JPS59169993A - Synthesis of diamond - Google Patents

Synthesis of diamond

Info

Publication number
JPS59169993A
JPS59169993A JP58041037A JP4103783A JPS59169993A JP S59169993 A JPS59169993 A JP S59169993A JP 58041037 A JP58041037 A JP 58041037A JP 4103783 A JP4103783 A JP 4103783A JP S59169993 A JPS59169993 A JP S59169993A
Authority
JP
Japan
Prior art keywords
diamond
metal
seed
solvent metal
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58041037A
Other languages
Japanese (ja)
Other versions
JPH0323517B2 (en
Inventor
Tomoji Santo
山東 知二
Shinji Kashima
加島 愼治
Eiichi Iizuka
栄一 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP58041037A priority Critical patent/JPS59169993A/en
Publication of JPS59169993A publication Critical patent/JPS59169993A/en
Publication of JPH0323517B2 publication Critical patent/JPH0323517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0625Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Abstract

PURPOSE:In synthesizing a diamond by ultra-high pressure and high temperature method using a seed grain of diamond, solvent metal and carbon, to synthesize a diamond having a low content of impurities and good shape of crystal grain, by coating the surface of the seed grain of diamond with the solvent metal and a nonsolvent metal. CONSTITUTION:The surface of the seed grain 11 of diamond having about 30 particle diameter to be used for synthesis of diamond is coated with the solvent metal 12 such as Fe, Co, Ni, Cr, Ta, etc. by plating, vacuum metallizing, sputtering, flame spraying, and other methods to form a film with 0.1-2mu thickness. The surface is then covered with the nonsolvent metal 13 such as Cu, Ag, Pb, Sn, Si, Al, etc. to give a film of 5-100mu thickness, so that the seed diamond 14 is prepared. 7pts.wt. seed diamond is blended with 100pts.wt. graphite as a carbon raw material and 100pts.wt. powder of solvent metal such as Ni, etc., reacted at 1,450 deg.C at 58,000 atmospheric pressure, so that a high-quality diamond free from crystal defect can be synthesized.

Description

【発明の詳細な説明】 本発明はダイヤモンド合成法に関し、ざらに詳しくは包
イf不純物が少l<結晶粒形の良いダイヤモンド?合成
する方法に関する0 ダイヤモンドは1発的に主として研磨、研削、切削等に
使用されるが、この場合ダイヤモンドの粒形が問題で、
砥粒としてKれたものは、粒形が多面体であるいわゆる
自形粒でかつ大粒のもαつである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing diamonds, and more specifically, diamonds with low impurities and good crystal grain shape? 0 Regarding synthesis methods Diamond is primarily used for polishing, grinding, cutting, etc., but in this case, the particle shape of the diamond is a problem.
The abrasive grains classified as K are so-called euhedral grains having a polyhedral grain shape, and α are large grains.

大粒、良質のダイ雪モンド結晶を碍るためには、ダイヤ
モンド結晶核の発生全抑制して少なくし、かつその少な
い核ともとに相平衡保近傍のダイヤモンド安定領域で徐
々に結晶?成長させる必要があるO )F<に核〔り激音制限して大とLのダイヤモンドを合
成する場合にC−1柚子法か用いられる。この方法で用
いられる1重子には、ダイヤモンド粒そのz’f、或い
は溶妊金属で肢發したものがあるが通常使者が多く用い
られる。上記方法において反応物質に加えろ種子の数に
減らし、川河に核の猛全制限しても、炭ズ(0度の過飽
和度の高い領域でダイヤモンド結晶を成長させた場合に
は、良質の結晶は得られず結晶の形も悪く、不純物のn
有も多くなる。
In order to produce large, high-quality diamond crystals, it is necessary to completely suppress and reduce the generation of diamond crystal nuclei, and to gradually crystallize the diamond crystals in the stable diamond region near the phase equilibrium with those few nuclei. The C-1 yuzu method is used when synthesizing large and L diamonds by limiting the size of the nucleus to O)F<, which needs to be grown. Singletons used in this method include diamond grains, z'f, or those made of fertilized metal, but messengers are usually used. In the above method, even if you reduce the number of seeds added to the reactant and completely limit the number of nuclei in the river, you will not be able to obtain good quality diamond crystals (if diamond crystals are grown in a highly supersaturated region of 0 degrees). No crystals were obtained, the shape of the crystals was poor, and impurity n
There will also be more.

したがって第を図に示すようにダイヤモンド安定領域1
内でかつ相平衡線2近傍のA点の条件において結晶全成
長ぎせなければならlい。
Therefore, as shown in the figure, diamond stability region 1
The entire crystal must grow under the conditions of point A within the phase equilibrium line 2 and near the phase equilibrium line 2.

ところで、反応P@質全全第1図A点σつ条件とするに
は、B点より反応物質の圧力The点の圧力とした後温
度を上げてA点の条件とする。こり場合濡度全上げ、次
いで圧力全上昇2fることは固唾が多い。したがってA
点の条件とするには、反応物質が相平衡線2より離れた
ダイヤモンド安定領域であるD部分をJfnることとな
る。上記反応物質中の種子は単に溶媒金属で破覆己れて
いるので、炭素が溶媒金mK溶解し、種子表面にダイヤ
モンドが成長するが、この成長番より部分全通過する際
に急速に進むので、そのあとでA点の条件としても良い
結晶が得られない不都合がある。
By the way, in order to obtain the conditions for the reaction P @ point A in Fig. 1, the pressure of the reactant is made from point B to the point The, and then the temperature is raised to obtain the conditions for point A. In case of stiffness, the wetness is fully increased and then the pressure is fully raised by 2f, which is often a tough decision. Therefore A
In order to obtain the point condition, the reactant must Jfn the part D, which is the diamond stable region away from the phase equilibrium line 2. Since the seeds in the above reactant are simply covered with the solvent metal, the carbon dissolves in the solvent gold mK, and diamonds grow on the seed surface. , after that, there is a disadvantage that a good crystal cannot be obtained even under the A point condition.

本発明は上記の事情に鑑み、反応物質全ダイヤモンドと
黒鉛の相平衡線近傍の条件とする過程で、種子に対する
結晶の成長を抑えたダイヤモンド合・成法と提供するこ
と全目的とするもので、その要旨は、非ダイヤモンド炭
素、溶媒金属及び種子よりなる反応物質全高温、高圧に
保持するダイヤモンドの合成法において、上記種子とし
てダイヤモンド粒子を溶媒金属によって薄く被覆し、ざ
らにその外側全非溶媒金属で被覆したもの全円いること
を特徴とするダイヤモンドの合成法にある。
In view of the above circumstances, the entire purpose of the present invention is to provide a diamond synthesis method that suppresses the growth of crystals on seeds during the process of creating conditions near the phase equilibrium line between all diamond and graphite as reactants. , the gist of which is a diamond synthesis method in which the entire reactant consisting of non-diamond carbon, a solvent metal, and a seed is maintained at high temperature and pressure. This is a method of synthesizing diamonds, which is characterized by having a complete circle coated with metal.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用する連子は、第2図に示すようにダイヤモ
ンド粒子11の表面に博く溶媒金属12で波器し、ざら
にその表面全非溶媒金属13勅ωしたものである。上記
樺成の4!R子14、非ダイヤモンド炭素(以下原料炭
メという)およびr8媒金属によって反応物質と形成し
5こ9<超高圧反応装置に装填してダイヤモンド2合D
I スル。
As shown in FIG. 2, the interlocks used in the present invention are made by corrugating the surface of a diamond particle 11 with a solvent metal 12, and roughly corrugating the entire surface with a non-solvent metal 13. 4 of Kabanari above! R element 14 is formed with a reactant by non-diamond carbon (hereinafter referred to as raw carbon) and R8 medium metal and loaded into an ultra-high pressure reactor to form diamond 2 mixture D.
I Sur.

上記柚子14のダイヤモンド粒子11t−Mffl”j
る溶媒金412としては、F’e、Co、+Ni等第と
非のもグへ及びCr、Ta等通常ダイヤモンド会jJj
、に便用される溶媒揄属が用いられる。そαつ厚さはθ
/−U□か適当である。flこその外側2彼aする非溶
媒金員18としては、Cu、Ag、Pb、Sn。
Diamond particles 11t-Mffl”j of the above Yuzu 14
Examples of solvent gold 412 include F'e, Co, +Ni, etc., and ordinary diamond metals such as Cr, Ta, etc.
A series of solvents commonly used are used. Its thickness is θ
/-U□ or appropriate. The non-solvent metals 18 on the outside of fl are Cu, Ag, Pb, and Sn.

Z−n、Si、ACGe、W、Mo、Ti −5が使用
され厚ざは3〜100μがi1M当である。ざらにダイ
ヤモンド粒子11は3θμ以上が望EfLい。
Z-n, Si, ACGe, W, Mo, and Ti-5 are used, and the thickness is 3 to 100 μm per i1M. Roughly speaking, it is desirable that the diamond particles 11 have an EfL of 3θμ or more.

ダイヤモンド粒子11′?!:溶媒金属12および非溶
媒金属18によって被覆するには、通常セラミックにメ
ンキ全する場谷に用いられる周却のhL解、無電解、真
空蒸着、化合物の気+jノ、液柘分解、スバンタリング
、イオンブレーティング、溶射等力、金属のa項に応じ
て用いられる。
Diamond particle 11'? ! : To coat with the solvent metal 12 and the non-solvent metal 18, the following methods are commonly used for coating ceramics: electroless, vacuum evaporation, compound gas deposition, liquid decomposition, svantaling, Ion blasting, thermal spraying, etc. are used depending on the a-term of the metal.

ダイヤモンド?合成する場合、イ4H子14が内蔵され
ている反応物質は、従来の合成法と同様、第1図に示し
たようにB点よりC点全通ってA点の条件に到るが、そ
の過程でD部分全通過する。しかし種子14は外側が非
溶媒金属18で破覆己れているので、第3図に示すよう
に、IiZ囲に反応物質?構成する溶媒金属15に溶解
した原料炭素16が存在しても、これがダイヤモンド粒
子1■と接触せず・ダイヤモンド粒子ILTh核とする
結晶の成長はない。しかし経時的にダイヤモンド粒子1
1の表面の溶媒金属■2と非溶媒金属18は一緒になっ
てへゲめられ、その中に原料炭素が溶解し、ダイヤモン
ド粒子11の表面に結晶のby、傷が始よる。
diamond? When synthesizing, the reactant containing the 4H molecules 14 reaches the conditions of point A from point B to point C, as shown in Figure 1, as in the conventional synthesis method. In the process, the entire D section is passed through. However, since the outside of the seed 14 is covered with the non-solvent metal 18, as shown in FIG. Even if the raw material carbon 16 is present dissolved in the constituent solvent metal 15, it does not come into contact with the diamond particles 1, and no crystals that serve as diamond particle ILTh nuclei grow. However, over time, diamond particles 1
The solvent metal (1) 2 and the non-solvent metal (18) on the surface of diamond particle (1) are eroded together, raw carbon is dissolved therein, and crystal formation and scratches begin on the surface of diamond particle (11).

しかし、そり時点においては、反応物質GJA点の条件
下にあり、ダイヤモンドの結晶成長レボゆっくり行なわ
れ、良質のダイヤモンドが合成己れる。
However, at the time of warping, the reactants are under the conditions of the GJA point, and diamond crystal growth occurs slowly, resulting in the synthesis of high-quality diamond.

fだ、ダイヤモンド粒子11を被覆する溶媒金1槻12
はA点に到る王での過程において、ダイヤモンド110
面全僅か浴解し、凹凸のはげしい血全なめらかにして、
これ全中心として成長するダイヤモンドの形状をよくす
る。したがって、上記方法は、特に蝮雑な形状のダイヤ
モンド粒子によって41子全構成する場合に適する。
f, solvent gold 12 covering diamond particles 11
In the process of reaching point A, diamond 110
Slightly dissolve the whole surface and smooth out the unevenness of the blood.
This improves the shape of the diamond that grows as a center. Therefore, the above method is particularly suitable for a case where all 41 diamond particles are composed of diamond particles having a rough shape.

次に実施例2示した本発明全具体的に説明する。Next, the present invention shown in Example 2 will be explained in detail.

〔実施例〕〔Example〕

約/、20μのダイヤモンド粒子音用い、先ずこC’)
J面に無13.解メツキ法により、Ni kO,jμの
厚ぎにメッキする。次いでこの上に硫酸M全m)瞥液と
して電解し・銅に2θμの厚ざにメンキする。
Approximately /, using 20μ diamond particle sound, first C')
No 13 on J side. Plating is performed to a thickness of Ni kO,jμ using the deplating method. This was then electrolyzed with sulfuric acid (M) solution, and the copper was coated with a thickness of 2θμ.

この種子77@i社部に原料炭素として黒鉛lθ0重U
部5溶楳金属としてNi粉粉末10京図に示したように
昇圧、昇温し、l弘5θ℃、55000気圧のA点の条
件で合成2行なった。
This seed 77@i company uses graphite lθ0 heavy U as raw material carbon.
Part 5: Ni powder was used as a melted metal.The pressure and temperature were increased as shown in the diagram, and two synthesis operations were carried out under the conditions of point A at 5θ°C and 55,000 atm.

生成したダイヤモンドの粒径は約toθμ、形状はる一
g面体で、結晶欠陥のない良質なものであった。
The resulting diamond had a grain size of approximately toθμ, a monog-hedral shape, and was of good quality with no crystal defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反応物質をダイ−N・モンド合成条件とする過
程全P−T図によって示した図、第2図は7岨子の図、
第3図は種子のIM囲全全18媒金属浴解した黒鉛がと
り巻いている図である。 11・・・・・・ダイヤモンド粒子、12・・・・・・
浴媒金属、18・・・・・・非溶媒金、観、14・・・
・・・種子。 出絹人昭和戒工株式会社 第1図 第2図
Figure 1 is a diagram showing the entire process P-T diagram using reactants as conditions for Di-N-Mondo synthesis, Figure 2 is a diagram of 7-sako,
FIG. 3 shows that the entire IM region of the seed is surrounded by graphite dissolved in a bath of 18 metals. 11...diamond particles, 12...
Bath metal, 18...Non-solvent gold, 14...
···seed. Dekinuto Showa Kaiko Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 非ダイヤモンド炭素、溶媒金属及びf、J子よりなる反
応物質?高温、高圧に保持するダイヤモンドの合成法に
おいて、上記種子としてダイヤモンド粒子全溶媒金J<
4によって薄く被覆し、さらにその外側全非溶媒金属で
被醪したもの全車いることと特徴とするダイヤモンドの
合成法。
Reactant consisting of non-diamond carbon, solvent metal and f, J atoms? In the diamond synthesis method that maintains the diamond particles at high temperature and high pressure, the diamond particles are all-solvent gold J<
A method for synthesizing diamond, characterized in that the diamond is thinly coated with 4, and the entire outer layer is coated with a non-solvent metal.
JP58041037A 1983-03-12 1983-03-12 Synthesis of diamond Granted JPS59169993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041037A JPS59169993A (en) 1983-03-12 1983-03-12 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041037A JPS59169993A (en) 1983-03-12 1983-03-12 Synthesis of diamond

Publications (2)

Publication Number Publication Date
JPS59169993A true JPS59169993A (en) 1984-09-26
JPH0323517B2 JPH0323517B2 (en) 1991-03-29

Family

ID=12597197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041037A Granted JPS59169993A (en) 1983-03-12 1983-03-12 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS59169993A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038264A3 (en) * 2000-11-09 2002-07-25 De Beers Ind Diamond A method of producing ultra-hard abrasive particles
CN104607108A (en) * 2014-05-08 2015-05-13 长春师范大学 Synthesis of high-quality diamond from flake graphite and spherical graphite under condition of one-shot realization of preset temperature and pressure
CN104607109A (en) * 2014-05-08 2015-05-13 长春师范大学 Method for synthesizing high-quality diamond from artificial graphite and spherical graphite with one-time temperature-reaching and pressure-reaching process
CN111270120A (en) * 2020-03-25 2020-06-12 西安工程大学 Preparation method of diamond particle reinforced composite cutter material for cutting stone
CN114016130A (en) * 2021-11-10 2022-02-08 哈尔滨工业大学 Method for welding single crystal diamond seed crystal and sample holder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038264A3 (en) * 2000-11-09 2002-07-25 De Beers Ind Diamond A method of producing ultra-hard abrasive particles
US6979357B2 (en) 2000-11-09 2005-12-27 Mehmet Serdar Ozbayraktar Method of producing ultra-hard abrasive particles
CN104607108A (en) * 2014-05-08 2015-05-13 长春师范大学 Synthesis of high-quality diamond from flake graphite and spherical graphite under condition of one-shot realization of preset temperature and pressure
CN104607109A (en) * 2014-05-08 2015-05-13 长春师范大学 Method for synthesizing high-quality diamond from artificial graphite and spherical graphite with one-time temperature-reaching and pressure-reaching process
CN111270120A (en) * 2020-03-25 2020-06-12 西安工程大学 Preparation method of diamond particle reinforced composite cutter material for cutting stone
CN111270120B (en) * 2020-03-25 2021-12-14 西安工程大学 Preparation method of diamond particle reinforced composite cutter material for cutting stone
CN114016130A (en) * 2021-11-10 2022-02-08 哈尔滨工业大学 Method for welding single crystal diamond seed crystal and sample holder
CN114016130B (en) * 2021-11-10 2022-09-13 哈尔滨工业大学 Method for welding single crystal diamond seed crystal and sample holder

Also Published As

Publication number Publication date
JPH0323517B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
JPH1149506A (en) Ornamental member
JPS59169993A (en) Synthesis of diamond
JPH06182184A (en) Synthesis of single crystal diamond
WO1988007599A1 (en) Composite diamond particles
JPH04157157A (en) Production of artificial diamond coated material
WO1994016125A1 (en) Process for vapor-phase diamond synthesis
CN113967734A (en) Titanium alloy mixed powder for laser additive manufacturing of titanium alloy part and method for manufacturing titanium alloy part in laser additive mode
JPS59164607A (en) Method for synthesizing diamond
JPS61501984A (en) Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2)
JPS6136112A (en) Preparation of whetstone granule of poly-crystalline diamond
JPS60255695A (en) Production of diamond
JPS58133368A (en) Formation of boron coating film
JPS59164606A (en) Method for synthesizing diamond
JP2686970B2 (en) Membrane diamond manufacturing method
JPS59164608A (en) Method for synthesizing diamond
JPH08209347A (en) Synthetic diamond and synthesis of the same
JPH06238154A (en) Synthesizing method for diamond
KR930011165B1 (en) Apparatus for adhering diamond film on the plate and processing method thereof
JPS59164610A (en) Method for synthesizing diamond
CA1128423A (en) Boron cantilever and method of making the same
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
JPH04160074A (en) Diamond porous body and its production
JPH0818919B2 (en) Whisker manufacturing method with excellent yield
JPS61215293A (en) Synthesis of diamond
JPH01153513A (en) Structure