JPH0686927A - Method for synthesis of diamond signal crystal - Google Patents

Method for synthesis of diamond signal crystal

Info

Publication number
JPH0686927A
JPH0686927A JP3310618A JP31061891A JPH0686927A JP H0686927 A JPH0686927 A JP H0686927A JP 3310618 A JP3310618 A JP 3310618A JP 31061891 A JP31061891 A JP 31061891A JP H0686927 A JPH0686927 A JP H0686927A
Authority
JP
Japan
Prior art keywords
diamond
crystal
solvent metal
solvent
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3310618A
Other languages
Japanese (ja)
Inventor
Hitoshi Sumiya
均 角谷
Yasushi Goda
靖 郷田
Shuichi Sato
周一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3310618A priority Critical patent/JPH0686927A/en
Priority to EP92905002A priority patent/EP0525207B1/en
Priority to PCT/JP1992/000149 priority patent/WO1992014542A1/en
Priority to US08/307,493 priority patent/US6129900A/en
Priority to DE69215021T priority patent/DE69215021T2/en
Priority to IE920846A priority patent/IE920846A1/en
Publication of JPH0686927A publication Critical patent/JPH0686927A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a new method for synthesis of a colorless and transparent diamond single crystal which can be used for decorative applications and optical parts. CONSTITUTION:In synthesizing a diamond single crystal by means of temp. difference, one or two or more metals selected from Al, Ti, Zr or Hf as a nitrogen getter 3 are positioned on the solvent metal side and Sn 4 is positioned on the seed crystal side between the solvent metal and the seed crystal 5 positioned on a cell and synthesis of the diamond is started in such a way that the nitrogen getter 3 is not brought into contact with the seed crystal 5. As it is possible thereby to synthesize inexpensively and stably a IIa-type diamond crystal being colorless and transparent, with very few inclusions and with good quality, this method is a favorable method for preparation of a synthetic diamond which can be provided for decorative applications and optical parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は装飾用途や光学部品など
に用いられる無色で透明なダイヤモンド単結晶の合成方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing colorless and transparent diamond single crystals used for decorative purposes and optical parts.

【0002】[0002]

【従来の技術】現在市販されている装飾用ダイヤモンド
としては、主に南アフリカ、ソビエト連邦より産出され
るものの中から、無色透明で内部欠陥の少ないものを選
別して用いている。天然装飾用ダイヤモンドは宝石の中
でも最も販売量が多い。また、ダイヤモンドを用いた光
学部品として、レーザー窓やIRアンビルセルなどがあ
るが、いずれも天然原石の中から赤外領域に光の吸収の
ない透明なダイヤモンド(IIa型と呼ばれる)が選ばれ
て用いられている。しかし、透明無色な原石の産出は極
めて少なく、安定供給や価格に問題がある。一方、人工
合成によるダイヤモンドは通常、超高圧高温下で合成す
る際に溶媒中の窒素が結晶格子内に取り込まれるために
黄色く着色してしまうが、溶媒中に窒素ゲッターを添加
することで無色透明のダイヤモンドを得ることができ
る。この窒素ゲッターとしては、例えば The Journal o
f Physical Chemistry, Vol.75, No.12 (1971) p1838
に示されているように、Alがよく知られている。具体
的には、米国特許第4034066号明細書には、Fe
溶媒にAlを3〜5重量%添加することにより宝石級の
無色透明なダイヤモンド単結晶が得られると記載されて
いる。Al以外の窒素ゲッターを用いた例として、例え
ば無機材質研究所研究報告書第39号(1984年)第
16〜19頁に、TiやZrを溶媒金属に添加すること
で結晶中の窒素が除去されたという報告がある。
2. Description of the Related Art As decorative diamonds currently on the market, those which are colorless and transparent and have few internal defects are selected and used from those mainly produced in South Africa and the Soviet Union. Natural ornamental diamonds are the most sold gemstones. Moreover, there are laser windows, IR anvil cells, etc. as optical parts using diamond, but in each case, transparent diamond (called type IIa) that does not absorb light in the infrared region is selected from natural rough stones. It is used. However, the production of transparent and colorless rough stones is extremely low, and there are problems with stable supply and prices. On the other hand, artificially synthesized diamond is usually colored yellow due to the nitrogen in the solvent being taken into the crystal lattice when synthesized under ultrahigh pressure and high temperature, but it is colorless and transparent by adding a nitrogen getter to the solvent. You can get a diamond. As this nitrogen getter, for example, The Journal o
f Physical Chemistry, Vol.75, No.12 (1971) p1838
Al is well known as shown in FIG. Specifically, US Pat. No. 4,034,066 discloses Fe.
It is described that a gem-grade colorless and transparent diamond single crystal can be obtained by adding 3 to 5% by weight of Al to a solvent. As an example of using a nitrogen getter other than Al, for example, Nitrogen in a crystal is removed by adding Ti or Zr to a solvent metal in Research Report No. 39 (1984), pages 16 to 19 of Institute for Materials Research. There is a report that it was done.

【0003】[0003]

【発明が解決しようとする課題】しかし、特に無色透明
の合成ダイヤモンドは合成コストが天然装飾ダイヤモン
ドよりはるかに高くなるため、工業生産は行われていな
い。この理由は、合成には高価で特殊な装置が必要であ
る上に、Alなどを窒素ゲッターとして添加した場合、
その添加量の増加に従って溶媒が結晶中に取り込まれ
(以下インクルージョンと呼ぶ)て、不良結晶となるこ
とが多くなるため、良質な結晶とするためには成長速度
を大幅に下げる必要があるからである。特にTiやZr
を窒素ゲッターとして用いた場合は、合成途中に溶媒中
に生成したTiCやZrCなどの炭化物(カーバイド)
が結晶中に取り込まれるため、完全な結晶は得られなく
なる。
However, since the synthetic cost of the colorless and transparent synthetic diamond is much higher than that of the natural decorative diamond, industrial production has not been carried out. This is because the synthesis requires expensive and special equipment, and when Al or the like is added as a nitrogen getter,
As the amount of addition increases, the solvent is often taken into the crystal (hereinafter referred to as inclusion) and often becomes a defective crystal. Therefore, in order to obtain a good crystal, it is necessary to significantly reduce the growth rate. is there. Especially Ti and Zr
When used as a nitrogen getter, carbides (carbides) such as TiC and ZrC formed in the solvent during the synthesis
Is not incorporated into the crystal, so a perfect crystal cannot be obtained.

【0004】本発明者らが行った実験による結果では、
窒素ゲッターとしてAlを用い、溶媒金属に均一混合し
た場合、無色透明なダイヤモンド結晶を合成するために
は、その添加量は溶媒に対し少なくとも4重量%(約1
2体積%)必要であるが、この場合インクルージョンの
巻き込みなしに結晶成長させるためには、成長速度を1
mg/hr以下にする必要があった。この成長速度で
は、例えば1カラット(200mg)の結晶を合成する
には200時間以上の合成時間を要し、製造コストは膨
大なものとなる。また、Ti、Zrなど、Alより窒素
との反応性の高い物質を窒素ゲッターとして溶媒に均一
添加した場合、添加量は2体積%でも無色透明な結晶と
なるが、成長速度を大幅に低下させたとしてもTiCや
ZrCなどの炭化物が結晶中に多く取り込まれ、良質な
結晶は殆ど得られない。本発明はかかる問題点を解決
し、無色透明でインクルージョンのほとんどない結晶
を、安価にしかも安定して合成できる方法を提供し、人
工合成ダイヤモンドの装飾用途又は光学部品用途への使
用を可能とするものである。
According to the result of the experiment conducted by the present inventors,
When Al is used as a nitrogen getter and uniformly mixed with a solvent metal, in order to synthesize a colorless and transparent diamond crystal, the addition amount thereof is at least 4% by weight (about 1%) with respect to the solvent.
2% by volume), but in this case the growth rate is 1 in order to grow crystals without inclusion inclusion.
It was necessary to keep it below mg / hr. With this growth rate, for example, a synthesis time of 200 hours or more is required to synthesize a 1-carat (200 mg) crystal, and the manufacturing cost becomes enormous. Further, when a substance having a higher reactivity with nitrogen than Al, such as Ti and Zr, is uniformly added to the solvent as a nitrogen getter, even if the addition amount is 2% by volume, a colorless and transparent crystal is formed, but the growth rate is significantly reduced. Even if so, a large amount of carbides such as TiC and ZrC are taken into the crystal, and a good crystal is hardly obtained. The present invention solves such a problem, provides a method of synthesizing a colorless and transparent crystal having almost no inclusion at low cost and stably, and enables the use of artificial synthetic diamond for decoration or optical parts. It is a thing.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する手段
として、本発明は温度差法によるダイヤモンド単結晶合
成において、炭素源に接して溶媒金属を配置し、該溶媒
金属とその下部に配置した種結晶との間の溶媒金属側に
窒素ゲッターとしてAl,Ti,Zr又はHfから選ば
れる一種もしくは二種以上の金属を配置し、且つ種結晶
側にSnを配置して該窒素ゲッターと種結晶が接しない
ようにした状態でダイヤモンドの合成を開始することを
特徴とするものである。本発明において前記溶媒金属と
しては、Fe,Co ,Ni,Mn,Crの中から選ば
れる一種もしくは二種以上からなり、且つ0.1〜6.
0重量%の炭素を含むものが特に好ましい。また、本発
明における前記窒素ゲッターとして添加するAl,T
i,Zr又はHfから選ばれる一種もしくは二種以上の
金属の添加量が溶媒金属に対して0.2〜10体積%で
あり、且つSnの添加量が溶媒金属に対し0.1〜5体
積%であることは本発明の特に好ましい実施態様であ
る。
As a means for solving the above-mentioned problems, the present invention, in the diamond single crystal synthesis by the temperature difference method, arranges a solvent metal in contact with a carbon source, and arranges the solvent metal and the lower part thereof. One or two or more metals selected from Al, Ti, Zr or Hf are arranged as a nitrogen getter on the solvent metal side between the seed crystal and the nitrogen getter and the seed crystal by arranging Sn on the seed crystal side. It is characterized in that the synthesis of diamond is started in the state where the diamonds are not in contact with each other. In the present invention, the solvent metal is one or more selected from Fe, Co, Ni, Mn and Cr, and 0.1 to 6.
Those containing 0% by weight of carbon are particularly preferred. In addition, Al, T added as the nitrogen getter in the present invention
The addition amount of one or two or more metals selected from i, Zr, and Hf is 0.2 to 10 volume% with respect to the solvent metal, and the addition amount of Sn is 0.1 to 5 volume with respect to the solvent metal. % Is a particularly preferred embodiment of the invention.

【0006】窒素ゲッターを添加して、無色透明で且つ
インクルージョンのない結晶を速い成長速度で合成する
ために、本発明では以下の方法を用いた。すなわち、イ
ンクルージョンは窒素ゲッターの添加量の増大とともに
取り込まれ易くなることから、窒素ゲッターの量をでき
るだけ少なくすることが望ましい。このために、窒素ゲ
ッターは溶媒の種結晶付近にのみ添加(配置)してお
く。さらに、特に成長中に埋め残しがあるとインクルー
ジョンが取り込まれるのでこれを防ぐため、溶媒中の炭
素のポテンシャルを上げる作用のあるSnを上記窒素ゲ
ッターと種結晶との間に配置する。窒素ゲッターとして
TiやZrなどの炭化物を形成しやすい元素を用いた場
合、生成した炭化物が結晶成長を阻害したり、インクル
ージョンが取り込まれる原因となるが、Snはこのよう
な炭化物の生成を抑制する、もしくは生成した炭化物が
結晶中に取り込まれる前に溶媒中に拡散させる働きもあ
る。
In order to synthesize a colorless, transparent and inclusion-free crystal at a high growth rate by adding a nitrogen getter, the following method was used in the present invention. That is, since inclusions are more likely to be taken in as the amount of nitrogen getter added increases, it is desirable to minimize the amount of nitrogen getter. Therefore, the nitrogen getter is added (disposed) only in the vicinity of the seed crystal of the solvent. Further, since inclusion is trapped especially when there is unfilled residue during growth, Sn having the action of increasing the potential of carbon in the solvent is arranged between the nitrogen getter and the seed crystal in order to prevent this. When an element that easily forms carbides such as Ti and Zr is used as the nitrogen getter, the generated carbides hinder the crystal growth and the inclusion is included, but Sn suppresses the formation of such carbides. Alternatively, it also has a function of diffusing the generated carbide into the solvent before being taken into the crystal.

【0007】図1は本発明の一具体例であって、結晶合
成用の試料室構成を示す概略図である。溶媒金属2と種
結晶5の間の溶媒側にAl,Ti,Zr又はHfからな
る窒素ゲッター(図1では板状である)3を、種結晶5
側にはSn(図1では板状である)4が配置される。該
窒素ゲッター3はAl,Ti,Zr,Hfの中の1種で
もよいし、2種以上の組み合わせ、例えばAl板とTi
板の積層や、Ti板とZr板の積層でもよく、更にはA
l−Ti合金やTi−Zr合金などの合金板でもよい。
1は炭素源を示す。ここで溶媒金属2としては、Fe,
Co,Ni,Mn,Crの中から選ばれる一種もしくは
二種以上を用いるが、種結晶5の溶解防止のため0.1
〜6.0重量%の炭素を予め添加しておく。炭素添加量
が0.1重量%以下もしくは炭素を含まない溶媒金属を
用いた場合には、種結晶上にPtなどの種結晶溶解防止
材を配置する必要があるため、本発明の構成によるSn
の効果が充分でなくなる。また、炭素添加量が6重量%
をこえると、自然核発生が起こりやすくなり、種結晶以
外の部所より結晶成長するため結晶同士が干渉し、良質
な結晶が得られなくなる。本発明において、Snの添加
量は、溶媒金属に対して0.1体積%以下ではインクル
ージョン混入防止の効果がみられず、また窒素ゲッター
にTi,Zrなどを用いた場合は種結晶上にTiCなど
の炭化物の層が形成され、結晶成長が阻害されたり、結
晶中にこれらの炭化物が多く残留するようになる。添加
量が5体積%を越えると多結晶化や自然核発生が起こり
やすくなる。窒素ゲッターとしてのAl,Ti,Zr,
Hfの添加量は、溶媒金属に対して0.2体積%より少
なくなると十分に窒素が除去されずに結晶が黄色味を帯
びてくる。また、10体積%を越えると結晶中にインク
ルージョンが多く取り込まれる。
FIG. 1 is a schematic view showing the structure of a sample chamber for crystal synthesis, which is one embodiment of the present invention. On the solvent side between the solvent metal 2 and the seed crystal 5, a nitrogen getter (plate-shaped in FIG. 1) 3 made of Al, Ti, Zr, or Hf is added to the seed crystal 5.
On the side, Sn (which has a plate shape in FIG. 1) 4 is arranged. The nitrogen getter 3 may be one of Al, Ti, Zr, and Hf, or a combination of two or more, such as an Al plate and Ti.
It may be a stack of plates, a stack of Ti plates and Zr plates, or A
An alloy plate such as an l-Ti alloy or a Ti-Zr alloy may be used.
1 indicates a carbon source. Here, as the solvent metal 2, Fe,
One or more selected from Co, Ni, Mn, and Cr are used, but 0.1 to prevent dissolution of the seed crystal 5.
~ 6.0 wt% carbon is added beforehand. When a solvent metal containing less than 0.1% by weight of carbon or containing no carbon is used, it is necessary to dispose a seed crystal dissolution inhibitor such as Pt on the seed crystal.
Is not effective enough. Also, the amount of carbon added is 6% by weight.
If it exceeds, natural nucleation is likely to occur, and crystals grow from portions other than the seed crystal, so that the crystals interfere with each other, and it becomes impossible to obtain high-quality crystals. In the present invention, when the amount of Sn added is 0.1% by volume or less with respect to the solvent metal, the effect of preventing inclusion is not seen, and when Ti, Zr or the like is used for the nitrogen getter, TiC on the seed crystal. A layer of carbide such as is formed, crystal growth is hindered, and a large amount of these carbide remains in the crystal. If the amount added exceeds 5% by volume, polycrystallization and spontaneous nucleation tend to occur. Al, Ti, Zr as nitrogen getter,
When the amount of Hf added is less than 0.2% by volume with respect to the solvent metal, nitrogen is not sufficiently removed and the crystals become yellowish. On the other hand, if it exceeds 10% by volume, a large amount of inclusions are incorporated in the crystal.

【0008】本発明に用いる種結晶、炭素源等はこの種
の技術分野で公知のものを用いることができる。また、
温度差法による合成の条件等は適宜選択することができ
る。具体的な例は後記する実施例に挙げられる。
The seed crystal, carbon source and the like used in the present invention may be those known in this type of technical field. Also,
The conditions for synthesis by the temperature difference method can be appropriately selected. Specific examples are given in Examples described later.

【0009】[0009]

【作用】本発明によるダイヤモンド単結晶合成方法によ
ると、窒素ゲッターを溶媒の種結晶付近にのみ添加(配
置)しているため、窒素除去効率が高くなり、添加量が
少なくても十分窒素が除去され、インクルージョンが混
入しにくくなる。さらに、種結晶上にSnを配置してい
るため、結晶に組み込まれる直前の炭素のポテンシャル
が上がり、埋め残し(インクルージョン)を防ぐことが
できるとともに、TiCやZrCなどが結晶中に残留す
るのを防止することができる。その結果、無色透明でイ
ンクルージョンのないダイヤモンド結晶を速い成長速度
で合成することが可能となる。
According to the method for synthesizing a diamond single crystal according to the present invention, since the nitrogen getter is added (disposed) only in the vicinity of the seed crystal of the solvent, the nitrogen removal efficiency is high, and nitrogen is sufficiently removed even if the addition amount is small. Therefore, inclusion becomes difficult to mix. Further, since Sn is arranged on the seed crystal, the potential of carbon immediately before being incorporated into the crystal is increased, it is possible to prevent unfilling (inclusion), and it is possible to prevent TiC, ZrC, etc. from remaining in the crystal. Can be prevented. As a result, it becomes possible to synthesize a colorless and transparent diamond crystal having no inclusion at a high growth rate.

【0010】[0010]

【実施例】【Example】

実施例1 図1に示す試料室構成で、炭素源1としてダイヤモンド
の粉末、溶媒金属2としてはFe:Co:C=60:4
0:4.5(重量比)の組成からなる合金で、直径20
mm、厚み10mmの形状のものを用いた。窒素ゲッタ
ー3としては、直径20mm、厚み0.1mmのTi板
を配置、種結晶側Sn4としては直径20mm、厚み
0.1mmのSnを配置した。このときの溶媒金属に対
するTi添加量は1体積%、Snの添加量は1体積%と
なる。種結晶5には直径約500μmのダイヤモンド結
晶3個を用いた。該試料室を炭素源と種部に約30℃の
温度差がつくように加熱ヒーターにセットした。これを
超高圧発生装置を用いて、圧力5.5GPa、温度13
00℃で70時間保持し、ダイヤモンドの合成を行っ
た。その結果、0.7〜0.9カラットの、無色透明で
インクルージョンの殆どない、良質なIIa型のダイヤモ
ンド結晶3個が得られた。ESRにより結晶中の窒素濃
度を測定すると、いずれも0.1ppm以下であった。
磁気天秤によりインクルージョン量を測定すると、いず
れも0.3重量%以下であった。
Example 1 In the sample chamber configuration shown in FIG. 1, diamond powder was used as the carbon source 1 and Fe: Co: C = 60: 4 was used as the solvent metal 2.
Alloy with a composition of 0: 4.5 (weight ratio), diameter 20
mm and a thickness of 10 mm were used. As the nitrogen getter 3, a Ti plate having a diameter of 20 mm and a thickness of 0.1 mm was arranged, and as the seed crystal side Sn4, Sn having a diameter of 20 mm and a thickness of 0.1 mm was arranged. At this time, the amount of Ti added to the solvent metal is 1% by volume, and the amount of Sn added is 1% by volume. As the seed crystal 5, three diamond crystals having a diameter of about 500 μm were used. The sample chamber was set on a heater so that a temperature difference of about 30 ° C. was created between the carbon source and the seed part. Using an ultra-high pressure generator, the pressure was 5.5 GPa and the temperature was 13
It was kept at 00 ° C. for 70 hours to synthesize diamond. As a result, three colorless and transparent, high-quality diamond crystals of IIa type having almost no inclusions of 0.7 to 0.9 carat were obtained. When the nitrogen concentration in the crystal was measured by ESR, all were 0.1 ppm or less.
When the inclusion amount was measured with a magnetic balance, all were 0.3% by weight or less.

【0011】実施例2 窒素ゲッター3として直径20mm、厚み0.1mmの
Zr板(溶媒金属に対し1体積%)を用いた他は実施例
1と同様にして、ダイヤモンドを合成した。その結果実
施例1と殆ど同じ、良質なIIa型ダイヤモンド結晶が得
られた。
Example 2 Diamond was synthesized in the same manner as in Example 1 except that a Zr plate having a diameter of 20 mm and a thickness of 0.1 mm (1% by volume with respect to the solvent metal) was used as the nitrogen getter 3. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0012】実施例3 窒素ゲッター3として直径20mm、厚み0.1mmの
Hf板(溶媒金属に対し1体積%)を用いた他は実施例
1と同様にして、ダイヤモンドを合成した。その結果実
施例1と殆ど同じ、良質なIIa型ダイヤモンド結晶が得
られた。
Example 3 Diamond was synthesized in the same manner as in Example 1 except that an Hf plate having a diameter of 20 mm and a thickness of 0.1 mm (1% by volume based on the solvent metal) was used as the nitrogen getter 3. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0013】実施例4 窒素ゲッター3として直径20mm、厚み0.8mmの
Al板(溶媒金属に対し1体積%)を用いた他は実施例
1と同様にして、ダイヤモンドを合成した。その結果実
施例1と殆ど同じ、良質なIIa型ダイヤモンド結晶が得
られた。
Example 4 Diamond was synthesized in the same manner as in Example 1 except that an Al plate having a diameter of 20 mm and a thickness of 0.8 mm (1% by volume with respect to the solvent metal) was used as the nitrogen getter 3. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0014】実施例5 窒素ゲッター3として直径20mm、厚み0.1mmの
Ti板(溶媒金属に対し1体積%)と、直径20mm、
厚み0.1mmのAl板(溶媒金属に対し1体積%)を
重ねて、溶媒側にはTi板が接するように配置して用い
た他は実施例1と同様にして、ダイヤモンドを合成し
た。その結果実施例1と殆ど同じ、良質なIIa型ダイヤ
モンド結晶が得られた。
Example 5 As the nitrogen getter 3, a Ti plate having a diameter of 20 mm and a thickness of 0.1 mm (1% by volume based on the solvent metal), a diameter of 20 mm,
Diamond was synthesized in the same manner as in Example 1 except that Al plates having a thickness of 0.1 mm (1% by volume with respect to the solvent metal) were stacked and used so that the Ti plate was in contact with the solvent side. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0015】実施例6 窒素ゲッター3として直径20mm、厚み0.1mmの
Zr板(溶媒金属に対し1体積%)と、直径20mm、
厚み0.1mmのAl板(溶媒金属に対し1体積%)を
重ねて、溶媒側にはZr板が接するように配置して用い
た他は実施例1と同様にして、ダイヤモンドを合成し
た。その結果実施例1と殆ど同じ、良質なIIa型ダイヤ
モンド結晶が得られた。
Example 6 As a nitrogen getter 3, a Zr plate having a diameter of 20 mm and a thickness of 0.1 mm (1% by volume based on the solvent metal), a diameter of 20 mm,
Diamond was synthesized in the same manner as in Example 1 except that Al plates having a thickness of 0.1 mm (1 vol% with respect to the solvent metal) were stacked and used so that the Zr plate was in contact with the solvent side. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0016】実施例7 溶媒としてFe:Ni:Co:C=60:30:10:
4.2(重量比)の組成からなる合金を用いた他は実施
例1と同様にして、ダイヤモンド結晶を合成した。その
結果、実施例1と殆ど同じ、良質なIIa型ダイヤモンド
結晶が得られた。
Example 7 Fe: Ni: Co: C = 60: 30: 10: as a solvent
Diamond crystals were synthesized in the same manner as in Example 1 except that an alloy having a composition of 4.2 (weight ratio) was used. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0017】実施例8 溶媒としてFe:Ni:Mn:C=60:30:10:
4.0(重量比)の組成からなる合金を用いた他は実施
例1と同様にして、ダイヤモンド結晶を合成した。その
結果、実施例1と殆ど同じ、良質なIIa型ダイヤモンド
結晶が得られた。
Example 8 Fe: Ni: Mn: C = 60: 30: 10: as a solvent
Diamond crystals were synthesized in the same manner as in Example 1 except that an alloy having a composition of 4.0 (weight ratio) was used. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0018】実施例9 溶媒としてFe:Ni:C=70:30:3.5(重量
比)の組成からなる合金を用いた他は実施例1と同様に
して、ダイヤモンド結晶を合成した。その結果、実施例
1と殆ど同じ、良質なIIa型ダイヤモンド結晶が得られ
た。
Example 9 Diamond crystals were synthesized in the same manner as in Example 1 except that an alloy having a composition of Fe: Ni: C = 70: 30: 3.5 (weight ratio) was used as a solvent. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0019】実施例10 溶媒としてCo:C=100:4.7(重量比)の組成
からなる合金を用い、合成温度条件を1350℃とした
他は実施例1と同様にして、ダイヤモンド結晶を合成し
た。その結果、実施例1と殆ど同じ、良質なIIa型ダイ
ヤモンド結晶が得られた。
Example 10 A diamond crystal was prepared in the same manner as in Example 1 except that an alloy having a composition of Co: C = 100: 4.7 (weight ratio) was used as a solvent and the synthesis temperature condition was 1350 ° C. Synthesized. As a result, a good quality IIa diamond crystal, which is almost the same as in Example 1, was obtained.

【0020】実施例11 溶媒としてNi:C=100:4.2(重量比)の組成
からなる合金を用い、合成温度条件を1350℃とした
他は実施例1と同様にして、ダイヤモンド結晶を合成し
た。その結果、実施例1と殆ど同じ良質なIIa型ダイヤ
モンド結晶が得られた。
Example 11 A diamond crystal was prepared in the same manner as in Example 1 except that an alloy having a composition of Ni: C = 100: 4.2 (weight ratio) was used as a solvent and the synthesis temperature condition was 1350 ° C. Synthesized. As a result, a good quality IIa diamond crystal was obtained, which was almost the same as in Example 1.

【0021】比較例1 Sn板を配置せずに、他は実施例1と同様にしてダイヤ
モンド結晶の合成を試みた。その結果、ダイヤモンドは
殆ど成長せず、種結晶表面にTiCの膜が形成されてい
た。
Comparative Example 1 An attempt was made to synthesize a diamond crystal in the same manner as in Example 1 except that the Sn plate was not arranged. As a result, diamond was hardly grown, and a TiC film was formed on the seed crystal surface.

【0022】比較例2 Sn板を配置せず、また窒素ゲッターとしてTi板に代
えて直径20mm、厚さ0.8mmのAl板(溶媒金属
に対し8体積%)を用いた他は実施例1と同様にしてダ
イヤモンド結晶の合成を試みた。無色透明な0.8カラ
ット前後の結晶が得られたが、インクルージョンが多く
含まれていた。インクルージョン量は3重量%であっ
た。
Comparative Example 2 Example 1 was repeated except that no Sn plate was arranged and an Al plate having a diameter of 20 mm and a thickness of 0.8 mm (8% by volume based on the solvent metal) was used as the nitrogen getter instead of the Ti plate. An attempt was made to synthesize diamond crystals in the same manner as in. A colorless and transparent 0.8-carat crystal was obtained, but it contained a large amount of inclusions. The inclusion amount was 3% by weight.

【0023】比較例3 窒素ゲッター3を配置せずに、他は実施例1と同様にし
てダイヤモンド結晶の合成を試みた。その結果、インク
ルージョンの殆どない(0.3重量%以下)、0.8カ
ラット前後の結晶が得られたが、約80ppmの窒素を
置換型で含み、黄色を呈するIb型の結晶であった。
Comparative Example 3 An attempt was made to synthesize a diamond crystal in the same manner as in Example 1 except that the nitrogen getter 3 was not arranged. As a result, a crystal of about 0.8 carat having almost no inclusion (0.3% by weight or less) was obtained, but it was a yellow type Ib crystal containing about 80 ppm of nitrogen as a substitution type.

【0024】比較例4 Sn板の厚みを0.7mm(溶媒金属に対し7体積%)
とした他は実施例1と同様にしてダイヤモンド結晶の合
成を試みた。その結果、多結晶化が起こり、良質な単結
晶は得られなかった。また、種結晶以外から自然核発生
も多数みられた。
Comparative Example 4 The thickness of the Sn plate was 0.7 mm (7% by volume based on the solvent metal).
Synthesis of diamond crystals was tried in the same manner as in Example 1 except that. As a result, polycrystallization occurred and a good single crystal could not be obtained. In addition, many spontaneous nucleation was observed from other than seed crystals.

【0025】比較例5 Ti板の直径は変えずに厚みを1.2mm(溶媒金属に
対し12体積%)とした他は実施例1と同様にしてダイ
ヤモンド結晶の合成を試みた。その結果、窒素含有量の
少ない0.8カラット前後の結晶が得られたが、インク
ルージョンが多く含まれていた。窒素濃度は0.1pp
m以下であったが、インクルージョン量は約5重量%で
あった。
Comparative Example 5 Synthesis of diamond crystals was tried in the same manner as in Example 1 except that the thickness of the Ti plate was 1.2 mm (12% by volume based on the solvent metal) without changing the diameter. As a result, a crystal of about 0.8 carat having a low nitrogen content was obtained, but a large amount of inclusion was contained. Nitrogen concentration is 0.1pp
Although it was m or less, the inclusion amount was about 5% by weight.

【0026】比較例6 溶媒としてFe:Ni:Co=60:30:10(重量
比)の組成からなる合金を用い、炭素(C)を添加しな
かった他は実施例1と同様にしてダイヤモンド結晶の合
成を試みた。その結果、種結晶は溶媒中に完全に溶解し
て消失してしまい、ダイヤモンドの成長は認められなか
った。
Comparative Example 6 A diamond was prepared in the same manner as in Example 1 except that an alloy having a composition of Fe: Ni: Co = 60: 30: 10 (weight ratio) was used as a solvent and carbon (C) was not added. An attempt was made to synthesize crystals. As a result, the seed crystal was completely dissolved in the solvent and disappeared, and no diamond growth was observed.

【0027】比較例7 溶媒としてFe:Ni:Co:C=60:30:10:
7(重量比)の組成からなる合金を用いた他は実施例1
と同様にしてダイヤモンド結晶を合成した。その結果、
種結晶以外のところよりダイヤモンドが多数自然核発生
し、このため結晶同士が干渉し、良質な結晶は殆ど得ら
れなかった。
Comparative Example 7 Fe: Ni: Co: C = 60: 30: 10: as a solvent
Example 1 except that an alloy having a composition of 7 (weight ratio) was used.
Diamond crystals were synthesized in the same manner as in. as a result,
A large number of diamonds were naturally nucleated from places other than the seed crystal, and the crystals interfered with each other, so that a good quality crystal was hardly obtained.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
無色透明でインクルージョンのほとんどない結晶を、安
定して安価に合成できる。本発明による合成ダイヤモン
ドは装飾用途、光学部品用途などに利用することが可能
である。
As described above, according to the present invention,
Crystals that are colorless and transparent and have almost no inclusion can be synthesized stably and inexpensively. The synthetic diamond according to the present invention can be used for decorative purposes, optical parts, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一具体例の試料室構成を示す概略説明
図である
FIG. 1 is a schematic explanatory view showing the structure of a sample chamber according to a specific example of the present invention.

【符号の説明】[Explanation of symbols]

1 炭素源 2 溶媒金属 3 窒素ゲッター 4 Sn 5 種結晶 1 carbon source 2 solvent metal 3 nitrogen getter 4 Sn 5 seed crystal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 温度差法によるダイヤモンド単結晶合成
において、炭素源に接して溶媒金属を配置し、該溶媒金
属とその下部に配置した種結晶との間の溶媒金属側に窒
素ゲッターとしてAl,Ti,Zr又はHfから選ばれ
る一種もしくは二種以上の金属を配置し、且つ種結晶側
にSnを配置して該窒素ゲッターと種結晶が接しないよ
うにした状態でダイヤモンドの合成を開始することを特
徴とするダイヤモンド単結晶の合成方法。
1. In the synthesis of a diamond single crystal by a temperature difference method, a solvent metal is arranged in contact with a carbon source, and Al as a nitrogen getter is provided on the solvent metal side between the solvent metal and a seed crystal arranged below the solvent metal. To start the synthesis of diamond in a state where one or more metals selected from Ti, Zr or Hf are arranged, and Sn is arranged on the seed crystal side so that the nitrogen getter and the seed crystal are not in contact with each other. A method for synthesizing a diamond single crystal characterized by:
【請求項2】 前記溶媒金属は、Fe,Co,Ni,M
n及びCrの中から選ばれる一種もしくは二種以上から
なり、且つ0.1〜6.0重量%の炭素を含むことを特
徴とする請求項1記載のダイヤモンド単結晶の合成方
法。
2. The solvent metal is Fe, Co, Ni, M.
The method for synthesizing a diamond single crystal according to claim 1, wherein the method comprises at least one selected from the group consisting of n and Cr and contains 0.1 to 6.0% by weight of carbon.
【請求項3】 前記窒素ゲッターとして添加するAl,
Ti,Zr又はHfから選ばれる一種もしくは二種以上
の金属の添加量が溶媒金属に対して0.2〜10体積%
であり、且つSnの添加量が溶媒金属に対し0.1〜5
体積%であることを特徴とする請求項1又は請求項2記
載のダイヤモンド単結晶の合成方法。
3. Al added as the nitrogen getter,
The addition amount of one or more metals selected from Ti, Zr or Hf is 0.2 to 10% by volume with respect to the solvent metal.
And the addition amount of Sn is 0.1 to 5 with respect to the solvent metal.
The method for synthesizing a diamond single crystal according to claim 1 or 2, wherein the content is% by volume.
JP3310618A 1991-02-15 1991-11-26 Method for synthesis of diamond signal crystal Pending JPH0686927A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3310618A JPH0686927A (en) 1991-11-26 1991-11-26 Method for synthesis of diamond signal crystal
EP92905002A EP0525207B1 (en) 1991-02-15 1992-02-14 Process for synthesizing diamond
PCT/JP1992/000149 WO1992014542A1 (en) 1991-02-15 1992-02-14 Process for synthesizing diamond
US08/307,493 US6129900A (en) 1991-02-15 1992-02-14 Process for the synthesis of diamond
DE69215021T DE69215021T2 (en) 1991-02-15 1992-02-14 DIAMOND SYNTHESIS PROCEDURE
IE920846A IE920846A1 (en) 1991-03-14 1992-03-16 A process for the synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3310618A JPH0686927A (en) 1991-11-26 1991-11-26 Method for synthesis of diamond signal crystal

Publications (1)

Publication Number Publication Date
JPH0686927A true JPH0686927A (en) 1994-03-29

Family

ID=18007431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3310618A Pending JPH0686927A (en) 1991-02-15 1991-11-26 Method for synthesis of diamond signal crystal

Country Status (1)

Country Link
JP (1) JPH0686927A (en)

Similar Documents

Publication Publication Date Title
US6129900A (en) Process for the synthesis of diamond
Wentorf Jr Diamond growth rates
EP0780153B1 (en) Diamond synthesis
US6030595A (en) Process for the production of synthetic diamond
US6835365B1 (en) Crystal growth
JP3259384B2 (en) Method of synthesizing diamond single crystal
Collins Spectroscopy of defects and transition metals in diamond
CA2073613C (en) Diamond synthesis
JPH0779958B2 (en) Large diamond synthesis method
JP3282249B2 (en) Method of synthesizing diamond single crystal
JPH0686927A (en) Method for synthesis of diamond signal crystal
JP3291804B2 (en) Method of synthesizing diamond single crystal
JPH06165929A (en) Method for synthesizing diamond single crystal
JPH07116494A (en) Synthetic diamond and manufacture thereof
JP3206050B2 (en) Method of synthesizing diamond single crystal
JP3259383B2 (en) Method of synthesizing diamond single crystal
JPH0576747A (en) Synthetic method for diamond single crystal
EP0603995A1 (en) Process for the synthesising diamond single crystals
JPH05137999A (en) Method for synthesizing diamond single crystal
JPS58161995A (en) Method for synthesizing diamond
JP2645719B2 (en) Diamond synthesis method
Iizuka et al. Nucleation and growth of diamond using Ni Ti, Ni Nb and Fe B alloy as solvents
JPH1114524A (en) Diamond indenter
JPH11300194A (en) Superhigh pressure generating diamond anvil
RU2320404C2 (en) Method of growing diamond monocrystal