JPH0323517B2 - - Google Patents

Info

Publication number
JPH0323517B2
JPH0323517B2 JP58041037A JP4103783A JPH0323517B2 JP H0323517 B2 JPH0323517 B2 JP H0323517B2 JP 58041037 A JP58041037 A JP 58041037A JP 4103783 A JP4103783 A JP 4103783A JP H0323517 B2 JPH0323517 B2 JP H0323517B2
Authority
JP
Japan
Prior art keywords
diamond
solvent metal
point
seeds
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58041037A
Other languages
Japanese (ja)
Other versions
JPS59169993A (en
Inventor
Tomoji Santo
Shinji Kashima
Eiichi Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP58041037A priority Critical patent/JPS59169993A/en
Publication of JPS59169993A publication Critical patent/JPS59169993A/en
Publication of JPH0323517B2 publication Critical patent/JPH0323517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0625Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明はダイヤモンド合成法に関し、さらに詳
しくは包有不純物が少なく結晶粒形の良いダイヤ
モンドを合成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diamond synthesis method, and more particularly to a method for synthesizing diamond with few included impurities and good crystal grain shape.

ダイヤモンドは工業的に主として研磨、研削、
切削等に使用されるが、この場合ダイヤモンドの
粒形が問題で、砥粒として優れたものは、粒形が
多面体であるいわゆる自形粒でかつ大粒のもので
ある。
Industrially, diamonds are mainly polished, ground,
It is used for cutting, etc., but in this case the grain shape of the diamond is a problem, and the ones that are excellent as abrasive grains are the so-called euhedral grains, which have a polyhedral grain shape, and are large grains.

大粒、良質のダイヤモンド結晶を得るために
は、ダイヤモンドの結晶該の発生を抑制して少な
くし、かつその少ない該をもとに相平衡線近傍の
ダイヤモンド安定領域で徐々に結晶を成長させる
必要がある。
In order to obtain large, high-quality diamond crystals, it is necessary to suppress and reduce the occurrence of diamond crystals, and to gradually grow the crystals in the stable diamond region near the phase equilibrium line based on the small number of crystals. be.

一般に該の数を制限して大粒のダイヤモンドを
合成する場合には種子法が用いられる。この方法
で用いられる種子には、ダイヤモンド粒子そのま
ま、或いは溶媒金属で被覆したものがあるが通常
後者が多く用いられる。上記方法において反応物
質に加える種子の数を減らし、如何に該の数を制
限しても、炭素濃度の過飽和度の高い領域でダイ
ヤモンド結晶を成長させた場合には、良質の結晶
は得られず結晶の形も悪く、不純物の包有も多く
なる。したがつて第1図に示すようにダイヤモン
ド安定領域1内でかつ相平衡線2近傍のA点の条
件において結晶を成長させなければならない。
Generally, the seed method is used when large diamonds are synthesized by limiting the number of diamonds. Seeds used in this method include diamond particles as they are or seeds coated with a solvent metal, and the latter is usually used. Even if the number of seeds added to the reactant is reduced in the above method and the number is limited, if diamond crystals are grown in a region with high carbon concentration supersaturation, good quality crystals will not be obtained. The shape of the crystals is poor, and many impurities are included. Therefore, as shown in FIG. 1, the crystal must be grown within the diamond stability region 1 and under the conditions of point A near the phase equilibrium line 2.

ところで、反応物質を第1図でA点の条件とす
るには、B点より反応物質の圧力をC点の圧力と
した後温度を上げてA点の条件とする。この場合
温度を上げ、次いで圧力を上昇させることは困難
が多い。したがつてA点の条件とするには、反応
物質が相平衡線2より離れたダイヤモンド安定領
域であるD部分を通ることとなる。上記反応物質
中の種子は単に溶媒金属で被覆されているので、
炭素が溶媒金属に溶解し、種子表面にダイヤモン
ドが成長するが、この成長はD部分を通過する際
に急速に進むので、そのあとでA点の条件として
も良い結晶が得られいない不都合がある。
By the way, in order to bring the reactant to the condition of point A in FIG. 1, the pressure of the reactant is brought to the pressure of point C from point B, and then the temperature is raised to bring it to the condition of point A. In this case, it is often difficult to raise the temperature and then the pressure. Therefore, in order to meet the conditions for point A, the reactant must pass through portion D, which is the diamond stability region away from the phase equilibrium line 2. Since the seeds in the above reactant are simply coated with the solvent metal,
Carbon dissolves in the solvent metal and diamond grows on the surface of the seed, but this growth progresses rapidly when passing through the D section, so there is the disadvantage that a good crystal cannot be obtained even under the condition of the A point after that. .

本発明は上記の事情に鑑み、反応物質をダイヤ
モンドと黒鉛の相平衡線近傍の条件とする過程
で、種子に対する結晶の成長を抑えたダイヤモン
ド合成法を提供することを目的とするもので、そ
の要旨は、非ダイヤモンド炭素、溶媒金属及び種
子よりなる反応物質を高温、高圧に保持するダイ
ヤモンドの合成法において、上記種子としてダイ
ヤモンド粒子を溶媒金属によつて薄く被覆し、さ
らにその外側を非溶媒金属で被覆したものを用い
ることを特徴とするダイヤモンドの合成法にあ
る。
In view of the above circumstances, it is an object of the present invention to provide a diamond synthesis method that suppresses the growth of crystals on seeds in the process of using reactants near the phase equilibrium line of diamond and graphite. The gist is that in a diamond synthesis method in which a reactant consisting of non-diamond carbon, a solvent metal, and a seed is held at high temperature and pressure, diamond particles as the seed are thinly coated with a solvent metal, and the outside is coated with a non-solvent metal. A method of synthesizing diamond characterized by using diamond coated with.

以下本発明の方法を説明する。 The method of the present invention will be explained below.

本発明で使用する種子は、第2図に示すように
ダイヤモンド粒子11の表面を薄く溶媒金属12
で被覆し、さらにその表面を非溶媒金属13で被
覆したものである。上記構成の種子14、非ダイ
ヤモンド炭素(以下原料炭素という)および溶媒
金属によつて反応物質を形成し、これを超高圧反
応装置に充填してダイヤモンドを合成する。
In the seeds used in the present invention, as shown in FIG.
The surface is further coated with non-solvent metal 13. A reactant is formed from the seeds 14 having the above structure, non-diamond carbon (hereinafter referred to as raw material carbon), and a solvent metal, and this is charged into an ultra-high pressure reactor to synthesize diamond.

上記種子14のダイヤモンド粒子11を被覆す
る溶媒金属12としては、Fe、Co、Ni等第8族
のもの、及びCr、Ta等通常ダイヤモンド合成に
使用される溶媒金属が用いられる。その厚さは
0.1〜2μが適当である。またその外側を被覆する
非溶媒金属13としては、Cu、Ag、Pb、Sn、
Zn、Si、Al、Ge、W、Mo、Ti等が使用され厚
さは5〜100μが適当である。さらにダイヤモン
ド粒子11は30μ以上が望ましい。
As the solvent metal 12 for coating the diamond particles 11 of the seeds 14, those of Group 8 such as Fe, Co, and Ni, and solvent metals normally used in diamond synthesis such as Cr and Ta are used. Its thickness is
A value of 0.1 to 2μ is appropriate. In addition, the non-solvent metal 13 covering the outside includes Cu, Ag, Pb, Sn,
Zn, Si, Al, Ge, W, Mo, Ti, etc. are used, and the appropriate thickness is 5 to 100 μm. Furthermore, the diamond particles 11 are desirably 30μ or more.

ダイヤモンド粒子11を溶媒金属12および非
溶媒金属13によつて被覆するには、通常セラミ
ツクにメツキをする場合に用いられる周知の電
解、無電解、真空蒸着、化合物の気相、液相分
解、スパツタリング、イオンプレーテイング、溶
射等が、金属の種類に応じて用いられる。
To coat the diamond particles 11 with the solvent metal 12 and the non-solvent metal 13, the well-known electrolytic, electroless, vacuum evaporation, gas phase, liquid phase decomposition of compounds, and sputtering methods commonly used when plating ceramics can be used. , ion plating, thermal spraying, etc. are used depending on the type of metal.

ダイヤモンドを合成する場合、種子14が内蔵
されている反応物質は、従来の合成法と同様、第
1図に示したようにB点よりC点を通つてA点の
条件に到るが、その過程でD部分を通過する。し
かし種子14は外側が非溶媒金属13で被覆され
ているので、第3図に示すように、周囲に反応物
質を構成する溶媒金属15に溶解した原料炭素1
6が存在しても、これがダイヤモンド粒子11と
接触せず、ダイヤモンド粒子11を核とする結晶
の成長はない。しかし経時的にダイヤモンド粒子
11の表面の溶媒金属12と非溶媒金属13は一
緒になつて薄められ、その中に原料炭素が溶解
し、ダイヤモンド粒子11の表面に結晶の成長が
始まる。しかし、その時点においては、反応物質
はA点の条件下にあり、ダイヤモンドの結晶成長
はゆつくり行なわれ、良質のダイヤモンドが合成
される。
When synthesizing diamond, the reactant containing the seed 14 reaches the conditions of point A from point B through point C as shown in Figure 1, as in the conventional synthesis method. In the process, it passes through part D. However, since the outside of the seed 14 is coated with a non-solvent metal 13, as shown in FIG.
Even if 6 is present, it does not come into contact with the diamond particles 11, and no crystal grows with the diamond particles 11 as the core. However, over time, the solvent metal 12 and non-solvent metal 13 on the surface of the diamond particle 11 are diluted together, the raw material carbon is dissolved therein, and crystal growth begins on the surface of the diamond particle 11. However, at that point, the reactants are under the conditions at point A, and diamond crystal growth takes place slowly, resulting in the synthesis of high-quality diamond.

また、ダイヤモンド粒子11を被覆する溶媒金
属12はA点に到るまでの過程において、ダイヤ
モンド11の面を僅か溶解し、凹凸のはげしい面
をなめらかにして、これを中心として成長するダ
イヤモンドの形状のよくする。したがつて、上記
方法は、特に複雑な形状のダイヤモンド粒子によ
つて種子を構成する場合に適する。
In addition, the solvent metal 12 that coats the diamond particles 11 slightly dissolves the surface of the diamond 11 in the process up to point A, smoothing out the extremely uneven surface, and changing the shape of the diamond that grows around this. Do well. Therefore, the above method is particularly suitable for forming seeds from diamond particles having a complex shape.

次に実施例を示した本発明を具体的に説明す
る。
Next, the present invention will be specifically described with reference to examples.

〔実施例〕〔Example〕

約120μのダイヤモンド粒子を用い、先ずこの
表面に無電解メツキ法により、Niを0.5μの厚さ
にメツキする。次いでこの上に硫酸銅を電解液と
して電解し、銅20μの厚さにメツキする。
Using approximately 120μ diamond particles, the surface is first plated with Ni to a thickness of 0.5μ by electroless plating. Next, copper sulfate was used as an electrolytic solution to electrolyze the layer, and copper was plated to a thickness of 20 μm.

この種子7重量部に原料炭素として黒鉛100重
量部、溶媒金属としてNi粉末100重量部を混合
し、超高圧反応装置に充填し、第1図のP−T図
に示したように昇圧、昇温し、1450℃、5800気圧
のA点の条件で合成を行なつた。生成したダイヤ
モンドの粒径は約400μ、形状は6−8面体で、
結晶欠陥のない良質なものであつた。
Seven parts by weight of these seeds were mixed with 100 parts by weight of graphite as the raw material carbon and 100 parts by weight of Ni powder as the solvent metal, and the mixture was charged into an ultra-high pressure reactor, and the pressure was increased as shown in the P-T diagram in Figure 1. Synthesis was carried out under the conditions of point A: 1450°C and 5800 atm. The particle size of the diamond produced is approximately 400μ, and the shape is 6-octahedron.
It was of good quality with no crystal defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反応物質をダイヤモンド合成条件とす
る過程をP−T図によつて示した図、第2図は種
子の図、第3図は種子の周囲を溶媒金属に溶解し
た黒鉛がとり巻いている図である。 11……ダイヤモンド粒子、12……溶媒金
属、13……非溶媒金属、14……種子。
Figure 1 is a P-T diagram showing the process of using reactants as diamond synthesis conditions, Figure 2 is a diagram of a seed, and Figure 3 is a diagram of the seed surrounded by graphite dissolved in a solvent metal. This is a diagram showing the 11...Diamond particles, 12...Solvent metal, 13...Non-solvent metal, 14...Seed.

Claims (1)

【特許請求の範囲】[Claims] 1 非ダイヤモンド炭素、溶媒金属及び種子より
なる反応物質を高温、高圧に保持するダイヤモン
ドの合成法において、上記種子としてダイヤモン
ド粒子を溶媒金属によつて薄く被覆し、さらにそ
の外側を非溶媒金属で被覆したものを用いること
を特徴とするダイヤモンドの合成法。
1 In a diamond synthesis method in which a reactant consisting of non-diamond carbon, a solvent metal, and a seed is held at high temperature and high pressure, diamond particles as the seeds are thinly coated with a solvent metal, and the outside thereof is further coated with a non-solvent metal. A diamond synthesis method characterized by using a diamond.
JP58041037A 1983-03-12 1983-03-12 Synthesis of diamond Granted JPS59169993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041037A JPS59169993A (en) 1983-03-12 1983-03-12 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041037A JPS59169993A (en) 1983-03-12 1983-03-12 Synthesis of diamond

Publications (2)

Publication Number Publication Date
JPS59169993A JPS59169993A (en) 1984-09-26
JPH0323517B2 true JPH0323517B2 (en) 1991-03-29

Family

ID=12597197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041037A Granted JPS59169993A (en) 1983-03-12 1983-03-12 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS59169993A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE359115T1 (en) 2000-11-09 2007-05-15 Element Six Pty Ltd METHOD FOR PRODUCING ULTRA-HARD ABRASIVE PARTICLES
CN104607109A (en) * 2014-05-08 2015-05-13 长春师范大学 Method for synthesizing high-quality diamond from artificial graphite and spherical graphite with one-time temperature-reaching and pressure-reaching process
CN104607108A (en) * 2014-05-08 2015-05-13 长春师范大学 Synthesis of high-quality diamond from flake graphite and spherical graphite under condition of one-shot realization of preset temperature and pressure
CN111270120B (en) * 2020-03-25 2021-12-14 西安工程大学 A kind of preparation method of diamond particle reinforced composite tool material for cutting stone
CN114016130B (en) * 2021-11-10 2022-09-13 哈尔滨工业大学 Method for welding single crystal diamond seed crystal and sample holder

Also Published As

Publication number Publication date
JPS59169993A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
EP0780153B1 (en) Diamond synthesis
JP4159000B2 (en) Ultra fine cobalt metal powder, method for producing the same, and use of the cobalt metal powder and cobalt carbonate
DE1719493A1 (en) Process for the production of wire-shaped bodies (whiskers) of circular cross-section, which consist of silicon carbide monocrystals, and objects made of silicon carbide whiskers of circular cross-section
JPH0523574A (en) Diamond abrasive grain synthesis method
JP3259384B2 (en) Method of synthesizing diamond single crystal
Takahashi et al. Single crystal growth of titanium carbide by chemical vapor deposition
JPH0323517B2 (en)
US4119500A (en) Process for eliminating magnetism of synthetic diamond grains
DE69417627T2 (en) METHOD FOR STEAM PHASE DIAMOND SYNTHESIS
US20030097907A1 (en) Methods of producing composite powders
JPS59164607A (en) Method for synthesizing diamond
US2119488A (en) Alloys and process of making same
EP0603995A1 (en) Process for the synthesising diamond single crystals
JP3291804B2 (en) Method of synthesizing diamond single crystal
JPS59164608A (en) Method for synthesizing diamond
JP3205970B2 (en) Diamond synthesis method
JP4190196B2 (en) Diamond synthesis method
JPS59164606A (en) Method for synthesizing diamond
JPH06165929A (en) Diamond single crystal synthesis method
JP3282249B2 (en) Method of synthesizing diamond single crystal
JPH06238154A (en) Synthesizing method for diamond
JPS6317492B2 (en)
US2119487A (en) Hard metal alloy and process of making the same
JPS59164610A (en) Method for synthesizing diamond
JPH0433489B2 (en)