JPH0323517B2 - - Google Patents
Info
- Publication number
- JPH0323517B2 JPH0323517B2 JP58041037A JP4103783A JPH0323517B2 JP H0323517 B2 JPH0323517 B2 JP H0323517B2 JP 58041037 A JP58041037 A JP 58041037A JP 4103783 A JP4103783 A JP 4103783A JP H0323517 B2 JPH0323517 B2 JP H0323517B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- solvent metal
- point
- seeds
- seed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010432 diamond Substances 0.000 claims description 47
- 229910003460 diamond Inorganic materials 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 239000002904 solvent Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 15
- 239000000376 reactant Substances 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 238000001308 synthesis method Methods 0.000 claims description 6
- 239000013078 crystal Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
- B01J3/062—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/04—Diamond
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/061—Graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/062—Diamond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/0625—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/0655—Diamond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0675—Structural or physico-chemical features of the materials processed
- B01J2203/068—Crystal growth
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】
本発明はダイヤモンド合成法に関し、さらに詳
しくは包有不純物が少なく結晶粒形の良いダイヤ
モンドを合成する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diamond synthesis method, and more particularly to a method for synthesizing diamond with few included impurities and good crystal grain shape.
ダイヤモンドは工業的に主として研磨、研削、
切削等に使用されるが、この場合ダイヤモンドの
粒形が問題で、砥粒として優れたものは、粒形が
多面体であるいわゆる自形粒でかつ大粒のもので
ある。 Industrially, diamonds are mainly polished, ground,
It is used for cutting, etc., but in this case the grain shape of the diamond is a problem, and the ones that are excellent as abrasive grains are the so-called euhedral grains, which have a polyhedral grain shape, and are large grains.
大粒、良質のダイヤモンド結晶を得るために
は、ダイヤモンドの結晶該の発生を抑制して少な
くし、かつその少ない該をもとに相平衡線近傍の
ダイヤモンド安定領域で徐々に結晶を成長させる
必要がある。 In order to obtain large, high-quality diamond crystals, it is necessary to suppress and reduce the occurrence of diamond crystals, and to gradually grow the crystals in the stable diamond region near the phase equilibrium line based on the small number of crystals. be.
一般に該の数を制限して大粒のダイヤモンドを
合成する場合には種子法が用いられる。この方法
で用いられる種子には、ダイヤモンド粒子そのま
ま、或いは溶媒金属で被覆したものがあるが通常
後者が多く用いられる。上記方法において反応物
質に加える種子の数を減らし、如何に該の数を制
限しても、炭素濃度の過飽和度の高い領域でダイ
ヤモンド結晶を成長させた場合には、良質の結晶
は得られず結晶の形も悪く、不純物の包有も多く
なる。したがつて第1図に示すようにダイヤモン
ド安定領域1内でかつ相平衡線2近傍のA点の条
件において結晶を成長させなければならない。 Generally, the seed method is used when large diamonds are synthesized by limiting the number of diamonds. Seeds used in this method include diamond particles as they are or seeds coated with a solvent metal, and the latter is usually used. Even if the number of seeds added to the reactant is reduced in the above method and the number is limited, if diamond crystals are grown in a region with high carbon concentration supersaturation, good quality crystals will not be obtained. The shape of the crystals is poor, and many impurities are included. Therefore, as shown in FIG. 1, the crystal must be grown within the diamond stability region 1 and under the conditions of point A near the phase equilibrium line 2.
ところで、反応物質を第1図でA点の条件とす
るには、B点より反応物質の圧力をC点の圧力と
した後温度を上げてA点の条件とする。この場合
温度を上げ、次いで圧力を上昇させることは困難
が多い。したがつてA点の条件とするには、反応
物質が相平衡線2より離れたダイヤモンド安定領
域であるD部分を通ることとなる。上記反応物質
中の種子は単に溶媒金属で被覆されているので、
炭素が溶媒金属に溶解し、種子表面にダイヤモン
ドが成長するが、この成長はD部分を通過する際
に急速に進むので、そのあとでA点の条件として
も良い結晶が得られいない不都合がある。 By the way, in order to bring the reactant to the condition of point A in FIG. 1, the pressure of the reactant is brought to the pressure of point C from point B, and then the temperature is raised to bring it to the condition of point A. In this case, it is often difficult to raise the temperature and then the pressure. Therefore, in order to meet the conditions for point A, the reactant must pass through portion D, which is the diamond stability region away from the phase equilibrium line 2. Since the seeds in the above reactant are simply coated with the solvent metal,
Carbon dissolves in the solvent metal and diamond grows on the surface of the seed, but this growth progresses rapidly when passing through the D section, so there is the disadvantage that a good crystal cannot be obtained even under the condition of the A point after that. .
本発明は上記の事情に鑑み、反応物質をダイヤ
モンドと黒鉛の相平衡線近傍の条件とする過程
で、種子に対する結晶の成長を抑えたダイヤモン
ド合成法を提供することを目的とするもので、そ
の要旨は、非ダイヤモンド炭素、溶媒金属及び種
子よりなる反応物質を高温、高圧に保持するダイ
ヤモンドの合成法において、上記種子としてダイ
ヤモンド粒子を溶媒金属によつて薄く被覆し、さ
らにその外側を非溶媒金属で被覆したものを用い
ることを特徴とするダイヤモンドの合成法にあ
る。 In view of the above circumstances, it is an object of the present invention to provide a diamond synthesis method that suppresses the growth of crystals on seeds in the process of using reactants near the phase equilibrium line of diamond and graphite. The gist is that in a diamond synthesis method in which a reactant consisting of non-diamond carbon, a solvent metal, and a seed is held at high temperature and pressure, diamond particles as the seed are thinly coated with a solvent metal, and the outside is coated with a non-solvent metal. A method of synthesizing diamond characterized by using diamond coated with.
以下本発明の方法を説明する。 The method of the present invention will be explained below.
本発明で使用する種子は、第2図に示すように
ダイヤモンド粒子11の表面を薄く溶媒金属12
で被覆し、さらにその表面を非溶媒金属13で被
覆したものである。上記構成の種子14、非ダイ
ヤモンド炭素(以下原料炭素という)および溶媒
金属によつて反応物質を形成し、これを超高圧反
応装置に充填してダイヤモンドを合成する。 In the seeds used in the present invention, as shown in FIG.
The surface is further coated with non-solvent metal 13. A reactant is formed from the seeds 14 having the above structure, non-diamond carbon (hereinafter referred to as raw material carbon), and a solvent metal, and this is charged into an ultra-high pressure reactor to synthesize diamond.
上記種子14のダイヤモンド粒子11を被覆す
る溶媒金属12としては、Fe、Co、Ni等第8族
のもの、及びCr、Ta等通常ダイヤモンド合成に
使用される溶媒金属が用いられる。その厚さは
0.1〜2μが適当である。またその外側を被覆する
非溶媒金属13としては、Cu、Ag、Pb、Sn、
Zn、Si、Al、Ge、W、Mo、Ti等が使用され厚
さは5〜100μが適当である。さらにダイヤモン
ド粒子11は30μ以上が望ましい。 As the solvent metal 12 for coating the diamond particles 11 of the seeds 14, those of Group 8 such as Fe, Co, and Ni, and solvent metals normally used in diamond synthesis such as Cr and Ta are used. Its thickness is
A value of 0.1 to 2μ is appropriate. In addition, the non-solvent metal 13 covering the outside includes Cu, Ag, Pb, Sn,
Zn, Si, Al, Ge, W, Mo, Ti, etc. are used, and the appropriate thickness is 5 to 100 μm. Furthermore, the diamond particles 11 are desirably 30μ or more.
ダイヤモンド粒子11を溶媒金属12および非
溶媒金属13によつて被覆するには、通常セラミ
ツクにメツキをする場合に用いられる周知の電
解、無電解、真空蒸着、化合物の気相、液相分
解、スパツタリング、イオンプレーテイング、溶
射等が、金属の種類に応じて用いられる。 To coat the diamond particles 11 with the solvent metal 12 and the non-solvent metal 13, the well-known electrolytic, electroless, vacuum evaporation, gas phase, liquid phase decomposition of compounds, and sputtering methods commonly used when plating ceramics can be used. , ion plating, thermal spraying, etc. are used depending on the type of metal.
ダイヤモンドを合成する場合、種子14が内蔵
されている反応物質は、従来の合成法と同様、第
1図に示したようにB点よりC点を通つてA点の
条件に到るが、その過程でD部分を通過する。し
かし種子14は外側が非溶媒金属13で被覆され
ているので、第3図に示すように、周囲に反応物
質を構成する溶媒金属15に溶解した原料炭素1
6が存在しても、これがダイヤモンド粒子11と
接触せず、ダイヤモンド粒子11を核とする結晶
の成長はない。しかし経時的にダイヤモンド粒子
11の表面の溶媒金属12と非溶媒金属13は一
緒になつて薄められ、その中に原料炭素が溶解
し、ダイヤモンド粒子11の表面に結晶の成長が
始まる。しかし、その時点においては、反応物質
はA点の条件下にあり、ダイヤモンドの結晶成長
はゆつくり行なわれ、良質のダイヤモンドが合成
される。 When synthesizing diamond, the reactant containing the seed 14 reaches the conditions of point A from point B through point C as shown in Figure 1, as in the conventional synthesis method. In the process, it passes through part D. However, since the outside of the seed 14 is coated with a non-solvent metal 13, as shown in FIG.
Even if 6 is present, it does not come into contact with the diamond particles 11, and no crystal grows with the diamond particles 11 as the core. However, over time, the solvent metal 12 and non-solvent metal 13 on the surface of the diamond particle 11 are diluted together, the raw material carbon is dissolved therein, and crystal growth begins on the surface of the diamond particle 11. However, at that point, the reactants are under the conditions at point A, and diamond crystal growth takes place slowly, resulting in the synthesis of high-quality diamond.
また、ダイヤモンド粒子11を被覆する溶媒金
属12はA点に到るまでの過程において、ダイヤ
モンド11の面を僅か溶解し、凹凸のはげしい面
をなめらかにして、これを中心として成長するダ
イヤモンドの形状のよくする。したがつて、上記
方法は、特に複雑な形状のダイヤモンド粒子によ
つて種子を構成する場合に適する。 In addition, the solvent metal 12 that coats the diamond particles 11 slightly dissolves the surface of the diamond 11 in the process up to point A, smoothing out the extremely uneven surface, and changing the shape of the diamond that grows around this. Do well. Therefore, the above method is particularly suitable for forming seeds from diamond particles having a complex shape.
次に実施例を示した本発明を具体的に説明す
る。 Next, the present invention will be specifically described with reference to examples.
約120μのダイヤモンド粒子を用い、先ずこの
表面に無電解メツキ法により、Niを0.5μの厚さ
にメツキする。次いでこの上に硫酸銅を電解液と
して電解し、銅20μの厚さにメツキする。
Using approximately 120μ diamond particles, the surface is first plated with Ni to a thickness of 0.5μ by electroless plating. Next, copper sulfate was used as an electrolytic solution to electrolyze the layer, and copper was plated to a thickness of 20 μm.
この種子7重量部に原料炭素として黒鉛100重
量部、溶媒金属としてNi粉末100重量部を混合
し、超高圧反応装置に充填し、第1図のP−T図
に示したように昇圧、昇温し、1450℃、5800気圧
のA点の条件で合成を行なつた。生成したダイヤ
モンドの粒径は約400μ、形状は6−8面体で、
結晶欠陥のない良質なものであつた。 Seven parts by weight of these seeds were mixed with 100 parts by weight of graphite as the raw material carbon and 100 parts by weight of Ni powder as the solvent metal, and the mixture was charged into an ultra-high pressure reactor, and the pressure was increased as shown in the P-T diagram in Figure 1. Synthesis was carried out under the conditions of point A: 1450°C and 5800 atm. The particle size of the diamond produced is approximately 400μ, and the shape is 6-octahedron.
It was of good quality with no crystal defects.
第1図は反応物質をダイヤモンド合成条件とす
る過程をP−T図によつて示した図、第2図は種
子の図、第3図は種子の周囲を溶媒金属に溶解し
た黒鉛がとり巻いている図である。
11……ダイヤモンド粒子、12……溶媒金
属、13……非溶媒金属、14……種子。
Figure 1 is a P-T diagram showing the process of using reactants as diamond synthesis conditions, Figure 2 is a diagram of a seed, and Figure 3 is a diagram of the seed surrounded by graphite dissolved in a solvent metal. This is a diagram showing the 11...Diamond particles, 12...Solvent metal, 13...Non-solvent metal, 14...Seed.
Claims (1)
なる反応物質を高温、高圧に保持するダイヤモン
ドの合成法において、上記種子としてダイヤモン
ド粒子を溶媒金属によつて薄く被覆し、さらにそ
の外側を非溶媒金属で被覆したものを用いること
を特徴とするダイヤモンドの合成法。1 In a diamond synthesis method in which a reactant consisting of non-diamond carbon, a solvent metal, and a seed is held at high temperature and high pressure, diamond particles as the seeds are thinly coated with a solvent metal, and the outside thereof is further coated with a non-solvent metal. A diamond synthesis method characterized by using a diamond.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58041037A JPS59169993A (en) | 1983-03-12 | 1983-03-12 | Synthesis of diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58041037A JPS59169993A (en) | 1983-03-12 | 1983-03-12 | Synthesis of diamond |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59169993A JPS59169993A (en) | 1984-09-26 |
JPH0323517B2 true JPH0323517B2 (en) | 1991-03-29 |
Family
ID=12597197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58041037A Granted JPS59169993A (en) | 1983-03-12 | 1983-03-12 | Synthesis of diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59169993A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE359115T1 (en) | 2000-11-09 | 2007-05-15 | Element Six Pty Ltd | METHOD FOR PRODUCING ULTRA-HARD ABRASIVE PARTICLES |
CN104607109A (en) * | 2014-05-08 | 2015-05-13 | 长春师范大学 | Method for synthesizing high-quality diamond from artificial graphite and spherical graphite with one-time temperature-reaching and pressure-reaching process |
CN104607108A (en) * | 2014-05-08 | 2015-05-13 | 长春师范大学 | Synthesis of high-quality diamond from flake graphite and spherical graphite under condition of one-shot realization of preset temperature and pressure |
CN111270120B (en) * | 2020-03-25 | 2021-12-14 | 西安工程大学 | A kind of preparation method of diamond particle reinforced composite tool material for cutting stone |
CN114016130B (en) * | 2021-11-10 | 2022-09-13 | 哈尔滨工业大学 | Method for welding single crystal diamond seed crystal and sample holder |
-
1983
- 1983-03-12 JP JP58041037A patent/JPS59169993A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59169993A (en) | 1984-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0780153B1 (en) | Diamond synthesis | |
JP4159000B2 (en) | Ultra fine cobalt metal powder, method for producing the same, and use of the cobalt metal powder and cobalt carbonate | |
DE1719493A1 (en) | Process for the production of wire-shaped bodies (whiskers) of circular cross-section, which consist of silicon carbide monocrystals, and objects made of silicon carbide whiskers of circular cross-section | |
JPH0523574A (en) | Diamond abrasive grain synthesis method | |
JP3259384B2 (en) | Method of synthesizing diamond single crystal | |
Takahashi et al. | Single crystal growth of titanium carbide by chemical vapor deposition | |
JPH0323517B2 (en) | ||
US4119500A (en) | Process for eliminating magnetism of synthetic diamond grains | |
DE69417627T2 (en) | METHOD FOR STEAM PHASE DIAMOND SYNTHESIS | |
US20030097907A1 (en) | Methods of producing composite powders | |
JPS59164607A (en) | Method for synthesizing diamond | |
US2119488A (en) | Alloys and process of making same | |
EP0603995A1 (en) | Process for the synthesising diamond single crystals | |
JP3291804B2 (en) | Method of synthesizing diamond single crystal | |
JPS59164608A (en) | Method for synthesizing diamond | |
JP3205970B2 (en) | Diamond synthesis method | |
JP4190196B2 (en) | Diamond synthesis method | |
JPS59164606A (en) | Method for synthesizing diamond | |
JPH06165929A (en) | Diamond single crystal synthesis method | |
JP3282249B2 (en) | Method of synthesizing diamond single crystal | |
JPH06238154A (en) | Synthesizing method for diamond | |
JPS6317492B2 (en) | ||
US2119487A (en) | Hard metal alloy and process of making the same | |
JPS59164610A (en) | Method for synthesizing diamond | |
JPH0433489B2 (en) |