JPH0558786A - Method for synthesizing diamond - Google Patents

Method for synthesizing diamond

Info

Publication number
JPH0558786A
JPH0558786A JP3244924A JP24492491A JPH0558786A JP H0558786 A JPH0558786 A JP H0558786A JP 3244924 A JP3244924 A JP 3244924A JP 24492491 A JP24492491 A JP 24492491A JP H0558786 A JPH0558786 A JP H0558786A
Authority
JP
Japan
Prior art keywords
solvent
diamond
nitrogen
crystal
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3244924A
Other languages
Japanese (ja)
Other versions
JP3205970B2 (en
Inventor
Shuichi Sato
周一 佐藤
Hitoshi Sumiya
均 角谷
Yasushi Goda
靖 郷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24492491A priority Critical patent/JP3205970B2/en
Priority to US08/307,493 priority patent/US6129900A/en
Priority to PCT/JP1992/000149 priority patent/WO1992014542A1/en
Priority to EP92905002A priority patent/EP0525207B1/en
Priority to DE69215021T priority patent/DE69215021T2/en
Priority to IE920846A priority patent/IE920846A1/en
Publication of JPH0558786A publication Critical patent/JPH0558786A/en
Application granted granted Critical
Publication of JP3205970B2 publication Critical patent/JP3205970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To remove nitrogen which makes diamond crystals yellowish from a solvent by adding Al, Ti or Zr to the solvent when seed diamond crystals are put in a region in which diamond is stably grown by a temp. difference method in the case of diamond synthesis with the seed crystals as nuclei by diffusing carbon from a carbon source fed through the solvent and to inhibit the intrusion of carbide and nitride into diamond crystals, since the deterioration of the quality of synthesized diamond due to the intrusion is occurred in the case when Ti or Zr is added. CONSTITUTION:An element forming nitride and carbide at the same time is added as a nitrogen getter to a solvent. The element has lower viscosity than the solvent. Nitride and carbide formed before the growth of diamond crystals are allowed to float or settle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、装飾や光学部品に用い
る高純度(IIa型)ダイヤモンド単結晶の合成方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing a high purity (IIa type) diamond single crystal used for decoration and optical parts.

【0002】[0002]

【従来の技術】The Journal of Physical Chemistry, V
ol.75, No.12, 1971の第1838〜1843頁に、研究所製ダイ
ヤモンドについて一連の報告がなされている。そのう
ち、第1841頁右欄下から5〜3行目に記載されているよ
うに、ダイヤモンド単結晶の成長に、アルミニウムは窒
素に対して重要なゲッターとなるとの実験報告がなされ
ていたとの記述があり、研究所製のダイヤモンドでは窒
素含有のため黄色を呈するが、アルミニウムをゲッター
として用いることによって黄色を呈するダイヤモンドを
無色に合成できるものとされ、又、米国特許第 4034066
号の「種ダイヤモンドによるダイヤモンド成長の品質管
理の方法と高圧反応容器」を発明の表題とする明細書の
実施例6,7,8に、Fe溶媒に、Alを3wt%、5wt%添
加することにより、宝石級の準無色、又は無色ダイヤモ
ンドの合成ができることが示されている。
[Prior Art] The Journal of Physical Chemistry, V
ol.75, No.12, 1971, pp. 1838-1843, a series of reports on laboratory diamonds is made. Among them, as described in the right column of page 1841, lines 5 to 3, it was stated that an experimental report was made that aluminum was an important getter for nitrogen in the growth of diamond single crystals. However, the diamond produced by the laboratory exhibits a yellow color because it contains nitrogen, but by using aluminum as a getter, it is possible to synthesize the yellow diamond in a colorless manner, and US Patent No. 4034066.
Nos. 3, 5 and 7 of the specification in which "Method and high-pressure reactor for quality control of diamond growth by seed diamond" of the specification is the title of the invention, 3 wt% and 5 wt% of Al is added to the Fe solvent. Show that it is possible to synthesize gem grade semi-colorless or colorless diamond.

【0003】上記のように、従来の準無色又は無色ダイ
ヤモンド合成において、窒素のゲッターとしては、Feに
Alを添加したものが殆んどであり、温度差法によって種
結晶上に、大型ダイヤモンドの合成に成功している。な
お、温度差法によるダイヤモンドの合成法については前
記米国特許第 4034066号明細書ならびに図面に開示され
ている。
As described above, in the conventional quasi-colorless or colorless diamond synthesis, Fe is used as a getter of nitrogen.
Almost all of them were added with Al, and large diamond was successfully synthesized on the seed crystal by the temperature difference method. The method of synthesizing diamond by the temperature difference method is disclosed in the above-mentioned US Pat. No. 4034066 and the drawings.

【0004】Al以外の窒素ゲッターを用いた例として
は、無機材研研究部報告第39号にTiやZrをFe,Ni,Co,
Mn,Cr等の金属又は合金溶媒に添加してのダイヤモンド
の合成が報告されている。
Examples of the use of nitrogen getters other than Al include Ti, Zr in Fe, Ni, Co,
It has been reported that diamond is synthesized by adding it to a metal or alloy solvent such as Mn or Cr.

【0005】しかしながら、無色のダイヤモンドができ
た組み合せは、Fe−Zr、(Fe−Ni)合金−Zr、
(Ni−Mn)合金−Zrであり、他の組合せを溶媒として用
いたものにおいてはできていない。上記〜の組合せ
のうち、500nm 以下の波長域で、全く吸収がなかったも
のは、Fe−Zrの組合わせによるものだけである。 500nm
以下の波長域で吸収が生じることは窒素原子が完全に除
去されていないことを示唆している。
However, the combination that produced colorless diamond was Fe-Zr, (Fe-Ni) alloy-Zr,
(Ni-Mn) alloy-Zr, which cannot use other combinations as the solvent, cannot be made. Of the above combinations (1) to (4), the only one that has no absorption in the wavelength range of 500 nm or less is the combination of Fe and Zr. 500 nm
The absorption occurring in the following wavelength range suggests that the nitrogen atom has not been completely removed.

【0006】[0006]

【発明が解決しようとする課題】すでに述べたように、
従来の方法では、主にAlを溶媒に添加し、窒素を除去す
る方法を用いた。この場合、溶媒へのAlの添加量と結晶
中の窒素濃度(窒素含有量)の関係は図1に示され、ま
たAlの添加量と結晶中のインクルージョン(溶媒金属含
有量、巻き込み量)の関係は図2に示されるが、下記の
問題がある。 Alの添加量を増加させると、結晶中の窒素濃度は減少
するが、インクルージョンが増加する。 インクルージョンの少ない良質な単結晶を合成するに
は、成長速度を低下させる必要がある。 窒素を除去しすぎると、溶媒中に僅かに残った硼素
(B)によって結晶が青く着色する。 一方、TiやZrのように、窒素のゲッター作用もあるが、
同時にカーバイドも形成する元素を添加すると、形成し
たカーバイドが結晶中に取り込まれ、良質のものが得ら
れないという欠点がある。
[Problems to be Solved by the Invention] As described above,
In the conventional method, a method of mainly adding Al to a solvent and removing nitrogen was used. In this case, the relationship between the amount of Al added to the solvent and the nitrogen concentration (nitrogen content) in the crystal is shown in FIG. 1, and the addition amount of Al and the inclusion (solvent metal content, inclusion amount) in the crystal The relationship is shown in FIG. 2, but has the following problems. Increasing the amount of addition of Al decreases the nitrogen concentration in the crystal but increases the inclusion. To synthesize a good-quality single crystal with few inclusions, it is necessary to reduce the growth rate. If nitrogen is removed too much, the crystals will turn blue due to the slight amount of boron (B) remaining in the solvent. On the other hand, like Ti and Zr, it also has a gettering function for nitrogen,
At the same time, if an element that also forms a carbide is added, the formed carbide is taken into the crystal, and it is not possible to obtain a good quality one.

【0007】[0007]

【課題を解決するための手段】前記の課題を解決するた
め、本発明では次の方法による。 窒素ゲッターとして、溶媒にTi,Zr,Hf,V,Nb,Ta
より選択した1種又は、2種以上の複合したものを用い
る。これら元素は硼化物を形成しやすく、青色を除去す
る効果がある。 カーバイドを結晶内に取り込ませないために、溶媒に
Al,Sn,In,Ga,Ag,Cu,Cs,Pb,Sb,Zn等の粘度の低
い元素を添加し、該カーバイドの浮上(沈澱)速度を速
めることにより形成されたカーバイドが結晶中に取り込
まれる前に、溶媒上方に浮上させるか下方に沈澱させ
る。
In order to solve the above problems, the present invention uses the following method. As a nitrogen getter, the solvent is Ti, Zr, Hf, V, Nb, Ta.
One selected from the above or a composite of two or more selected is used. These elements easily form borides and have an effect of removing blue color. In order to prevent the carbide from being incorporated into the crystal,
Carbide formed by adding low-viscosity elements such as Al, Sn, In, Ga, Ag, Cu, Cs, Pb, Sb, and Zn, and increasing the speed of precipitation (precipitation) of the carbide is incorporated into the crystal. Before being exposed, it is floated above the solvent or precipitated below.

【0008】[0008]

【作用】(1) Ti ,Zr,Hf,V,Nb,Taを窒素ゲッタ
ーとして用いる作用について 前記元素またはこれら元素を複合したものは、安定な窒
化物を形成し、窒素ゲッターとして働く。その際、上記
元素をAとすると、次の化学反応式で反応して窒素を除
去する。
(1) Action of using Ti, Zr, Hf, V, Nb, and Ta as a nitrogen getter The above elements or a combination of these elements forms a stable nitride and acts as a nitrogen getter. At that time, assuming that the above element is A, nitrogen is removed by reacting according to the following chemical reaction formula.

【0009】[0009]

【化1】 [Chemical 1]

【0010】通常のダイヤモンドを合成する溶媒とし
て、Fe,Co,Ni,Mn,Crが用いられる。上記の反応式の
反応定数が高い方が窒素の除去効果は大きい。反応定数
Kは、溶媒元素によって左右され、Ni溶媒では小さく、
Fe溶媒では大きい。従ってFe溶媒で合成すると窒素は除
去されやすいが、同溶媒中では炭素の拡散速度が遅く、
炭素の供給不足が生じやすいため、成長速度が速いと良
質な結晶が得られない。炭素の拡散速度が速い溶媒はCo
である。従って、FeとCoの合金溶媒を用いることが好ま
しい。又、前記の溶媒金属中には、通常微少の硼素(数
ppm)が含まれている。結晶中には、およそ溶媒濃度の1
/10程度の硼素が取り込まれ、0.1 〜0.6ppm程度の濃度
になる。窒素ゲッターの窒素除去作用が大き過ぎると、
溶媒中の硼素と電気的に中和(Conpensate) されていた
窒素が結晶中に含有されず、透明から逆に青味がかるよ
うになる。Ti,Zr,Hf,V,Nb,Ta元素は、硼化物も作
りやすく、硼素ゲッターとして、青色を減ずることがで
きる。
Fe, Co, Ni, Mn and Cr are used as a solvent for synthesizing ordinary diamond. The higher the reaction constant of the above reaction formula, the greater the effect of removing nitrogen. The reaction constant K depends on the solvent element and is small in the Ni solvent,
Large in Fe solvent. Therefore, when synthesized in Fe solvent, nitrogen is easily removed, but carbon diffusion rate is slow in the solvent,
Since insufficient carbon supply is likely to occur, high-quality crystals cannot be obtained if the growth rate is high. The solvent with a high carbon diffusion rate is Co
Is. Therefore, it is preferable to use an alloy solvent of Fe and Co. In addition, in the above solvent metal, usually a small amount of boron (number
ppm) is included. In the crystal, the solvent concentration is about 1
Boron of about / 10 is taken in and the concentration becomes about 0.1 to 0.6 ppm. If the nitrogen getter removes too much nitrogen,
Nitrogen, which has been electrically neutralized with boron in the solvent, is not contained in the crystal, and becomes transparent to bluish. The elements of Ti, Zr, Hf, V, Nb, and Ta are easy to form borides, and can reduce the blue color as a boron getter.

【0011】(2)Al、Sn等の低粘度金属元素を添加す
る効果について Ti,Zr,Hf,V,Nb,Taは、安定な窒化物を形成するた
め、溶媒中の窒素を除去する有効なゲッターとして作用
する。しかし、同時に、溶媒中に溶解している炭素と反
応し、多量の炭化物を生成する。当該炭化物や窒化物が
結晶中に巻き込まれ、結晶の品位を低下させる。又、こ
れらの炭化物や窒化物が核となり、溶媒金属も結晶中に
含有されやすくなる。従って結晶成長させる前に、炭化
物や窒化物を除去することが重要な問題となる。形成さ
れる炭化物や窒化物は、ゲッター元素及び炭素、窒素が
均一に分散しているため、微少な炭化物、窒化物ができ
る。これらの微少な炭化物、窒化物は、溶媒との比重差
があっても短時間では浮上又は沈澱しない。当該炭化物
及び窒化物を短時間で浮上させ、又は沈澱させて、結晶
成長時に、溶媒中に浮遊させないためには、溶媒の粘度
を低下させることが効果的である。一般にコロイド状の
球状微小物質の沈降(もしくは浮上)速度は、次式によ
って表わされる。
(2) Effect of adding low-viscosity metal element such as Al and Sn Ti, Zr, Hf, V, Nb, and Ta are effective in removing nitrogen in the solvent because they form stable nitrides. Acts as a good getter. However, at the same time, it reacts with the carbon dissolved in the solvent to form a large amount of carbide. The carbides and nitrides are caught in the crystal and deteriorate the quality of the crystal. Further, these carbides and nitrides serve as nuclei, and the solvent metal is likely to be contained in the crystal. Therefore, it is an important problem to remove carbides and nitrides before crystal growth. Since the getter element, carbon, and nitrogen are uniformly dispersed in the formed carbide or nitride, minute carbide or nitride can be formed. These minute carbides and nitrides do not float or precipitate in a short time even if there is a difference in specific gravity from the solvent. In order to float or precipitate the carbides and nitrides in a short time so as not to float in the solvent during crystal growth, it is effective to reduce the viscosity of the solvent. Generally, the sedimentation (or floating) rate of colloidal spherical micromaterials is expressed by the following equation.

【0012】[0012]

【数1】 [Equation 1]

【0013】従って、溶媒の沈降(もしくは浮上)速度
は、理論的に溶媒の粘度に反比例して低下する。よって
沈降(もしくは浮上)速度を速めるには、溶媒の粘度を
低下させることが効果的である。又、Al,In,Ga等は同
時に窒化物を作りやすい元素である。従ってこれらの元
素を添加することにより窒素を除去できる。この場合、
Al,In,Ga等金属を単独で添加するよりも、Ti,Zr,Hf
等を加えた方が結晶中への溶媒の巻き込み量は減少す
る。例えばAlをゲッターとして単独に添加した場合、2
wt%まで良質な結晶が得られ、この結晶をブリリアント
カットすると、内包物のクラリティはVS又はSIの評価を
得られる。AlとTiを同時に添加すると、Alを3wt%添加
しても、上記と同じ結果となり、この効果はTi,Al,N
等の三元素よりなる窒化物が形成されるためと推定され
る。
Therefore, the settling (or floating) rate of the solvent theoretically decreases in inverse proportion to the viscosity of the solvent. Therefore, in order to accelerate the sedimentation (or floating) speed, it is effective to reduce the viscosity of the solvent. Further, Al, In, Ga, etc. are elements that easily form a nitride at the same time. Therefore, nitrogen can be removed by adding these elements. in this case,
Ti, Zr, Hf, rather than adding metals such as Al, In and Ga alone
The amount of solvent entrained in the crystal decreases with the addition of the above. For example, when Al is added alone as a getter, 2
Crystals of good quality up to wt% are obtained, and when this crystal is brilliant cut, the clarity of inclusions can be evaluated as VS or SI. When Al and Ti are added at the same time, the same result as above is obtained even if 3 wt% of Al is added.
It is presumed that a nitride composed of three elements such as the above is formed.

【0014】種ダイヤモンドを用い、温度差法によりダ
イヤモンド単結晶を合成させる方法、装置については、
前記米国特許明細書第 4034066号明細書ならびに図面に
示されているが、本発明の実施に際し、その概要を説明
する。図3に示すようにパイロフィライトシリンダ3の
内側にグラファイトチューブヒーター2を備え、その内
側にパイロフィライト1を設け、その内側に種ダイヤモ
ンド5を配置し、その上に溶媒金属6を配し、更にカー
ボン源7を配し、前記積層の上下をプラグ4,8で充填
する。プラグ4,8、パイロフィライトシリンダ3は同
じ基準のもので、圧力伝達部材である。図示していない
が、超硬金属よりなるダイ、このダイの穴に対応する上
下のパンチを用いて所定の圧力を前記ダイの穴に配置し
た前記反応容器を加圧できるようにし、前記ヒーター2
に通電して反応容器中を加熱し、且つパンチにより加圧
してダイヤモンドを合成する。加熱により、炭素源より
金属溶媒中に溶解し、温度差(20〜30℃)によっ
て、種結晶上に結晶成長が生ずる。
Regarding the method and apparatus for synthesizing a diamond single crystal by the temperature difference method using seed diamond,
Although shown in the above-mentioned US Pat. No. 4034066 and the drawings, an outline thereof will be explained in carrying out the present invention. As shown in FIG. 3, a graphite tube heater 2 is provided inside a pyrophyllite cylinder 3, a pyrophyllite 1 is provided inside the pyrophyllite cylinder 3, a seed diamond 5 is placed inside the pyrophyllite cylinder 1, and a solvent metal 6 is placed on the seed diamond 5. Further, a carbon source 7 is arranged, and plugs 4 and 8 are filled at the top and bottom of the stack. The plugs 4, 8 and the pyrophyllite cylinder 3 are of the same standard and are pressure transmitting members. Although not shown, a die made of a cemented metal and upper and lower punches corresponding to the holes of the die are used to pressurize the reaction container placed in the hole of the die, and the heater 2
Is energized to heat the inside of the reaction vessel and pressurize with a punch to synthesize diamond. By heating, the carbon source dissolves in the metal solvent, and the temperature difference (20 to 30 ° C.) causes crystal growth on the seed crystal.

【0015】[0015]

【実施例1】ダイヤモンドの安定領域(5.4GPa,1320
℃)で温度差法を用い、種ダイヤモンド結晶上に60時間
かけて、0.6 〜0.8 カラットのダイヤモンドを成長させ
た。合成溶媒として、Fe−Coに、Ti,Alを添加したもの
を用いた。結果を表1に示す。なお結晶中の窒素濃度は
ESR(電子スピン共鳴)で求め、結晶中の溶媒の巻き
込み量は磁気天秤によって測定した。
[Example 1] Diamond stable region (5.4 GPa, 1320
The temperature difference method was used to grow 0.6-0.8 carat diamonds over 60 hours on seed diamond crystals. As a synthetic solvent, Fe-Co to which Ti and Al were added was used. The results are shown in Table 1. The nitrogen concentration in the crystal was determined by ESR (electron spin resonance), and the amount of solvent entrained in the crystal was measured by a magnetic balance.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示すように、Tiのみを添加した場
合、Tiが 0.5wt%以上で色としては、Hカラー以上とな
るが、溶媒の巻き込み量が増加し、装飾用途の価値がな
くなる。Alの増加によって、溶媒の巻き込み量が激減
し、良質な結晶が得られる。しかし、5wt%のAlを添加
すると、溶媒の巻き込み量が増える。又、Alを添加して
も、10wt%のTiを添加すると溶媒の巻き込み量が増加
し、良質な結晶は得られない。以上説明したように、良
好な色及び品質の良い結晶が得られるAl,Tiの添加範囲
は、 0.5≦Al≦3(wt%)、 0.5≦Ti≦7(wt%)の範
囲である。更に、Sn,In,Ag,Cu,Cs,Pb,Sb,ZnをAl
に換えて添加しても同様な結果が得られる。
As shown in Table 1, when only Ti is added, the color becomes H color or more when Ti is 0.5 wt% or more, but the amount of solvent entrainment increases and the value for decorative use is lost. The increase in Al drastically reduces the amount of solvent entrainment, and good quality crystals can be obtained. However, the addition of 5 wt% Al increases the amount of solvent entrainment. Further, even if Al is added, if 10 wt% of Ti is added, the amount of solvent entrainment increases, and good quality crystals cannot be obtained. As described above, the addition ranges of Al and Ti that can obtain good color and good quality crystals are in the range of 0.5≤Al≤3 (wt%) and 0.5≤Ti≤7 (wt%). In addition, Sn, In, Ag, Cu, Cs, Pb, Sb, Zn are Al
Similar results can be obtained by adding instead of.

【0018】[0018]

【実施例2】温度差法を用い、ダイヤモンドの安定領域
(5.3GPa,1300℃)で、種ダイヤモンド結晶上に、 140
時間かけて8〜10カラットのIIaダイヤモンドを成長さ
せた。種ダイヤモンド結晶には3mm の単結晶を用い
た。溶媒はあらかじめ、合金のインゴットを作製し、粉
末にしたものと炭素粉を混合したものを用いた。合金の
組成は、Fe−Co−Niに窒素ゲッターとしてZr,Hf,V,
Tiを選択して加え、粘度を低下させる物質としてSn,I
n,Ga,Znを選択して添加したものを用いた。でき上っ
た単結晶を円板状に加工し、紫外可視及び赤外分光分析
を行った。又、透過顕微鏡により結晶中の炭化物及び窒
化物を調べた。分光分析及び顕微鏡により、窓材に使用
できるか否か判定した。その結果を表2に示す。
Example 2 Using the temperature difference method, in the stable region of diamond (5.3 GPa, 1300 ° C.), 140
8-10 carat IIa diamonds were grown over time. A 3 mm single crystal was used as the seed diamond crystal. As the solvent, an alloy ingot was prepared in advance and powdered and mixed with carbon powder. The composition of the alloy is Fe-Co-Ni with Zr, Hf, V, as a nitrogen getter.
Sn, I is added as a substance to reduce the viscosity by selectively adding Ti.
We used n, Ga and Zn selected and added. The resulting single crystal was processed into a disk shape and subjected to ultraviolet-visible and infrared spectroscopic analysis. In addition, a carbide and a nitride in the crystal were examined by a transmission microscope. It was determined by spectroscopic analysis and a microscope whether it could be used as a window material. The results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】表2より分るように、ゲッター材を添加す
るだけでは炭化窒化物(主に炭化物)が形成され、結晶
中に巻き込まれ、窓材として使用できない。ところがS
n,In,Ga,Znを加えることにより、これら炭化物、窒
化物が短時間で浮上、又は沈澱し、結晶中に含まれず、
良質な結晶が得られると考えられる。
As can be seen from Table 2, carbonitrides (mainly carbides) are formed only by adding the getter material, are caught in the crystal, and cannot be used as a window material. However, S
By adding n, In, Ga, Zn, these carbides and nitrides float or precipitate in a short time and are not contained in the crystal,
It is considered that good quality crystals can be obtained.

【0021】[0021]

【発明の効果】以上述べたように、本発明によれば、従
来方法に比較して、金属溶媒の巻き込みが少ない無色透
明なダイヤモンド単結晶が容易に合成できるようにな
り、安価に供給できるようになった。本発明方法によっ
て合成したダイヤモンドを装飾品、赤外光学部分に用い
ると効果的である。
As described above, according to the present invention, a colorless and transparent diamond single crystal with less entrainment of a metal solvent can be easily synthesized as compared with the conventional method, and it can be supplied at a low cost. Became. It is effective to use the diamond synthesized by the method of the present invention for ornaments and infrared optical parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来法における結晶中の窒素含有量と窒素ゲッ
ターのAlの添加量の関係を示す。
FIG. 1 shows the relationship between the nitrogen content in crystals and the amount of Al added to a nitrogen getter in the conventional method.

【図2】従来法における結晶中の、溶媒金属の含有量と
Alの添加量の関係を示す。
FIG. 2 shows the content of solvent metal in crystals in the conventional method and
The relation of the added amount of Al is shown.

【図3】本発明を実施する反応容器内の概略を示す。FIG. 3 shows an outline of the inside of a reaction vessel for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 パイロフィライト 2 ヒーター 3 パイロフィライトシリンダ 4,8 プラグ 5 種ダイヤモンド結晶 6 溶媒金属 7 カーボン源 1 Pyrophyllite 2 Heater 3 Pyrophyllite Cylinder 4,8 Plug 5 Kinds of diamond crystals 6 Solvent metal 7 Carbon source

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 温度差法を用いダイヤモンドの安定領域
で、溶媒中に窒化物及び炭化物を同時に形成する元素を
窒素ゲッターとして添加し、さらに該溶媒より粘度の低
い元素を添加することにより、結晶が成長する以前に窒
化物及び炭化物を上方に浮上又は下方に沈澱させること
を特徴とするIIa型ダイヤモンドの合成方法。
1. A crystal is obtained by using a temperature difference method in a stable region of diamond to add an element that simultaneously forms a nitride and a carbide in a solvent as a nitrogen getter, and further adding an element having a lower viscosity than the solvent. A method for synthesizing type IIa diamond, characterized in that a nitride and a carbide are floated upward or precipitated downward before growing.
【請求項2】 窒素ゲッターとして、Ti,Zr,Hf,V,
Nb,Taより選択した1種又は2種以上の元素からなり、
溶媒中に残留する硼素を除去することを特徴とする請求
項1のダイヤモンドの合成方法。
2. As a nitrogen getter, Ti, Zr, Hf, V,
Consisting of one or more elements selected from Nb and Ta,
The method for synthesizing diamond according to claim 1, wherein boron remaining in the solvent is removed.
【請求項3】 粘度の低い元素として、Al,Sn,In,G
a,Cu,Cs,Pb,Znを添加することを特徴とする請求項
1のダイヤモンドの合成方法。
3. An element having a low viscosity is Al, Sn, In, G.
The method for synthesizing diamond according to claim 1, wherein a, Cu, Cs, Pb, and Zn are added.
【請求項4】 窒素ゲッターの添加量が、重量%で、0.
5以上、7以下であり、かつ粘度の低い元素の添加量が
重量%で、0.5以上、3以下であることを特徴とする請
求項1のダイヤモンドの合成方法。
4. A nitrogen getter is added in an amount of 0.
The method for synthesizing diamond according to claim 1, wherein the addition amount of the element having a viscosity of 5 or more and 7 or less and a low viscosity is 0.5 to 3 in weight%.
JP24492491A 1991-02-15 1991-08-29 Diamond synthesis method Expired - Lifetime JP3205970B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24492491A JP3205970B2 (en) 1991-08-29 1991-08-29 Diamond synthesis method
US08/307,493 US6129900A (en) 1991-02-15 1992-02-14 Process for the synthesis of diamond
PCT/JP1992/000149 WO1992014542A1 (en) 1991-02-15 1992-02-14 Process for synthesizing diamond
EP92905002A EP0525207B1 (en) 1991-02-15 1992-02-14 Process for synthesizing diamond
DE69215021T DE69215021T2 (en) 1991-02-15 1992-02-14 DIAMOND SYNTHESIS PROCEDURE
IE920846A IE920846A1 (en) 1991-03-14 1992-03-16 A process for the synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24492491A JP3205970B2 (en) 1991-08-29 1991-08-29 Diamond synthesis method

Publications (2)

Publication Number Publication Date
JPH0558786A true JPH0558786A (en) 1993-03-09
JP3205970B2 JP3205970B2 (en) 2001-09-04

Family

ID=17126001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24492491A Expired - Lifetime JP3205970B2 (en) 1991-02-15 1991-08-29 Diamond synthesis method

Country Status (1)

Country Link
JP (1) JP3205970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035174A1 (en) * 2003-10-10 2005-04-21 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method for synthesizing single crystal diamond, and diamond jewelry
WO2022210566A1 (en) * 2021-03-31 2022-10-06 住友電気工業株式会社 Single crystal diamond, manufacturing method for same, and manufacturing method for single crystal diamond plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035174A1 (en) * 2003-10-10 2005-04-21 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method for synthesizing single crystal diamond, and diamond jewelry
WO2022210566A1 (en) * 2021-03-31 2022-10-06 住友電気工業株式会社 Single crystal diamond, manufacturing method for same, and manufacturing method for single crystal diamond plate

Also Published As

Publication number Publication date
JP3205970B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US6129900A (en) Process for the synthesis of diamond
Sumiya et al. High-pressure synthesis of high-purity diamond crystal
US6030595A (en) Process for the production of synthetic diamond
KR100216619B1 (en) Diamond synthesis
JP3259384B2 (en) Method of synthesizing diamond single crystal
Sumiya et al. Development of high-quality large-size synthetic diamond crystals
KR20010006438A (en) Diamond growth
Kanda Large diamonds grown at high pressure conditions
JP3205970B2 (en) Diamond synthesis method
JP3339137B2 (en) Synthetic diamond single crystal and method for producing the same
DE3872855T2 (en) DIAMOND SYNTHESIS.
JP3291804B2 (en) Method of synthesizing diamond single crystal
JP3259383B2 (en) Method of synthesizing diamond single crystal
JP3282249B2 (en) Method of synthesizing diamond single crystal
EP0603995A1 (en) Process for the synthesising diamond single crystals
EP1890799B1 (en) Method for growing synthetic diamonds
RU2181795C2 (en) Method of diamond synthesis
JP3206050B2 (en) Method of synthesizing diamond single crystal
JPH05137999A (en) Method for synthesizing diamond single crystal
DE69820098T2 (en) DIAMOND PARTICLE, COMPOSED OF A DIAMOND CORE AND A DIAMOND COATING
JPH0576747A (en) Synthetic method for diamond single crystal
JPH0323517B2 (en)
EP0425579A1 (en) Mecanochemical preparation of carbides and silicides.
JPS61117106A (en) Synthesis of cubic boron nitride
Wakatsuki Formation and Growth of Diamond-For Understanding and Better Control of The Process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11