JPH06165929A - Method for synthesizing diamond single crystal - Google Patents

Method for synthesizing diamond single crystal

Info

Publication number
JPH06165929A
JPH06165929A JP43A JP32079992A JPH06165929A JP H06165929 A JPH06165929 A JP H06165929A JP 43 A JP43 A JP 43A JP 32079992 A JP32079992 A JP 32079992A JP H06165929 A JPH06165929 A JP H06165929A
Authority
JP
Japan
Prior art keywords
diamond
crystal
crystals
powder
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Hitoshi Sumiya
均 角谷
Shuichi Sato
周一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP43A priority Critical patent/JPH06165929A/en
Publication of JPH06165929A publication Critical patent/JPH06165929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To kstably and at a low cost synthesize diamonfd single crystals which are colorless and transparent and almost free from incusion by adding Si-X intermetallic compounds (X indicates an element selected from the group of Ti, Zr, Hf, V, Nb and Ta0 into a solvent metal. CONSTITUTION:Powder of Si-X intermetallic compouinds (X indicates an element selected from the group of Ti, Zr, Hf, V, Nb and Ta) is previously added to solvent metal 2. Diamond powder is used as a carbon source 1 and three diamons crystals of about 500mum diameter are used as seed crystals. These are set in a heater so that a difference in temperature beteen the carbon source and a seed part may be about 30 deg.C. Diamond is synthesized from these by using a superhigh pressure generator. Consequently diamond crystals IIa of good quality which are colorless and transparent without inclusion are synthesized at a high growth speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は装飾用途や光学部品など
に用いられる無色で透明なダイヤモンド単結晶の合成方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing colorless and transparent diamond single crystals used for decorative purposes and optical parts.

【0002】[0002]

【従来の技術】現在市販されている装飾用ダイヤモンド
としては、主に南アフリカ、ロシアより産出されるもの
の中から、無色透明で内部欠陥の少ないものを選別して
用いている。天然装飾用ダイヤモンドは宝石の中でも最
も販売量が多い。また、ダイヤモンドを用いた光学部品
として、レーザー窓やIRアンビルセルなどがあるが、
いずれも天然原石の中から赤外領域に光の吸収のない透
明なダイヤモンド(IIa型と呼ばれる)が選ばれて用い
られている。しかし、透明無色な原石の産出は極めて少
なく、安定供給や価格に問題がある。
2. Description of the Related Art As decorative diamonds currently on the market, those which are colorless and transparent and have few internal defects are selected from those mainly produced in South Africa and Russia. Natural ornamental diamonds are the most sold gemstones. Also, as optical parts using diamond, there are laser windows and IR anvil cells.
In each case, a transparent diamond (called type IIa) that does not absorb light in the infrared region is selected and used from natural rough stones. However, the production of transparent and colorless rough stones is extremely low, and there are problems with stable supply and prices.

【0003】一方、人工合成によるダイヤモンドは通
常、超高圧高温下で合成する際に、溶媒中の窒素が結晶
格子内に取り込まれるために黄色く着色してしまうが、
溶媒中に窒素ゲッターを添加することにより無色透明の
ダイヤモンドを得ることができる。この窒素ゲッターと
しては、例えば、The Journal of Physical Chemistry,
vol.75, No.12 (1971) p1838に記載されているように、
Alがよく知られている。具体的には、米国特許第40
34066号明細書において、Fe溶媒にAlを3〜5
重量%添加することにより宝石級の無色透明なダイヤモ
ンド単結晶が得られたと記載されている。Al以外の窒
素ゲッターを用いた例として、例えば無機材質研究所研
究報告書第39号(1984)第16〜19頁に、TiやZ
rを溶媒金属に添加することにより結晶中の窒素が除去
されたという報告がある。
On the other hand, artificially synthesized diamond is usually colored yellow when it is synthesized under ultrahigh pressure and high temperature because nitrogen in the solvent is taken into the crystal lattice.
A colorless and transparent diamond can be obtained by adding a nitrogen getter to the solvent. As this nitrogen getter, for example, The Journal of Physical Chemistry,
vol.75, No.12 (1971) As described in p1838,
Al is well known. Specifically, US Patent No. 40
In the specification of No. 34066, Al is added to a Fe solvent in an amount of 3 to 5
It is described that a gem-grade colorless and transparent diamond single crystal was obtained by adding it by weight%. As an example using a nitrogen getter other than Al, see, for example, Research Report No. 39 (1984), pages 16 to 19 of the Research Institute for Inorganic Materials, Ti and Z.
There is a report that nitrogen in crystals was removed by adding r to the solvent metal.

【0004】[0004]

【発明が解決しようとする課題】しかし、特に無色透明
の合成ダイヤモンドは合成コストが天然装飾用ダイヤモ
ンドよりはるかに高くなるため、工業生産は行われてい
ない。この理由は、合成には高価で特殊な装置が必要で
ある上に、Alなどを窒素ゲッターとして添加した場
合、その添加量の増加に従って、溶媒が結晶中に取り込
まれて(以下インクルージョン)不良結晶となることが
多くなるため、良質な結晶とするためには成長速度を大
幅に下げる必要があるからである。特にTiやZrを窒
素ゲッターとして用いた場合は、合成途中に溶媒中に生
成した炭化物(TiC,ZrCなど、カーバイドとも称
する)が結晶中に取り込まれるため、完全な結晶は得ら
れなくなる。
However, since the synthetic cost of synthetic colorless and transparent diamond is much higher than that of natural ornamental diamond, industrial production is not carried out. This is because the synthesis requires an expensive and special device, and when Al or the like is added as a nitrogen getter, the solvent is taken into the crystal (inclusion) and the defective crystal is added as the addition amount increases. This is because the growth rate must be significantly reduced in order to obtain good quality crystals. In particular, when Ti or Zr is used as a nitrogen getter, a carbide (TiC, ZrC, etc., also called a carbide) generated in the solvent during the synthesis is taken into the crystal, and a perfect crystal cannot be obtained.

【0005】本発明者等が行った実験の結果によると、
窒素ゲッターとしてAlを用い、溶媒金属に均一混合し
た場合、無色透明なダイヤモンド結晶を合成するために
は、その添加量は溶媒に対し少なくとも4重量%必要で
あるが、この場合インクルージョンの巻き込みなしに結
晶成長させるためには、成長速度を1mg/hr以下に
する必要がある。この場合、たとえば1カラット(20
0mg)の結晶を合成するには200時間以上の合成時
間を要し、製造コストは膨大なものとなる。また、T
i、Zrなど、Alより窒素との反応性の高い物質を窒
素ゲッターとして溶媒に均一添加した場合、添加量は1
重量%でも無色透明な結晶となるが、成長速度を大幅に
低下させたとしてもインクルージョン(カーバイド)が
多く、良質な結晶は殆ど得られない。本発明はかかる問
題点を解決し、無色透明でしかもインクルージョンの殆
どないダイヤモンド単結晶を、安価に安定して合成でき
る新規な製法を提供し、人工合成ダイヤモンドの装飾用
途または光学部品用途への使用を可能にすることを意図
するものである。
According to the results of experiments conducted by the present inventors,
When Al is used as a nitrogen getter and uniformly mixed with a solvent metal, the amount of addition is at least 4% by weight with respect to the solvent in order to synthesize a colorless and transparent diamond crystal, but in this case, inclusion is not involved. In order to grow crystals, the growth rate needs to be 1 mg / hr or less. In this case, for example, 1 carat (20
It takes 200 hours or more to synthesize 0 mg) of crystals, and the manufacturing cost is enormous. Also, T
When a substance having a higher reactivity with nitrogen than Al, such as i and Zr, is uniformly added to the solvent as a nitrogen getter, the addition amount is 1
Although the crystals become colorless and transparent even by weight%, even if the growth rate is significantly reduced, inclusions (carbides) are large and almost no good crystals are obtained. The present invention solves such a problem, provides a new production method which can stably synthesize a diamond single crystal which is colorless and transparent and has almost no inclusion, at low cost, and to use artificial synthetic diamond for decoration or optical parts. Is intended to enable.

【0006】[0006]

【課題を解決するための手段】上記の問題を解決するた
め、本発明者らが種々検討したところ、溶媒中にSiを
添加すれば溶媒中の炭素の活量が上がり、そのため成長
中の結晶表面の埋め残しが少なくなって、インクルージ
ョンの混入がある程度抑えられることがわかった。ま
た、Ti,Zr,、Hfなど炭化物を形成しやすい元素
を窒素ゲッターとして添加する場合に、同時にSiを溶
媒中に添加すれば、TiCやZrCなど合成中に溶媒中
に生成した炭化物が溶解・分解され、比較的はやい成長
速度でも良質なIIaタイプのダイヤモンド結晶の育成が
可能であることを見いだした。さらに検討を重ねたとこ
ろ、SiとTi,Zrなどからなる金属間化合物などを
窒素ゲッターとして添加すれば、より効果的であり、ま
たTiCなどの炭化物の生成自体が大幅に抑えられるこ
とが判った。その結果、従来の2倍程度の速い成長速度
でも良質なIIa結晶が得られることを確認し、本発明を
完成するに至った。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention have made various investigations. As a result, when Si is added to the solvent, the activity of carbon in the solvent is increased, and therefore, the growing crystal It was found that the unfilled surface was reduced and inclusions were suppressed to some extent. Further, when an element that easily forms carbides such as Ti, Zr, and Hf is added as a nitrogen getter, if Si is added to the solvent at the same time, TiC, ZrC, and other carbides formed in the solvent during synthesis are dissolved. It has been found that it is possible to grow a high quality IIa type diamond crystal that has been decomposed and has a relatively rapid growth rate. Further investigations have revealed that the addition of an intermetallic compound such as Si and Ti or Zr as a nitrogen getter is more effective, and the formation of carbide such as TiC itself can be significantly suppressed. . As a result, it was confirmed that a good quality IIa crystal could be obtained even at a growth rate about twice as fast as the conventional one, and the present invention was completed.

【0007】すなわち、本発明は温度差法によるダイヤ
モンド単結晶合成において、窒素ゲッターとしてSi−
X系金属間化合物(XはTi、Zr、Hf、V、Nb及
びTaから選ばれる元素を表す)を添加した溶媒金属を
用いることを特徴とするものである。 本発明におい
て、前記溶媒金属としては、Fe、Co、Ni、Mn及
びCrの中から選ばれる一種もしくは二種以上からなる
金属であり、0.1〜6.0重量%の炭素を含むものが
特に好ましい。また、本発明における前記窒素ゲッター
として添加するSi−X系金属間化合物(XはTi、Z
r、Hf、V、Nb及びTaから選ばれる元素を表す)
の添加量は、前記溶媒金属に対して0.1〜10重量%
であることが特に好ましい。
That is, according to the present invention, in the diamond single crystal synthesis by the temperature difference method, Si-is used as a nitrogen getter.
It is characterized by using a solvent metal to which an X-based intermetallic compound (X represents an element selected from Ti, Zr, Hf, V, Nb and Ta) is added. In the present invention, the solvent metal is a metal composed of one or more selected from Fe, Co, Ni, Mn and Cr, and contains 0.1 to 6.0% by weight of carbon. Particularly preferred. Further, a Si—X based intermetallic compound (X is Ti, Z is added as the nitrogen getter in the present invention.
represents an element selected from r, Hf, V, Nb and Ta)
The addition amount of 0.1 to 10 wt% with respect to the solvent metal
Is particularly preferable.

【0008】図1は本発明の一具体例であって、結晶合
成用の試料室構成を示す図であり、溶媒金属2中にSi
−X系金属間化合物(XはTi、Zr、Hf、V、Nb
及びTaから選ばれる元素を表す)の粉末を予め添加し
ておく。なお、図1中、1は炭素源、3は種結晶、4は
絶縁体、5は黒鉛ヒーター、6は圧力媒体を示す。金属
間化合物の例として、たとえばSi−Ti系金属間化合
物としては、Si 2 Ti,SiTi,Si3 Ti5 など
が挙げられる。Si−Zr系金属間化合物としては、S
2 Zr,SiZr,Si4 Zr5 ,SiZr2 などが
挙げられる。その他Si−V系、Si−Hf系、Si−
Ta系金属間化合物の各種も用いることができる。これ
らのSi−X系金属間化合物の添加量は少ない方が好ま
しいが、溶媒金属に対して0.1重量%より少ないと窒
素が十分に除去されずに結晶がかなり黄色味を帯びてく
る。また、10重量%を越えると、多結晶化や自然核発
生が多くなり、良質な結晶が得られなくなる。
FIG. 1 shows one embodiment of the present invention, which is a crystal
It is a figure which shows the sample chamber structure for synthesis | combination, Si is contained in the solvent metal 2.
-X-based intermetallic compound (X is Ti, Zr, Hf, V, Nb
And an element selected from Ta) are added in advance.
Keep it. In FIG. 1, 1 is a carbon source, 3 is a seed crystal, and 4 is a seed crystal.
An insulator, 5 is a graphite heater, and 6 is a pressure medium. metal
As an example of the intermetallic compound, for example, a Si--Ti based intermetallic compound
As an object, Si 2Ti, SiTi, Si3TiFiveSuch
Is mentioned. As the Si-Zr-based intermetallic compound, S
i2Zr, SiZr, SiFourZrFive, SiZr2etc
Can be mentioned. Others Si-V type, Si-Hf type, Si-
Various types of Ta-based intermetallic compounds can also be used. this
It is preferable that the amount of the Si-X intermetallic compound added is small.
However, if it is less than 0.1% by weight with respect to the solvent metal,
Crystals are rather yellowish due to insufficient element removal
It Also, if it exceeds 10% by weight, polycrystallization or spontaneous nuclear generation occurs.
The amount of raw material increases, and good quality crystals cannot be obtained.

【0009】ここで図1の2の溶媒金属は、Fe,C
o,Ni,Mn,Crの中から選ばれる一種もしくは二
種以上からなる金属であり、種結晶溶解防止のため溶媒
金属量に対し0.1〜6.0重量%の炭素を予め添加し
ておく。炭素添加量が0.1重量%未満もしくは炭素を
含まない溶媒金属を用いた場合、種結晶上にPtなどの
種結晶溶解防止材を配置する必要があるが、種結晶防止
材を配置することは多結晶化やインクルージョンの巻き
込みの原因となり、好ましくない。また、炭素添加量が
6重量%を越えると、自然核発生が起こりやすくなり、
種結晶以外の部所より結晶成長するため結晶同士が干渉
し、良質な結晶が得られなくなる。
Here, the solvent metals 2 in FIG. 1 are Fe and C.
O, Ni, Mn, and Cr, which are one or more metals selected from the group consisting of 0.1 to 6.0% by weight of carbon with respect to the amount of solvent metal to prevent seed crystal dissolution. deep. When a solvent metal containing less than 0.1% by weight of carbon or containing no carbon is used, it is necessary to dispose a seed crystal dissolution inhibitor such as Pt on the seed crystal, but dispose a seed crystal inhibitor. Is undesirable because it causes polycrystallization and inclusion inclusion. If the amount of carbon added exceeds 6% by weight, spontaneous nucleation tends to occur,
Since the crystals grow from a portion other than the seed crystal, the crystals interfere with each other, and a good quality crystal cannot be obtained.

【0010】本発明に用いる種結晶、炭素源等はこの種
の技術分野で公知のものを用いることができる。また、
温度差法による合成の条件等は適宜選択することができ
る。具体的な例は後記する実施例に挙げられる。
The seed crystal, carbon source and the like used in the present invention may be those known in this type of technical field. Also,
The conditions for synthesis by the temperature difference method can be appropriately selected. Specific examples are given in Examples described later.

【0011】[0011]

【作用】本発明によるダイヤモンド合成方法によると、
溶媒中にSi−X系金属間化合物(XはTi、Zr、H
f、V、Nb及びTaから選ばれる元素を表す)を窒素
ゲッター且つインクルージョン混入防止材として添加し
ておく。その結果、従来よりかなり速い成長速度でも良
質なIIaダイヤモンド結晶が得られる。この理由につい
て、Si−Ti系の金属間化合物を例にして次に具体的
に述べる。先にも述べたように、Tiのみを窒素ゲッタ
ーとして用いた場合、窒素との反応性が高いので添加量
は〜1重量%という微量でも無色透明なダイヤモンド結
晶となるが、TiCが溶媒中に多量に生成する。そのた
め結晶成長が阻害されたり、また結晶の成長速度を大幅
に低下させたとしても、このTiCが結晶中に取り込ま
れたりして、良質な結晶は殆ど得られない。しかし、窒
素ゲッターとしてTiを添加するとともに、TiCを溶
解・分解する働きのあるSiを同時に添加することによ
り、溶媒中のTiCの影響によるインクルージョンの混
入を抑えることができる。Siを添加すれば溶媒中の炭
素の活量が上がり、そのため成長中の結晶表面の埋め残
しが少なくなって、溶媒の巻き込み(インクルージョ
ン)自体がある程度抑えられる。さらにTiとSiから
なる金属間化合物、例えばSiTiなどを添加した場
合、より効果的であり、良質な結晶がかなり得やすくな
る。また、窒素の除去効率も、Tiと同程度で、1重量
%程度の微量の添加でも殆ど窒素が除去される。以上の
ように、窒素ゲッターとしてSi−Ti系の金属間化合
物を用いることにより、AlやTiなどの従来の窒素ゲ
ッターを用いる場合より、速い成長速度で無色透明でイ
ンクルージョンのない良質なIIaダイヤモンド結晶を合
成することが可能となる。具体的には例えばSiTi金
属間化合物を溶媒金属に対し1重量%添加した場合、成
長速度2.5mg/hrでも、無色透明な良質なIIaダ
イヤモンド結晶が得られる。
According to the diamond synthesis method of the present invention,
Si-X intermetallic compound (X is Ti, Zr, H in a solvent)
(representing an element selected from f, V, Nb, and Ta) is added as a nitrogen getter and an inclusion mixing prevention material. As a result, a good quality IIa diamond crystal can be obtained even at a much higher growth rate than before. The reason for this will be specifically described below by taking a Si—Ti based intermetallic compound as an example. As described above, when only Ti is used as the nitrogen getter, the reactivity with nitrogen is high, so even if the addition amount is up to 1% by weight, a colorless and transparent diamond crystal can be obtained. Generate a large amount. Therefore, even if the crystal growth is hindered, or even if the crystal growth rate is significantly reduced, the TiC is taken into the crystal, and a good crystal is hardly obtained. However, by adding Ti as a nitrogen getter and Si having a function of dissolving and decomposing TiC at the same time, inclusion of inclusions due to the influence of TiC in the solvent can be suppressed. When Si is added, the activity of carbon in the solvent is increased, so that the unfilled portion of the crystal surface during growth is reduced, and the inclusion of the solvent itself is suppressed to some extent. Furthermore, when an intermetallic compound composed of Ti and Si, such as SiTi, is added, it is more effective, and it becomes easy to obtain a good quality crystal. Further, the removal efficiency of nitrogen is about the same as that of Ti, and most of the nitrogen is removed even by adding a trace amount of about 1% by weight. As described above, by using the Si-Ti-based intermetallic compound as the nitrogen getter, a high-quality IIa diamond crystal that is colorless and transparent and has no inclusion at a higher growth rate than in the case of using a conventional nitrogen getter such as Al or Ti. Can be synthesized. Specifically, for example, when 1 wt% of SiTi intermetallic compound is added to the solvent metal, a colorless and high-quality IIa diamond crystal can be obtained even at a growth rate of 2.5 mg / hr.

【0012】[0012]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 溶媒の原料として粒径50〜100μmの高純度Fe粉
末、Co粉末、グラファイト粉末を用い、 Fe:Co:C=60:40:4.5(重量比) となるように配合した。これにさらに添加材として平均
粒径50μmのSiTi金属間化合物粉末を溶媒金属量
(グラファイトを除く)に対し1重量%添加し、十分に
混合した。この混合粉末を型押し成形し、脱ガス、焼成
したもの(直径20mm、厚み10mm)を溶媒とし
た。炭素源にはダイヤモンドの粉末、種結晶には直径約
500μmのダイヤモンド結晶3個を用いた。図1に示
す試料室構成で、炭素源と種部に約30℃の温度差がつ
くように加熱ヒーター内にセットした。これを超高圧発
生装置を用いて、圧力5.5GPa、温度1300℃で
70時間保持し、ダイヤモンドの合成を行った。その結
果、0.7〜0.9カラットの無色透明なインクルージ
ョンの殆どない良質なIIa型のダイヤモンド結晶3個が
得られた。ESRにより結晶中の窒素濃度を測定する
と、いずれも0.1ppm以下であった。磁気天秤によ
りインクルージョン濃度を測定すると、いずれも0.3
重量%以下であった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 High-purity Fe powder, Co powder, and graphite powder having a particle size of 50 to 100 μm were used as a raw material of a solvent, and they were compounded so that Fe: Co: C = 60: 40: 4.5 (weight ratio). 1 wt% of SiTi intermetallic compound powder having an average particle size of 50 μm was added as an additive to the solvent metal amount (excluding graphite), and they were sufficiently mixed. This mixed powder was pressed, degassed and fired (diameter 20 mm, thickness 10 mm), and used as a solvent. Diamond powder was used as a carbon source, and three diamond crystals having a diameter of about 500 μm were used as seed crystals. The sample chamber configuration shown in FIG. 1 was set in the heater so that a temperature difference of about 30 ° C. was created between the carbon source and the seed portion. This was held at a pressure of 5.5 GPa and a temperature of 1300 ° C. for 70 hours using an ultrahigh pressure generator to synthesize diamond. As a result, three good quality IIa type diamond crystals of 0.7 to 0.9 carat having almost no colorless and transparent inclusions were obtained. When the nitrogen concentration in the crystal was measured by ESR, all were 0.1 ppm or less. When the inclusion concentration was measured with a magnetic balance, both were 0.3
It was less than weight%.

【0013】実施例2〜5 SiTi金属間化合物粉末の添加量を溶媒金属量(グラ
ファイトを除く)0.5、2.0、4.0、8.0重量
%と変えた他は実施例1と同様にして、本発明に従いダ
イヤモンド合成を行った。いずれも0.8カラット前後
の良質なIIa型ダイヤモンド結晶が得られた。いずれの
結晶も窒素濃度は0.2ppm以下、インクルージョン
量は0.3重量%以下であった。
Examples 2 to 5 Example 1 except that the amount of SiTi intermetallic compound powder added was changed to 0.5, 2.0, 4.0, and 8.0% by weight of solvent metal (excluding graphite). Diamond was synthesized according to the present invention in the same manner as in. In each case, a good quality IIa diamond crystal of about 0.8 carat was obtained. Each crystal had a nitrogen concentration of 0.2 ppm or less and an inclusion amount of 0.3% by weight or less.

【0014】実施例6 添加材としてSiTi金属間化合物粉末に代えてSi3
Ti5 金属間化合物粉末を用いた他は実施例1と同様に
して、本発明によりダイヤモンド結晶を合成した。その
結果、実施例1と殆ど同じ、良質なIIa型ダイヤモンド
結晶が得られた。
Example 6 Si 3 was used as an additive instead of SiTi intermetallic compound powder.
Diamond crystals were synthesized according to the present invention in the same manner as in Example 1 except that Ti 5 intermetallic compound powder was used. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0015】実施例7 添加材としてSiTi金属間化合物粉末に代えてSiZ
r金属間化合物粉末を用いた他は実施例1と同様にし
て、本発明によりダイヤモンド結晶を合成した。その結
果、実施例1と殆ど同じ、良質なIIa型ダイヤモンド結
晶が得られた。
Example 7 Instead of SiTi intermetallic compound powder as an additive, SiZ
Diamond crystals were synthesized according to the present invention in the same manner as in Example 1 except that r intermetallic compound powder was used. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0016】実施例8 添加材としてSiTi金属間化合物粉末に代えてSiZ
2 金属間化合物粉末を用いた他は実施例1と同様にし
て、本発明によりダイヤモンド結晶を合成した。その結
果、実施例1と殆ど同じ、良質なIIa型ダイヤモンド結
晶が得られた。
Example 8 SiZ was used as an additive instead of SiTi intermetallic compound powder.
Diamond crystals were synthesized according to the present invention in the same manner as in Example 1 except that r 2 intermetallic compound powder was used. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0017】実施例9 溶媒の原料として粒径50〜100μmの高純度Fe粉
末、Ni粉末、Co粉末、グラファイト粉末を用い、 Fe:Ni:Co:C=60:30:10:4.2(重
量比) となるように配合した他は実施例1と同様にして本発明
に従いダイヤモンド結晶を合成した。その結果、実施例
1と殆ど同じ、良質なIIa型ダイヤモンド結晶が得られ
た。
Example 9 High-purity Fe powder, Ni powder, Co powder, and graphite powder having a particle size of 50 to 100 μm were used as a solvent raw material, and Fe: Ni: Co: C = 60: 30: 10: 4.2 ( A diamond crystal was synthesized according to the present invention in the same manner as in Example 1 except that the weight ratio was adjusted. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0018】実施例10 溶媒の原料として粒径50〜100μmの高純度Fe粉
末、Ni粉末、Mn粉末、グラファイト粉末を用い、 Fe:Ni:Mn:C=60:30:10:4.0(重
量比) となるように配合した他は実施例1と同様にして本発明
に従いダイヤモンド結晶を合成した。その結果、実施例
1と殆ど同じ、良質なIIa型ダイヤモンド結晶が得られ
た。
Example 10 High purity Fe powder, Ni powder, Mn powder and graphite powder having a particle size of 50 to 100 μm were used as a raw material of a solvent, and Fe: Ni: Mn: C = 60: 30: 10: 4.0 ( A diamond crystal was synthesized according to the present invention in the same manner as in Example 1 except that the weight ratio was adjusted. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0019】実施例11 溶媒の原料として粒径50〜100μmの高純度Fe粉
末、Ni粉末、グラファイト粉末を用い、 Fe:Ni:C=70:30:3.5(重量比) となるように配合した他は実施例1と同様にして本発明
に従いダイヤモンド結晶を合成した。その結果、実施例
1と殆ど同じ、良質なIIa型ダイヤモンド結晶が得られ
た。
Example 11 High-purity Fe powder, Ni powder, and graphite powder having a particle size of 50 to 100 μm were used as a solvent raw material, and Fe: Ni: C = 70: 30: 3.5 (weight ratio) was set. Diamond crystals were synthesized according to the present invention in the same manner as in Example 1 except that the components were blended. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0020】実施例12 溶媒の原料として粒径50〜100μmの高純度Co粉
末、グラファイト粉末を用い、 Co:C=100:4.7(重量比) となるように配合し、合成温度条件を1350℃にした
他は実施例1と同様にして本発明に従いダイヤモンド結
晶を合成した。その結果、実施例1と殆ど同じ、良質な
IIa型ダイヤモンド結晶が得られた。
Example 12 High purity Co powder and graphite powder having a particle size of 50 to 100 μm were used as a raw material of a solvent, and they were blended so that Co: C = 100: 4.7 (weight ratio), and the synthesis temperature conditions were changed. Diamond crystals were synthesized according to the present invention in the same manner as in Example 1 except that the temperature was changed to 1350 ° C. As a result, the quality is almost the same as that of the first embodiment.
A type IIa diamond crystal was obtained.

【0021】実施例13 溶媒の原料として粒径50〜100μmの高純度Ni粉
末、グラファイト粉末を用い、 Ni:C=100:4.2(重量比) となるように配合し、合成温度条件を1350℃にした
他は実施例1と同様にして本発明に従いダイヤモンド結
晶を合成した。その結果、実施例1と殆ど同じ、良質な
IIa型ダイヤモンド結晶が得られた。
Example 13 High-purity Ni powder and graphite powder having a particle size of 50 to 100 μm were used as a raw material of a solvent, and they were mixed so that Ni: C = 100: 4.2 (weight ratio), and the synthesis temperature conditions were changed. Diamond crystals were synthesized according to the present invention in the same manner as in Example 1 except that the temperature was changed to 1350 ° C. As a result, the quality is almost the same as that of the first embodiment.
A type IIa diamond crystal was obtained.

【0022】比較例1 SiTi金属間化合物を添加せず、かわりに平均粒径5
0μmのTi粉末を1重量%添加した他は実施例1と同
様にして、ダイヤモンド結晶の合成を試みた。窒素量が
約0.2ppmと少ない結晶が得られたが、成長量は一
個あたり約0.3カラットと少なかった。また多くのT
iCが結晶中に見られ、溶媒の巻き込みも約1.3重量
%と多く、良質な結晶は得られなかった。
Comparative Example 1 No SiTi intermetallic compound was added, but instead the average particle size was 5
An attempt was made to synthesize a diamond crystal in the same manner as in Example 1 except that 1% by weight of 0 μm Ti powder was added. Although a crystal having a small amount of nitrogen of about 0.2 ppm was obtained, the amount of growth was as small as about 0.3 carat per piece. Also many T
iC was found in the crystals, and the amount of solvent entrainment was as large as about 1.3% by weight, and good crystals could not be obtained.

【0023】比較例2 SiTi金属間化合物を添加せず、かわりに平均粒径5
0μmのSi粉末とTi粉末をそれぞれ0.5重量%添
加した他は実施例1と同様にして、ダイヤモンド結晶の
合成を試みた。0.8カラット前後で窒素量が薬0.2
ppmと少ない結晶が得られたが、インクルージョン量
は0.7重量%とやや多かった。
Comparative Example 2 No SiTi intermetallic compound was added, but instead the average particle size was 5
An attempt was made to synthesize a diamond crystal in the same manner as in Example 1 except that 0.5% by weight of Si powder and 0.5% by weight of Ti powder were added. Around 0.8 carat, the nitrogen content is 0.2
Although crystals as small as ppm were obtained, the inclusion amount was a little large at 0.7% by weight.

【0024】比較例3 SiTi金属間化合物の添加量を15重量%とした他は
実施例1と同様にして、ダイヤモンド結晶の合成を試み
た。種結晶から成長した結晶は多結晶化しており、良質
な単結晶は得られなかった。
Comparative Example 3 An attempt was made to synthesize diamond crystals in the same manner as in Example 1 except that the amount of SiTi intermetallic compound added was 15% by weight. The crystal grown from the seed crystal was polycrystallized, and a good single crystal could not be obtained.

【0025】比較例4 溶媒の原料として粒径50〜100μmの高純度Fe粉
末、Ni粉末、Co粉末を用い、 Fe:Ni:Co =60:30:10(重量比) となるように配合し、炭素を添加しなかった他は、実施
例1と同様にしてダイヤモンド結晶の合成を試みた。そ
の結果、種結晶は溶媒中に完全に溶解して消失してしま
い、ダイヤモンドの成長は認められなかった。
Comparative Example 4 High-purity Fe powder, Ni powder, and Co powder having a particle size of 50 to 100 μm were used as a raw material of a solvent, and Fe: Ni: Co = 60: 30: 10 (weight ratio) was compounded. The synthesis of diamond crystals was tried in the same manner as in Example 1 except that carbon was not added. As a result, the seed crystal was completely dissolved in the solvent and disappeared, and no diamond growth was observed.

【0026】比較例5 溶媒の原料として粒径50〜100μmの高純度Fe粉
末、Ni粉末、Co粉末、グラファイト粉末を用い、 Fe:Ni:Co:C=60:30:10:7(重量
比) となるように配合した他は実施例1と同様にしてダイヤ
モンド結晶を合成した。その結果、種結晶以外の所より
ダイヤモンドが多数自然核発生し、このため結晶同士が
干渉し、良質な結晶は殆ど得られなかった。
Comparative Example 5 High purity Fe powder, Ni powder, Co powder and graphite powder having a particle size of 50 to 100 μm were used as a raw material of a solvent, and Fe: Ni: Co: C = 60: 30: 10: 7 (weight ratio). ] A diamond crystal was synthesized in the same manner as in Example 1 except that the above composition was added. As a result, a large number of diamonds were naturally nucleated from places other than the seed crystal, and the crystals interfered with each other.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば無
色透明でインクルージョンのほとんど無いダイヤモンド
単結晶を、安価に安定して合成できる。本発明の方法に
より、合成ダイヤモンドを装飾用途、光学部品用途など
に利用することが可能である。
As described above, according to the present invention, a colorless and transparent diamond single crystal having almost no inclusion can be stably synthesized at low cost. According to the method of the present invention, synthetic diamond can be used for decorative purposes, optical parts, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一具体例における結晶合成用の試料室
構成を示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing a structure of a sample chamber for crystal synthesis in one specific example of the present invention.

【符号の説明】[Explanation of symbols]

1 炭素源 2 窒素ゲッターとしてのSi−X系金属間化合物を添
加された溶媒金属 3 種結晶 4 絶縁体 5 黒鉛ヒーター 6 圧力媒体
1 Carbon source 2 Si-X intermetallic compound as a nitrogen getter Solvent metal 3 Seed crystal 4 Insulator 5 Graphite heater 6 Pressure medium

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 温度差法によるダイヤモンド結晶合成に
おいて、溶媒金属中にSi−X系金属間化合物(XはT
i,Zr,Hf,V,Nb及びTaから選ばれる元素を
表す)を添加することを特徴とするダイヤモンド単結晶
の合成方法。
1. In a diamond crystal synthesis by a temperature difference method, a Si—X based intermetallic compound (X is T
i, Zr, Hf, V, Nb and Ta) are added).
【請求項2】 前記溶媒金属は、Fe,Co,Ni,M
n及びCrの中から選ばれる一種もしくは二種以上から
なる金属であり、且つ0.1〜6.0重量%の炭素を含
むことを特徴とするダイヤモンド単結晶の合成方法。
2. The solvent metal is Fe, Co, Ni, M.
A method for synthesizing a diamond single crystal, which is a metal composed of one or more selected from n and Cr and contains 0.1 to 6.0% by weight of carbon.
【請求項3】 前記Si−X系金属間化合物(XはT
i,Zr,Hf,V,Nb及びTaから選ばれる元素を
表す)の添加量は該溶媒金属に対して0.1〜10重量
%であることを特徴とするダイヤモンド単結晶の合成方
法。
3. The Si—X intermetallic compound (X is T
The amount of addition of i, Zr, Hf, V, Nb and Ta) is 0.1 to 10% by weight with respect to the solvent metal.
JP43A 1992-11-30 1992-11-30 Method for synthesizing diamond single crystal Pending JPH06165929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06165929A (en) 1992-11-30 1992-11-30 Method for synthesizing diamond single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06165929A (en) 1992-11-30 1992-11-30 Method for synthesizing diamond single crystal

Publications (1)

Publication Number Publication Date
JPH06165929A true JPH06165929A (en) 1994-06-14

Family

ID=18125376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06165929A (en) 1992-11-30 1992-11-30 Method for synthesizing diamond single crystal

Country Status (1)

Country Link
JP (1) JPH06165929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600766A (en) * 2012-03-30 2012-07-25 常熟市怡华金刚石有限公司 Method for synthesizing gem grade diamond by using cubic press
CN102600768A (en) * 2012-03-30 2012-07-25 常熟市怡华金刚石有限公司 Indirect heating-type synthesis assembly for high-temperature and high-pressure artificial single crystal synthesis by using cubic press
CN115041099A (en) * 2022-07-19 2022-09-13 彭伟华 Diamond synthesis block and preparation method of diamond
CN117123143A (en) * 2023-07-14 2023-11-28 山东中科润晶新材料有限公司 Method for synthesizing special-shaped dodecahedron diamond

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600766A (en) * 2012-03-30 2012-07-25 常熟市怡华金刚石有限公司 Method for synthesizing gem grade diamond by using cubic press
CN102600768A (en) * 2012-03-30 2012-07-25 常熟市怡华金刚石有限公司 Indirect heating-type synthesis assembly for high-temperature and high-pressure artificial single crystal synthesis by using cubic press
CN115041099A (en) * 2022-07-19 2022-09-13 彭伟华 Diamond synthesis block and preparation method of diamond
CN115041099B (en) * 2022-07-19 2023-11-17 彭伟华 Diamond synthetic block and preparation method of diamond
CN117123143A (en) * 2023-07-14 2023-11-28 山东中科润晶新材料有限公司 Method for synthesizing special-shaped dodecahedron diamond
CN117123143B (en) * 2023-07-14 2024-02-23 山东中科润晶新材料有限公司 Method for synthesizing special-shaped dodecahedron diamond

Similar Documents

Publication Publication Date Title
EP0525207B1 (en) Process for synthesizing diamond
Wentorf Jr Diamond growth rates
KR100216619B1 (en) Diamond synthesis
EP0780153B1 (en) Diamond synthesis
US6835365B1 (en) Crystal growth
JP3259384B2 (en) Method of synthesizing diamond single crystal
JP2000503968A (en) Growth of colorless silicon carbide crystals
JPH06165929A (en) Method for synthesizing diamond single crystal
JPS6065787A (en) Manufacture of dislocation-free silicon single crystal rod
JP3291804B2 (en) Method of synthesizing diamond single crystal
JP3206050B2 (en) Method of synthesizing diamond single crystal
JPH05137999A (en) Method for synthesizing diamond single crystal
JPH07116494A (en) Synthetic diamond and manufacture thereof
JP3282249B2 (en) Method of synthesizing diamond single crystal
EP0603995A1 (en) Process for the synthesising diamond single crystals
JP3259383B2 (en) Method of synthesizing diamond single crystal
JPH05194089A (en) Polycrystalline diamond enhanced in heat conductivity consisting of pure carbon 12 or 13 as isotope
EP1498518A4 (en) Silicon carbide single crystal and method for preparation thereof
JP3205970B2 (en) Diamond synthesis method
JPH0686927A (en) Method for synthesis of diamond signal crystal
EP0425579B1 (en) Mecanochemical preparation of carbides and silicides
RU2181795C2 (en) Method of diamond synthesis
JPH0576747A (en) Synthetic method for diamond single crystal
JPS58161995A (en) Method for synthesizing diamond
JPH06269654A (en) Synthesis of diamond