JPH0617491B2 - Permanent magnet material processing method - Google Patents

Permanent magnet material processing method

Info

Publication number
JPH0617491B2
JPH0617491B2 JP60110794A JP11079485A JPH0617491B2 JP H0617491 B2 JPH0617491 B2 JP H0617491B2 JP 60110794 A JP60110794 A JP 60110794A JP 11079485 A JP11079485 A JP 11079485A JP H0617491 B2 JPH0617491 B2 JP H0617491B2
Authority
JP
Japan
Prior art keywords
permanent magnet
less
magnet material
atomic
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60110794A
Other languages
Japanese (ja)
Other versions
JPS61270309A (en
Inventor
隆樹 浜田
徹治 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60110794A priority Critical patent/JPH0617491B2/en
Priority to CN85109695A priority patent/CN1007847B/en
Priority to DE8585116598T priority patent/DE3584243D1/en
Priority to EP85116598A priority patent/EP0190461B1/en
Priority to US06/818,238 priority patent/US4837114A/en
Publication of JPS61270309A publication Critical patent/JPS61270309A/en
Priority to US07/360,101 priority patent/US5089066A/en
Priority to US07/740,442 priority patent/US5316595A/en
Publication of JPH0617491B2 publication Critical patent/JPH0617491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fe−B−R系永久磁石材料の加工方法に係
り、焼結永久磁石表面の少なくとも1主面に残存する黒
皮、あるいは磁石表面の研削加工等に伴なう磁石特性の
劣化を改善したFe−B−R系永久磁石材料の加工方法に
関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for processing an Fe-BR permanent magnet material, and relates to a black skin remaining on at least one main surface of a sintered permanent magnet surface, or grinding of the magnet surface. The present invention relates to a method for processing a Fe-BR permanent magnet material in which deterioration of magnet characteristics due to processing and the like is improved.

背景技術 現在の代表的な永久磁石材料は、アルニコ,ハードフェ
ライトおよび希土類コバルト磁石である。この希土類コ
バルト磁石は、磁気特性が格段にすぐれているため、多
種用途に利用されているが、主成分のSm,Coは共に資源
的に不足し、かつ高価であり、今後長期間にわたって、
安定して多量に供給されることは困難である。
BACKGROUND ART Currently, typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. Since this rare earth cobalt magnet has remarkably excellent magnetic characteristics, it is used for various purposes. However, the main components Sm and Co are both resource-deficient and expensive.
It is difficult to stably supply a large amount.

そのため、磁気特性がすぐれ、かつ安価で、さらに資源
的に豊富で今後の安定供給が可能な組成元素からなる永
久磁石材料が切望されてきた。
Therefore, there has been a strong demand for a permanent magnet material which has excellent magnetic properties, is inexpensive, is abundant in resources, and can be stably supplied in the future from a composition element.

本出願人は先に、高価なSmやCoを含有しない新しい高性
能永久磁石としてFe−B−R系(RはYを含む希土類元
素のうち少なくとも1種)永久磁石を提案した(特開昭
59-46008号、特開昭59-64733号、特開昭59-89401号、特
開昭59-132104号)。この永久磁石は、RとしてNdやPr
を中心とする資源的に豊富な軽希土類を用い、B,Feを
主成分として25MGOe以上、最高では45MGOe以上にも達す
る極めて高いエネルギー積を示す、すぐれた永久磁石で
ある。
The present applicant has previously proposed a Fe-BR type permanent magnet (R is at least one of rare earth elements including Y) as a new high-performance permanent magnet that does not contain expensive Sm or Co (Japanese Patent Laid-Open No. 2006-242242).
59-46008, JP-A-59-64733, JP-A-59-89401, JP-A-59-132104). This permanent magnet uses Nd or Pr as R.
It is an excellent permanent magnet that uses light rare earths, which are abundant in terms of resources, and has an extremely high energy product of 25 MGOe or more, and at most 45 MGOe or more, with B and Fe as the main components.

最近、磁気回路の高性能化,小形化に伴ない、Fe−B−
R系永久磁石材料が益々注目されてきた。かかる用途の
永久磁石材料を製造するには、成形焼結した焼結磁石体
表面の凹凸や歪みを除去するため、あるいは表面酸化層
を除去するため、さらには磁気回路に組込むために、磁
石体の全面あるいは所要表面を切削加工する必要があ
り、加工には外周刃切断機,内周刃切断機,表面研削
機,センタレスグラインダー,ラッピングマシン等が使
用される。
Recently, as the performance and size of magnetic circuits have increased, Fe-B-
R-based permanent magnet materials have been receiving more and more attention. In order to manufacture a permanent magnet material for such an application, the magnet body is used to remove irregularities and distortions on the surface of the sintered magnet body that has been molded and sintered, to remove the surface oxide layer, or to be incorporated in a magnetic circuit. It is necessary to cut the entire surface or required surface of the machine, and an outer peripheral blade cutting machine, an inner peripheral blade cutting machine, a surface grinder, a centerless grinder, a lapping machine, etc. are used for the processing.

しかしながら、上記装置にてFe−B−R系永久磁石材料
を研削加工すると、Fe−B−R系永久磁石材料は、主成
分として、空気中で極めて酸化しやすく、直ちに安定な
酸化物を生成する希土類元素及び鉄を含有するため、発
熱したり大気と加工面との接触により酸化層が生成し、
磁気特性の劣化を招来する問題があった。
However, when the Fe-BR permanent magnet material is ground by the above apparatus, the Fe-BR permanent magnet material, as a main component, is extremely easily oxidized in air and immediately forms a stable oxide. Because it contains rare earth elements and iron, it generates heat and generates an oxide layer due to contact between the atmosphere and the processed surface,
There is a problem that the deterioration of magnetic characteristics is caused.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石材料において、焼結磁石体の酸化や切削加工に
伴なう磁気特性の劣化を改善できる永久磁石材料の加工
方法を目的としている。
An object of the present invention is to provide a method for processing a permanent magnet material, which is a novel permanent magnet material mainly containing rare earth, boron and iron, which can improve the deterioration of the magnetic properties due to the oxidation of the sintered magnet body and the cutting work. It is an object.

発明の構成と効果 この発明は、R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも
1種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Yの
うち少なくとも1種からなる)10原子%〜30原子%、B
2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、 主相が正方晶からなる焼結永久磁石体の表面に、モース
硬度5以上の硬質粉末を、不活性ガスあるいは除湿した
空気からなる加圧気体とともに噴射し、 上記磁石体表面の酸化層や加工歪層を除去することを特
徴とする永久磁石材料の加工方法である。
Structure and Effect of the Invention The present invention is based on R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further, La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu and Y). (At least one of them) 10 atom% to 30 atom%, B
Hard powder with a Mohs hardness of 5 or more is inertized or dehumidified on the surface of a sintered permanent magnet body containing 2 atom% to 28 atom% and Fe 65 atom% to 80 atom% as a main component and a tetragonal main phase. The method for processing a permanent magnet material is characterized in that the permanent magnet material is sprayed with a pressurized gas consisting of air to remove the oxide layer and the work strain layer on the surface of the magnet body.

詳述すれば、この発明は、焼結磁石体表面に、所要性状
からなる硬質粉末を、加圧気体とともに、噴射し、焼結
磁石体の黒皮黒皮、酸化層や加工歪層等の表面層を除去
して、酸化や切削加工にともなう磁石特性の劣化の改善
を図ったものであり、さらに、必要に応じて、清浄化さ
れた磁石体表面に例えばAl薄膜層を被着し、材料と表面
薄膜層との密着性の改善ならびに磁石材料の耐食性の改
善を図るのもよい。
More specifically, the present invention is to inject a hard powder having the required properties together with a pressurized gas onto a surface of a sintered magnet body to form a black skin black skin of the sintered magnet body, an oxide layer or a work strain layer. By removing the surface layer, it is intended to improve the deterioration of the magnet characteristics due to oxidation and cutting, further, for example, by depositing an Al thin film layer on the cleaned magnet body surface, It is also good to improve the adhesion between the material and the surface thin film layer and the corrosion resistance of the magnet material.

また、この発明の永久磁石材料は平均結晶粒径が1〜80
μmの範囲にある正方晶系の結晶構造を有する化合物を
主相とし、体積比で1%〜50%の非磁性相(酸化物相を
除く)を含むことを特徴とする。
The permanent magnet material of the present invention has an average crystal grain size of 1 to 80.
A compound having a tetragonal crystal structure in the range of μm is used as a main phase, and a volume ratio of 1% to 50% of a nonmagnetic phase (excluding an oxide phase) is included.

この発明の加工方法は、RとしてNdやPrを中心とする資
源的に豊富な軽希土類を用い、B,Feを主成分として25
MGOe以上、最高では45MGOe以上にも達する極めて高いエ
ネルギー積並びに、高残留磁束密度、高保磁力を示す、
すぐれた永久磁石であり、かつ研削加工及び酸化層によ
る磁気特性の劣化を改善したFe−B−R系永久磁石材料
を、安価に得ることができる。
In the processing method of the present invention, R is a light rare earth resource rich in Nd and Pr, and B and Fe are the main components.
Exhibits extremely high energy product reaching MGOe or higher, and reaching 45 MGOe or higher at the highest, high residual magnetic flux density, and high coercive force
It is possible to inexpensively obtain an Fe-BR permanent magnet material which is an excellent permanent magnet and which is improved in deterioration of magnetic properties due to grinding processing and an oxide layer.

この発明において、モース硬度5以上の硬質粉末として
は、Al2O3系,炭化けい素系,ZrO2系,炭化硼素系,ガ
ーネット系等の粉末があり、硬度の高いAl2O3系粉末が
好ましく、粉末形状として、不定形のものが好ましい。
In this invention, the Mohs hardness of 5 or more hard powder, Al 2 O 3 system, silicon carbide Motokei, ZrO 2 system, boron carbide-based, there are powders of garnet, etc., high hardness Al 2 O 3 system powder Is preferable, and an irregular shape is preferable as the powder shape.

硬質粉末のモース硬度が、5未満では、研削力が小さす
ぎて、研削処理時間に長時間を要して好ましくない。
If the Mohs hardness of the hard powder is less than 5, the grinding force is too small and the grinding process takes a long time, which is not preferable.

この発明において、硬質粉末の平均粒度は20μm〜350
μmが好ましく、20μm未満では、研削力が小さすぎて
研削に長時間を要し、また、350μmを越えると、焼結
磁石体表面の面粗度が粗くなりすぎ、研削量が不均一と
なり、好ましくない。
In this invention, the average particle size of the hard powder is 20 μm to 350 μm.
If it is less than 20 μm, the grinding force is too small and it takes a long time to grind, and if it exceeds 350 μm, the surface roughness of the sintered magnet body surface becomes too rough and the grinding amount becomes uneven, Not preferable.

硬質粉末の噴射条件としては、圧力1.0kg/cm2未満で
は、研削処理に長時間を要し、また、圧力6.0kg/cm2
越えると磁石体表面の研削量が不均一となり、面粗度の
劣化が懸念されるため、加圧気体の圧力は1.0kg/cm2〜k
g/cm2の範囲が好ましい。
As for the injection conditions of hard powder, if the pressure is less than 1.0 kg / cm 2, it takes a long time for the grinding process, and if the pressure exceeds 6.0 kg / cm 2 , the amount of grinding on the surface of the magnet becomes non-uniform, resulting in a rough surface. The pressure of pressurized gas is 1.0 kg / cm 2 to
A range of g / cm 2 is preferred.

さらに、噴射時間が0.5分間未満では、研削量が少なく
かつ不均一になり、また、60分を越えると磁石体表面の
研削量が大くなり、面粗度が悪化するため、0.5分〜60
分の噴射時間が好ましい。
Further, if the injection time is less than 0.5 minutes, the grinding amount is small and non-uniform, and if it exceeds 60 minutes, the grinding amount on the surface of the magnet body is large and the surface roughness deteriorates.
Minute injection times are preferred.

また、硬質粉末の噴射用加圧流体としては、空気あるい
はAr,N2ガス等の不活性ガスが利用できるが、磁石体の
酸化防止のためには、不活性ガスが好ましく、また、空
気を用いる場合は、除湿を行なった空気が望ましい。
Further, as the pressurized fluid for injecting the hard powder, air or an inert gas such as Ar or N 2 gas can be used, but an inert gas is preferable for preventing the oxidation of the magnet body. When used, dehumidified air is desirable.

永久磁石材料の成分限定理由 この発明の永久磁石材料に用いる希土類元素Rは、組成
の10原子%〜30原子%を占めるが、Nd,Pr,Dy,Ho,Tbのう
ち少なくとも1種、あるいはさらに、La,Ce,Sm,Gd,Er,E
u,Tm,Yb,Lu,Yのうち少なくとも1種を含むものが好まし
い。
Reasons for Limiting Components of Permanent Magnet Material The rare earth element R used in the permanent magnet material of the present invention occupies 10 atom% to 30 atom% of the composition, and at least one of Nd, Pr, Dy, Ho and Tb, or further , La, Ce, Sm, Gd, Er, E
Those containing at least one of u, Tm, Yb, Lu and Y are preferable.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミッシュメタル,ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, one type of R is usually sufficient, but it is practically 2
Mixtures of more than one species (Misch metal, didymium, etc.) can be used for reasons of availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

Rは、新規な上記系永久磁石材料における、必須元素で
あって、10原子%未満では、結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を越えると、Rリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下して、すぐれ
た特性の永久磁石が得られない。よって、希土類元素
は、10原子%〜30原子%の範囲とする。
R is an essential element in the novel permanent magnet material described above, and if it is less than 10 atomic%, the crystal structure becomes a cubic structure having the same structure as α-iron, so that high magnetic properties, especially high coercive force can be obtained. If the content exceeds 30 at%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element content is in the range of 10 atom% to 30 atom%.

Bは、この発明による永久磁石材料における、必須元素
であって、2原子%未満では、菱面体構造が主相とな
り、高い保磁力(iHc)は得られず、28原子%を越える
と、Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは、2原子%〜28原子%の範囲とする。
B is an essential element in the permanent magnet material according to the present invention. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained. Rich non-magnetic phase increases and residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 at% to 28 at%.

Feは、新規な上記系永久磁石において、必須元素であ
り、65原子%未満では残留磁束密度(Br)が低下し、80原
子%を越えると、高い保磁力が得られないので、Feは
65原子%〜80原子%の含有とする。
Fe is an essential element in the novel permanent magnets, and the residual magnetic flux density (Br) decreases if it is less than 65 atom%, and a high coercive force cannot be obtained if it exceeds 80 atom%.
The content is 65 atom% to 80 atom%.

また、この発明による永久磁石材料において、Feの一部
をCoで置換することは、得られる磁石の磁気特性を損う
ことなく、温度特性を改善することができるが、Co置換
量がFeの20%を越えると、逆に磁気特性が劣化するた
め、好ましくない。Coの置換量がFeとCoの合計量で5原
子%〜15原子%の場合は、(Br)は置換しない場合に比較
して増加するため、高磁束密度を得るために好ましい。
Further, in the permanent magnet material according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. If it exceeds 20%, on the contrary, the magnetic properties deteriorate, which is not preferable. When the substitution amount of Co is 5 atom% to 15 atom% as the total amount of Fe and Co, (Br) is increased as compared with the case of not substituting, which is preferable for obtaining a high magnetic flux density.

また、この発明による永久磁石材料は、R,B,Feの
他、工業的生産上不可避的不純物の存在を許容できる
が、Bの一部を4.0原子%以下のC、3.5原子%以下の
P、2.5原子%以下のS、3.5原子%以下のCuのうち少な
くとも1種、合計量で4.0原子%以下で置換することに
より、永久磁石材料の製造性改善、低価格化が可能であ
る。
Further, the permanent magnet material according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but a part of B is 4.0 atomic% or less of C and 3.5 atomic% or less of P. , S of 2.5 atomic% or less, and Cu of 3.5 atomic% or less, by substituting at least one kind with a total amount of 4.0 atomic% or less, it is possible to improve the productivity of the permanent magnet material and reduce the cost.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石材料に対してその保磁力、減磁曲線の角型
性を改善あるいは製造性の改善、低価格化に効果がある
ため添加することができる。しかし、保持力改善のため
の添加に伴ない残留磁束密度(Br)の低下を招来するの
で、従来のハードフェライト磁石の残留磁束の残留磁束
密度と同等以上となる範囲での添加が望ましい。
Further, at least one of the following additional elements is RB-
It can be added to the Fe-based permanent magnet material because it is effective in improving the coercive force and the squareness of the demagnetization curve, improving the manufacturability, and lowering the cost. However, since the residual magnetic flux density (Br) is lowered with the addition for improving the coercive force, it is desirable to add the residual magnetic flux within the range equal to or more than the residual magnetic flux density of the conventional hard ferrite magnet.

9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5.0原子%以下のBi、 9.5原子%以下のNb、9.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 9.0原子%以下のNi、9.0原子%以下のSi、 1.1原子%以下のZn、5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下を含有させることにより、
永久磁石材料の高保磁力化が可能になる。
9.5 atomic% or less Al, 4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.5 atomic% or less Cr, 8.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.5 atomic% or less Nb, 9.5 Ta less than atomic%, Mo less than 9.5 atomic%, W less than 9.5 atomic%, Sb less than 2.5 atomic%, Ge less than 7 atomic%, Sn less than 3.5 atomic%, Zr less than 5.5 atomic%, 9.0 atomic % Or less Ni, 9.0 atom% or less Si, 1.1 atom% or less Zn, and 5.5 atom% or less Hf, at least one kind is added, but when two or more kinds are contained, the maximum content is By containing atomic% or less of the additional element having the maximum value,
It is possible to increase the coercive force of the permanent magnet material.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
The fact that the main phase of the crystal phase is a tetragonal crystal is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明の永久磁石材料は、磁場中プレス成型す
ることにより磁気的異方性磁石が得られ、また、無磁界
中でプレス成型することにより、磁気的等方性磁石を得
ることができる。
In addition, the permanent magnet material of the present invention can be magnetically anisotropic magnet by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field. .

この発明による永久磁石材料は、保磁力iHc≧1kOe、残
留磁束密度Br>4kG、を示し、最大エネルギー積(BH)
maxは、最も好ましい組成範囲では、(BH)max≧10MGOeを
示し、最大値は25MGOe以上に達する。
The permanent magnet material according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH).
In the most preferable composition range, max indicates (BH) max ≧ 10 MGOe, and the maximum value reaches 25 MGOe or more.

また、この発明の永久磁石材料のRの主成分がその50%
以上をNd及びPrを主とする軽希土類金属で占める場合
で、R12原子%〜20原子%、B4原子%〜24原子%、Fe
74原子%〜80原子%、を主成分とするとき、(BH)max35M
GOe以上のすぐれた磁気特性を示し、特に軽希土類金属
がNdの場合には、その最大値が45MGOe以上に達する。
Further, the main component of R in the permanent magnet material of the present invention is 50%
When the above is occupied by a light rare earth metal mainly composed of Nd and Pr, R12 atom% to 20 atom%, B4 atom% to 24 atom%, Fe
When 74 atomic% to 80 atomic% is the main component, (BH) max35M
It shows excellent magnetic properties over GOe, and its maximum value reaches over 45MGOe especially when the light rare earth metal is Nd.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、フェロボロン合
金、純度99.7%以上のNdを使用し、これらを配合後高周
波溶解し、その後水冷銅鋳型に鋳造し、16.0Nd7.0B77.0
Feなる組成の鋳塊を得た。
Examples Example 1 As starting materials, electrolytic iron having a purity of 99.9%, ferroboron alloy, and Nd having a purity of 99.7% or more were used, and these were blended and then high-frequency melted, and then cast in a water-cooled copper mold to obtain 16.0Nd7.0B77. 0
An ingot having a composition of Fe was obtained.

その後このインゴットを、スタンプミルにより粗粉砕
し、次にボールミルにより微粉砕し、平均粒度2.8μm
の微粉末を得た。
After that, this ingot was roughly crushed with a stamp mill and then finely crushed with a ball mill to obtain an average particle size of 2.8 μm.
Of fine powder was obtained.

この微粉末を金型に挿入し、15kOeの磁界中で配向し、
磁界に平行方向に、1.2t/cm2の圧力で成形した。
Insert this fine powder into the mold, orient in a magnetic field of 15 kOe,
It was molded in a direction parallel to the magnetic field at a pressure of 1.2 t / cm 2 .

得られた成形体を、1100℃,1時間,Ar雰囲気中、の条
件で焼結し、長さ25mm×幅40mm×厚み30mm寸法の焼結体
を得た。
The obtained molded body was sintered at 1100 ° C. for 1 hour in an Ar atmosphere to obtain a sintered body having dimensions of length 25 mm × width 40 mm × thickness 30 mm.

さらにAr中での800℃,1時間と630℃,1.5時間の2段
時効処理を施した。
Furthermore, a two-step aging treatment was performed in Ar at 800 ° C for 1 hour and 630 ° C for 1.5 hours.

上記の永久磁石体を、大気中で、ダイヤモンド#200番を
砥石として、回転数2400rpm,送り速度5mm/minで、長さ
5mm×幅10mm×厚み3mm寸法に切出した。
Length of the above permanent magnet body was 2400 rpm at a feed rate of 5 mm / min in the atmosphere with diamond # 200 as a grindstone.
Cut out to a size of 5 mm × width 10 mm × thickness 3 mm.

さらに、この切出し試料に、第1表に示す、噴射粉末と
して、ガラスビーズ(比較例)、Al2O3粉末(本発明)
を、4kg/cm2の加圧空気とともに、7〜10分間噴射する
条件のブラストを施し、上記磁石体の表面層を除去し
た。
Furthermore, glass beads (comparative example) and Al 2 O 3 powder (present invention) as sprayed powder shown in Table 1 were added to the cut sample.
Was blasted with 4 kg / cm 2 of pressurized air for 7 to 10 minutes to remove the surface layer of the magnet body.

各試料のブラスト前後の磁気特性を測定した。加工条件
と測定結果を第1表に示す。
The magnetic properties of each sample before and after blasting were measured. Table 1 shows the processing conditions and the measurement results.

第1表の結果から明らかなように、この発明により、焼
結磁石体の残存黒皮及び製品化のための切削加工による
酸化層や加工歪み層に伴なう磁石特性の劣化が改善され
ていることが分る。
As is clear from the results shown in Table 1, according to the present invention, the residual black scale of the sintered magnet body and the deterioration of the magnetic properties associated with the oxide layer and the strained layer due to the cutting process for commercialization are improved. I know that

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも
1種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Y
のうち少なくとも1種からなる)10原子%〜30原子%、 B2原子%〜28原子%、Fe65原子%〜80原子%を主成分
とし、主相が正方晶からなる焼結永久磁石体の表面に、
モース硬度5以上の硬質粉末を、不活性ガスあるいは除
湿した空気からなる加圧気体とともに噴射し、上記磁石
体表面の酸化層や加工歪層を除去することを特徴とする
永久磁石材料の加工方法。
1. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y.
Of 10 to 30 at%, B 2 to 28 at%, Fe 65 to 80 at% as main components, and the main phase is a tetragonal crystal surface of a sintered permanent magnet body To
A method for processing a permanent magnet material, characterized in that a hard powder having a Mohs hardness of 5 or more is jetted together with a pressurized gas consisting of an inert gas or dehumidified air to remove the oxide layer and the work strain layer on the surface of the magnet body. .
JP60110794A 1984-12-24 1985-05-23 Permanent magnet material processing method Expired - Lifetime JPH0617491B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60110794A JPH0617491B2 (en) 1985-05-23 1985-05-23 Permanent magnet material processing method
CN85109695A CN1007847B (en) 1984-12-24 1985-12-24 Process for producing magnets having improved corrosion resistance
DE8585116598T DE3584243D1 (en) 1984-12-24 1985-12-27 METHOD FOR PRODUCING PERMANENT MAGNETS AND PERMANENT MAGNET.
EP85116598A EP0190461B1 (en) 1984-12-24 1985-12-27 Process for producing permanent magnets and permanent magnet
US06/818,238 US4837114A (en) 1984-12-24 1986-01-13 Process for producing magnets having improved corrosion resistance
US07/360,101 US5089066A (en) 1984-12-24 1989-06-01 Magnets having improved corrosion resistance
US07/740,442 US5316595A (en) 1984-12-24 1991-08-05 Process for producing magnets having improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110794A JPH0617491B2 (en) 1985-05-23 1985-05-23 Permanent magnet material processing method

Publications (2)

Publication Number Publication Date
JPS61270309A JPS61270309A (en) 1986-11-29
JPH0617491B2 true JPH0617491B2 (en) 1994-03-09

Family

ID=14544802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110794A Expired - Lifetime JPH0617491B2 (en) 1984-12-24 1985-05-23 Permanent magnet material processing method

Country Status (1)

Country Link
JP (1) JPH0617491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721187B2 (en) * 1988-07-27 1998-03-04 日立金属 株式会社 RF lower e-BM sintered magnet and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778269B2 (en) * 1983-05-31 1995-08-23 住友特殊金属株式会社 Rare earth / iron / boron tetragonal compound for permanent magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
渡辺▲こう▼尚著″新版粉末冶金″(株)技術書院(昭和51年)P.45〜46

Also Published As

Publication number Publication date
JPS61270309A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
JP4450239B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JP4702546B2 (en) Rare earth permanent magnet
TWI421886B (en) Manufacture method of rare earth metal permanent magnet material
EP1970924B1 (en) Rare earth permanent magnets and their preparation
TWI421885B (en) Manufacture method of rare earth metal permanent magnet material
KR101084340B1 (en) Functionally graded rare earth permanent magnet
JP4702549B2 (en) Rare earth permanent magnet
US5538565A (en) Rare earth cast alloy permanent magnets and methods of preparation
EP1014393B1 (en) Rare earth/iron/boron-based permanent magnet and method for the preparation thereof
JPH0663086B2 (en) Permanent magnet material and manufacturing method thereof
JP4702547B2 (en) Functionally graded rare earth permanent magnet
TWI623627B (en) Method for manufacturing rare earth permanent magnet
JP6090589B2 (en) Rare earth permanent magnet manufacturing method
JP4702548B2 (en) Functionally graded rare earth permanent magnet
JPH0742553B2 (en) Permanent magnet material and manufacturing method thereof
JPS6217149A (en) Manufacture of sintered permanent magnet material
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPH068488B2 (en) Permanent magnet alloy
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JPH0617491B2 (en) Permanent magnet material processing method
JP2004281493A (en) Process for producing permanent magnet material
JPH064882B2 (en) Permanent magnet material processing method
JPH066777B2 (en) High-performance permanent magnet material
JP3643214B2 (en) Method for producing laminated permanent magnet
JP2514155B2 (en) Method for manufacturing permanent magnet alloy

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term