005] However, the combinations that have produced colorless diamonds are Fe-Zr, (Fe-Ni) alloy-Zr,
(Ni-Mn) alloy-Zr, which cannot be obtained by using another combination as a solvent. Of the above combinations, those having no absorption in the wavelength region of 500 nm or less are only the combinations of Fe-Zr. 500nm
The occurrence of absorption in the following wavelength ranges suggests that the nitrogen atoms have not been completely removed.

【0006】[0006]

【発明が解決しようとする課題】すでに述べたように、
従来の方法では、主にAlを溶媒に添加し、窒素を除去す
る方法を用いた。この場合、溶媒へのAlの添加量と結晶
中の窒素濃度(窒素含有量)の関係は図1に示され、ま
たAlの添加量と結晶中のインクルージョン(溶媒金属含
有量、巻き込み量)の関係は図2に示されるが、下記の
問題がある。 Alの添加量を増加させると、結晶中の窒素濃度は減少
するが、インクルージョンが増加する。 インクルージョンの少ない良質な単結晶を合成するに
は、成長速度を低下させる必要がある。 窒素を除去しすぎると、溶媒中に僅かに残った硼素
(B)によって結晶が青く着色する。 一方、TiやZrのように、窒素のゲッター作用もあるが、
同時にカーバイドも形成する元素を添加すると、形成し
たカーバイドが結晶中に取り込まれ、良質のものが得ら
れないという欠点がある。
SUMMARY OF THE INVENTION As already mentioned,
In the conventional method, a method of mainly adding Al to a solvent and removing nitrogen is used. In this case, the relationship between the amount of Al added to the solvent and the nitrogen concentration (nitrogen content) in the crystal is shown in FIG. 1, and the relationship between the amount of Al added and the inclusion (solvent metal content, entrainment amount) in the crystal. The relationship is shown in FIG. 2, but has the following problems. Increasing the amount of Al decreases the nitrogen concentration in the crystal, but increases the inclusion. In order to synthesize a high-quality single crystal with little inclusion, it is necessary to reduce the growth rate. If the nitrogen is removed too much, the crystals are colored blue by the boron (B) remaining slightly in the solvent. On the other hand, like Ti and Zr, there is a getter action of nitrogen,
At the same time, when an element that also forms a carbide is added, the formed carbide is taken into the crystal, and there is a disadvantage that a high-quality one cannot be obtained.

【0007】[0007]

【課題を解決するための手段】前記の課題を解決するた
め、本発明では次の方法による。 窒素ゲッターとして、溶媒にTi,Zr,Hf,V,Nb,Ta
より選択した1種又は、2種以上の複合したものを用い
る。これら元素は硼化物を形成しやすく、青色を除去す
る効果がある。 カーバイドを結晶内に取り込ませないために、溶媒に
Al,Sn,In,Ga,Ag,Cu,Cs,Pb,Sb,Zn等の粘度の低
い元素を添加し、該カーバイドの浮上(沈澱)速度を速
めることにより形成されたカーバイドが結晶中に取り込
まれる前に、溶媒上方に浮上させるか下方に沈澱させ
る。
In order to solve the above problems, the present invention employs the following method. As a nitrogen getter, Ti, Zr, Hf, V, Nb, Ta
One or more selected compounds are used. These elements easily form borides and have an effect of removing blue. In order not to incorporate carbide into the crystal,
A low-viscosity element such as Al, Sn, In, Ga, Ag, Cu, Cs, Pb, Sb, and Zn is added to increase the floating (precipitation) speed of the carbide, and the carbide formed is taken into the crystal. Float above the solvent or settle below.

【0008】[0008]

【作用】(1) Ti ,Zr,Hf,V,Nb,Taを窒素ゲッタ
ーとして用いる作用について 前記元素またはこれら元素を複合したものは、安定な窒
化物を形成し、窒素ゲッターとして働く。その際、上記
元素をAとすると、次の化学反応式で反応して窒素を除
去する。
[Function] (1) Function of using Ti, Zr, Hf, V, Nb, and Ta as a nitrogen getter The above-mentioned element or a compound of these elements forms a stable nitride and functions as a nitrogen getter. At this time, assuming that the above element is A, it reacts according to the following chemical reaction formula to remove nitrogen.

【0009】[0009]

【化1】 Embedded image

【0010】通常のダイヤモンドを合成する溶媒とし
て、Fe,Co,Ni,Mn,Crが用いられる。上記の反応式の
反応定数が高い方が窒素の除去効果は大きい。反応定数
Kは、溶媒元素によって左右され、Ni溶媒では小さく、
Fe溶媒では大きい。従ってFe溶媒で合成すると窒素は除
去されやすいが、同溶媒中では炭素の拡散速度が遅く、
炭素の供給不足が生じやすいため、成長速度が速いと良
質な結晶が得られない。炭素の拡散速度が速い溶媒はCo
である。従って、FeとCoの合金溶媒を用いることが好ま
しい。又、前記の溶媒金属中には、通常微少の硼素(数
ppm)が含まれている。結晶中には、およそ溶媒濃度の1
/10程度の硼素が取り込まれ、0.1 〜0.6ppm程度の濃度
になる。窒素ゲッターの窒素除去作用が大き過ぎると、
溶媒中の硼素と電気的に中和(Conpensate) されていた
窒素が結晶中に含有されず、透明から逆に青味がかるよ
うになる。Ti,Zr,Hf,V,Nb,Ta元素は、硼化物も作
りやすく、硼素ゲッターとして、青色を減ずることがで
きる。
As a solvent for synthesizing ordinary diamond, Fe, Co, Ni, Mn, and Cr are used. The higher the reaction constant of the above reaction formula, the greater the effect of removing nitrogen. The reaction constant K depends on the solvent element, is small in the Ni solvent,
Large in Fe solvent. Therefore, nitrogen is easily removed when synthesized with Fe solvent, but the diffusion rate of carbon is slow in the same solvent,
Since a shortage of carbon is likely to occur, high-quality crystals cannot be obtained if the growth rate is high. Solvent with high carbon diffusion rate is Co
It is. Therefore, it is preferable to use an alloy solvent of Fe and Co. The solvent metal usually contains a small amount of boron (number
ppm). In the crystal, a solvent concentration of about 1
About / 10 of boron is taken in, resulting in a concentration of about 0.1 to 0.6 ppm. If the nitrogen getter's nitrogen removal action is too great,
Nitrogen, which has been electrically neutralized with boron in the solvent, is not contained in the crystal and becomes bluish instead of transparent. The elements Ti, Zr, Hf, V, Nb, and Ta are also easy to form borides, and can reduce blue as a boron getter.

【0011】(2)Al、Sn等の低粘度金属元素を添加す
る効果について Ti,Zr,Hf,V,Nb,Taは、安定な窒化物を形成するた
め、溶媒中の窒素を除去する有効なゲッターとして作用
する。しかし、同時に、溶媒中に溶解している炭素と反
応し、多量の炭化物を生成する。当該炭化物や窒化物が
結晶中に巻き込まれ、結晶の品位を低下させる。又、こ
れらの炭化物や窒化物が核となり、溶媒金属も結晶中に
含有されやすくなる。従って結晶成長させる前に、炭化
物や窒化物を除去することが重要な問題となる。形成さ
れる炭化物や窒化物は、ゲッター元素及び炭素、窒素が
均一に分散しているため、微少な炭化物、窒化物ができ
る。これらの微少な炭化物、窒化物は、溶媒との比重差
があっても短時間では浮上又は沈澱しない。当該炭化物
及び窒化物を短時間で浮上させ、又は沈澱させて、結晶
成長時に、溶媒中に浮遊させないためには、溶媒の粘度
を低下させることが効果的である。一般にコロイド状の
球状微小物質の沈降(もしくは浮上)速度は、次式によ
って表わされる。
(2) Effect of adding low-viscosity metal elements such as Al and Sn Ti, Zr, Hf, V, Nb and Ta form stable nitrides and are effective in removing nitrogen from the solvent. Act as a getter. However, at the same time, it reacts with the carbon dissolved in the solvent to produce a large amount of carbide. The carbides and nitrides are caught in the crystal and lower the quality of the crystal. In addition, these carbides and nitrides serve as nuclei, and the solvent metal is likely to be contained in the crystal. Therefore, it is important to remove carbides and nitrides before crystal growth. Since the getter element, carbon, and nitrogen are uniformly dispersed in the formed carbide and nitride, minute carbide and nitride can be formed. These minute carbides and nitrides do not float or precipitate in a short time even if there is a difference in specific gravity with the solvent. It is effective to lower the viscosity of the solvent in order to float or precipitate the carbides and nitrides in a short time so that the carbides and nitrides do not float in the solvent during crystal growth. Generally, the sedimentation (or floating) speed of a colloidal spherical microparticle is represented by the following equation.

【0012】[0012]

【数1】 (Equation 1)

【0013】従って、溶媒の沈降(もしくは浮上)速度
は、理論的に溶媒の粘度に反比例して低下する。よって
沈降(もしくは浮上)速度を速めるには、溶媒の粘度を
低下させることが効果的である。又、Al,In,Ga等は同
時に窒化物を作りやすい元素である。従ってこれらの元
素を添加することにより窒素を除去できる。この場合、
Al,In,Ga等金属を単独で添加するよりも、Ti,Zr,Hf
等を加えた方が結晶中への溶媒の巻き込み量は減少す
る。例えばAlをゲッターとして単独に添加した場合、2
wt%まで良質な結晶が得られ、この結晶をブリリアント
カットすると、内包物のクラリティはVS又はSIの評価を
得られる。AlとTiを同時に添加すると、Alを3wt%添加
しても、上記と同じ結果となり、この効果はTi,Al,N
等の三元素よりなる窒化物が形成されるためと推定され
る。
Therefore, the sedimentation (or floating) speed of the solvent theoretically decreases in inverse proportion to the viscosity of the solvent. Therefore, to increase the sedimentation (or floating) speed, it is effective to lower the viscosity of the solvent. In addition, Al, In, Ga, and the like are elements that easily form nitride at the same time. Therefore, nitrogen can be removed by adding these elements. in this case,
Rather than adding metals such as Al, In, and Ga alone, Ti, Zr, Hf
The amount of the solvent entangled in the crystal is reduced by the addition of the above. For example, when Al is solely added as a getter, 2
Crystals of good quality up to wt% are obtained, and when these crystals are brilliant cut, the clarity of inclusions can be evaluated as VS or SI. When Al and Ti are added at the same time, even if 3 wt% of Al is added, the same result as above is obtained.
It is presumed that a nitride composed of three elements such as the above is formed.

【0014】種ダイヤモンドを用い、温度差法によりダ
イヤモンド単結晶を合成させる方法、装置については、
前記米国特許明細書第 4034066号明細書ならびに図面に
示されているが、本発明の実施に際し、その概要を説明
する。図3に示すようにパイロフィライトシリンダ3の
内側にグラファイトチューブヒーター2を備え、その内
側にパイロフィライト1を設け、その内側に種ダイヤモ
ンド5を配置し、その上に溶媒金属6を配し、更にカー
ボン源7を配し、前記積層の上下をプラグ4,8で充填
する。プラグ4,8、パイロフィライトシリンダ3は同
じ基準のもので、圧力伝達部材である。図示していない
が、超硬金属よりなるダイ、このダイの穴に対応する上
下のパンチを用いて所定の圧力を前記ダイの穴に配置し
た前記反応容器を加圧できるようにし、前記ヒーター2
に通電して反応容器中を加熱し、且つパンチにより加圧
してダイヤモンドを合成する。加熱により、炭素源より
金属溶媒中に溶解し、温度差(20〜30℃)によっ
て、種結晶上に結晶成長が生ずる。
A method and an apparatus for synthesizing a diamond single crystal by a temperature difference method using seed diamond are described below.
Although shown in the above-mentioned U.S. Patent Specification No. 4034066 and the drawings, the outline of the present invention will be described. As shown in FIG. 3, a graphite tube heater 2 is provided inside a pyrophyllite cylinder 3, a pyrophyllite 1 is provided inside the same, a seed diamond 5 is disposed inside the pyrophilite 1, and a solvent metal 6 is disposed thereon. Further, a carbon source 7 is provided, and the upper and lower portions of the laminate are filled with plugs 4 and 8, respectively. The plugs 4 and 8 and the pyrophyllite cylinder 3 are of the same standard and are pressure transmitting members. Although not shown, a die made of cemented carbide, and a predetermined pressure placed in the reaction vessel placed in the hole of the die by using upper and lower punches corresponding to the hole of the die so that the heater 2
To heat the reaction vessel and pressurize it with a punch to synthesize diamond. Upon heating, the carbon source dissolves in the metal solvent, and crystal growth occurs on the seed crystal due to the temperature difference (20 to 30 ° C.).

【0015】[0015]

【実施例1】ダイヤモンドの安定領域(5.4GPa,1320
℃)で温度差法を用い、種ダイヤモンド結晶上に60時間
かけて、0.6 〜0.8 カラットのダイヤモンドを成長させ
た。合成溶媒として、Fe−Coに、Ti,Alを添加したもの
を用いた。結果を表1に示す。なお結晶中の窒素濃度は
ESR(電子スピン共鳴)で求め、結晶中の溶媒の巻き
込み量は磁気天秤によって測定した。
Example 1 Diamond stable region (5.4 GPa, 1320
C.) and 0.6 to 0.8 carats of diamond were grown on seed diamond crystals over 60 hours using the temperature difference method. As a synthesis solvent, one obtained by adding Ti and Al to Fe-Co was used. Table 1 shows the results. The nitrogen concentration in the crystal was determined by ESR (electron spin resonance), and the amount of solvent involved in the crystal was measured by a magnetic balance.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示すように、Tiのみを添加した場
合、Tiが 0.5wt%以上で色としては、Hカラー以上とな
るが、溶媒の巻き込み量が増加し、装飾用途の価値がな
くなる。Alの増加によって、溶媒の巻き込み量が激減
し、良質な結晶が得られる。しかし、5wt%のAlを添加
すると、溶媒の巻き込み量が増える。又、Alを添加して
も、10wt%のTiを添加すると溶媒の巻き込み量が増加
し、良質な結晶は得られない。以上説明したように、良
好な色及び品質の良い結晶が得られるAl,Tiの添加範囲
は、 0.5≦Al≦3(wt%)、 0.5≦Ti≦7(wt%)の範
囲である。更に、Sn,In,Ag,Cu,Cs,Pb,Sb,ZnをAl
に換えて添加しても同様な結果が得られる。
As shown in Table 1, when only Ti is added, the color becomes H color or more when the content of Ti is 0.5 wt% or more, but the amount of solvent involved increases, and the value of decorative use is lost. Due to the increase in Al, the amount of solvent involved is drastically reduced, and high-quality crystals can be obtained. However, when 5 wt% of Al is added, the amount of solvent involved increases. Even when Al is added, if 10 wt% of Ti is added, the amount of solvent involved increases, and good crystals cannot be obtained. As described above, the range of addition of Al and Ti from which a good color and high quality crystals can be obtained is in the range of 0.5 ≦ Al ≦ 3 (wt%) and 0.5 ≦ Ti ≦ 7 (wt%). Further, Sn, In, Ag, Cu, Cs, Pb, Sb, and Zn are converted to Al.
Similar results can be obtained by adding instead of.

【0018】[0018]

【実施例2】温度差法を用い、ダイヤモンドの安定領域
(5.3GPa,1300℃)で、種ダイヤモンド結晶上に、 140
時間かけて8〜10カラットのIIaダイヤモンドを成長さ
せた。種ダイヤモンド結晶には3mm の単結晶を用い
た。溶媒はあらかじめ、合金のインゴットを作製し、粉
末にしたものと炭素粉を混合したものを用いた。合金の
組成は、Fe−Co−Niに窒素ゲッターとしてZr,Hf,V,
Tiを選択して加え、粘度を低下させる物質としてSn,I
n,Ga,Znを選択して添加したものを用いた。でき上っ
た単結晶を円板状に加工し、紫外可視及び赤外分光分析
を行った。又、透過顕微鏡により結晶中の炭化物及び窒
化物を調べた。分光分析及び顕微鏡により、窓材に使用
できるか否か判定した。その結果を表2に示す。
[Example 2] Using a temperature difference method, in the stable region of diamond (5.3 GPa, 1300 ° C), 140
Over time, 8-10 carats of IIa diamond were grown. A 3 mm single crystal was used as the seed diamond crystal. As the solvent, an ingot of an alloy was prepared in advance, and a mixture of a powder and carbon powder was used. The composition of the alloy was as follows: Zr, Hf, V,
Select and add Ti, Sn, I as a substance to reduce viscosity
A material obtained by selecting and adding n, Ga, and Zn was used. The resulting single crystal was processed into a disk shape and subjected to ultraviolet-visible and infrared spectroscopy. In addition, carbides and nitrides in the crystals were examined with a transmission microscope. It was determined by spectroscopic analysis and a microscope whether or not it could be used as a window material. Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】表2より分るように、ゲッター材を添加す
るだけでは炭化窒化物(主に炭化物)が形成され、結晶
中に巻き込まれ、窓材として使用できない。ところがS
n,In,Ga,Znを加えることにより、これら炭化物、窒
化物が短時間で浮上、又は沈澱し、結晶中に含まれず、
良質な結晶が得られると考えられる。
As can be seen from Table 2, only by adding the getter material, carbonitrides (mainly carbides) are formed and are caught in the crystal and cannot be used as window materials. But S
By adding n, In, Ga, and Zn, these carbides and nitrides float or precipitate in a short time and are not contained in the crystal.
It is considered that good quality crystals can be obtained.

【0021】[0021]

【発明の効果】以上述べたように、本発明によれば、従
来方法に比較して、金属溶媒の巻き込みが少ない無色透
明なダイヤモンド単結晶が容易に合成できるようにな
り、安価に供給できるようになった。本発明方法によっ
て合成したダイヤモンドを装飾品、赤外光学部分に用い
ると効果的である。
As described above, according to the present invention, a colorless and transparent diamond single crystal with less entrainment of a metal solvent can be easily synthesized as compared with the conventional method, and can be supplied at a low cost. Became. It is effective to use the diamond synthesized by the method of the present invention for decorative articles and infrared optical parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来法における結晶中の窒素含有量と窒素ゲッ
ターのAlの添加量の関係を示す。
FIG. 1 shows the relationship between the nitrogen content in a crystal and the amount of Al added to a nitrogen getter in a conventional method.

【図2】従来法における結晶中の、溶媒金属の含有量と
Alの添加量の関係を示す。
FIG. 2 shows the content of a solvent metal in a crystal according to a conventional method.
The relationship between the amounts of Al added is shown.

【図3】本発明を実施する反応容器内の概略を示す。FIG. 3 shows a schematic view of the inside of a reaction vessel for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 パイロフィライト 2 ヒーター 3 パイロフィライトシリンダ 4,8 プラグ 5 種ダイヤモンド結晶 6 溶媒金属 7 カーボン源 DESCRIPTION OF SYMBOLS 1 Pyrophyllite 2 Heater 3 Pyrophyllite cylinder 4,8 Plug 5 seed diamond crystal 6 Solvent metal 7 Carbon source

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−96712(JP,A) 特開 昭48−81793(JP,A) 特開 昭50−10795(JP,A) 特公 昭51−7639(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B01J 3/06 C01B 31/06 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-56-96712 (JP, A) JP-A-48-81793 (JP, A) JP-A-50-10795 (JP, A) 7639 (JP, B1) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 3/06 C01B 31/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度差法を用いダイヤモンドの安定領域
で、溶媒中に窒化物及び炭化物を同時に形成する元素を
窒素ゲッターとして添加し、さらに該溶媒より粘度の低
い元素を添加することにより、結晶が成長する以前に窒
化物及び炭化物を上方に浮上又は下方に沈澱させること
を特徴とするIIa型ダイヤモンドの合成方法。
1. A method comprising: adding an element which simultaneously forms nitride and carbide in a solvent as a nitrogen getter in a stable region of diamond using a temperature difference method as a nitrogen getter; A method of synthesizing a type IIa diamond, wherein nitrides and carbides are floated upward or precipitated downwardly before GaN grows.
【請求項2】 窒素ゲッターとして、Ti,Zr,Hf,V,
Nb,Taより選択した1種又は2種以上の元素からなり、
溶媒中に残留する硼素を除去することを特徴とする請求
項1のダイヤモンドの合成方法。
2. Nitrogen getters such as Ti, Zr, Hf, V,
Consisting of one or more elements selected from Nb and Ta,
The method for synthesizing diamond according to claim 1, wherein boron remaining in the solvent is removed.
【請求項3】 粘度の低い元素として、Al,Sn,In,G
a,Cu,Cs,Pb,Znを添加することを特徴とする請求項
1のダイヤモンドの合成方法。
3. As an element having a low viscosity, Al, Sn, In, G
2. The method according to claim 1, wherein a, Cu, Cs, Pb, and Zn are added.
【請求項4】 窒素ゲッターの添加量が、重量%で、0.
5以上、7以下であり、かつ粘度の低い元素の添加量が
重量%で、0.5以上、3以下であることを特徴とする請
求項1のダイヤモンドの合成方法。
4. The amount of nitrogen getter added is 0.1% by weight.
2. The method for synthesizing diamond according to claim 1, wherein the addition amount of the element having a low viscosity of 5 or more and 7 or less and 0.5 to 3 in weight%.
JP24492491A 1991-02-15 1991-08-29 Diamond synthesis method Expired - Lifetime JP3205970B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24492491A JP3205970B2 (en) 1991-08-29 1991-08-29 Diamond synthesis method
EP92905002A EP0525207B1 (en) 1991-02-15 1992-02-14 Process for synthesizing diamond
PCT/JP1992/000149 WO1992014542A1 (en) 1991-02-15 1992-02-14 Process for synthesizing diamond
US08/307,493 US6129900A (en) 1991-02-15 1992-02-14 Process for the synthesis of diamond
DE69215021T DE69215021T2 (en) 1991-02-15 1992-02-14 DIAMOND SYNTHESIS PROCEDURE
IE920846A IE920846A1 (en) 1991-03-14 1992-03-16 A process for the synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24492491A JP3205970B2 (en) 1991-08-29 1991-08-29 Diamond synthesis method

Publications (2)

Publication Number Publication Date
JPH0558786A JPH0558786A (en) 1993-03-09
JP3205970B2 true JP3205970B2 (en) 2001-09-04

Family

ID=17126001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24492491A Expired - Lifetime JP3205970B2 (en) 1991-02-15 1991-08-29 Diamond synthesis method

Country Status (1)

Country Link
JP (1) JP3205970B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404399B2 (en) * 2003-10-10 2008-07-29 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method of synthesizing single crystal diamond, and diamond jewelry
EP4317543A1 (en) * 2021-03-31 2024-02-07 Sumitomo Electric Industries, Ltd. Single crystal diamond, manufacturing method for same, and manufacturing method for single crystal diamond plate

Also Published As

Publication number Publication date
JPH0558786A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US6129900A (en) Process for the synthesis of diamond
Sumiya et al. High-pressure synthesis of high-purity diamond crystal
US6030595A (en) Process for the production of synthetic diamond
JP3318002B2 (en) Reaction vessel for diamond synthesis
JP3259384B2 (en) Method of synthesizing diamond single crystal
Sumiya et al. Development of high-quality large-size synthetic diamond crystals
Kanda Large diamonds grown at high pressure conditions
JP3205970B2 (en) Diamond synthesis method
JPS6065787A (en) Manufacture of dislocation-free silicon single crystal rod
JP3339137B2 (en) Synthetic diamond single crystal and method for producing the same
JPH07148426A (en) Synthetic diamond, manufacture of the same, and method for measuring strain of diamond
JP3291804B2 (en) Method of synthesizing diamond single crystal
Plaskett et al. The Preparation and Properties of Large, Solution Grown GaP Crystals
JP3259383B2 (en) Method of synthesizing diamond single crystal
JP3282249B2 (en) Method of synthesizing diamond single crystal
JPH06165929A (en) Method for synthesizing diamond single crystal
EP0603995A1 (en) Process for the synthesising diamond single crystals
JP3206050B2 (en) Method of synthesizing diamond single crystal
DE69820098T2 (en) DIAMOND PARTICLE, COMPOSED OF A DIAMOND CORE AND A DIAMOND COATING
JPH05137999A (en) Method for synthesizing diamond single crystal
JPH0323517B2 (en)
Tenhover et al. A body centred cubic phase of elemental yttrium prepared by the rapid solidification of yttrium-iron alloys
JPH06269654A (en) Synthesis of diamond
JP3426862B2 (en) Green Chrysoberyl Synthetic Single Crystal
KR19990045454A (en) Method for producing cubic boron nitride

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11