JPH06163251A - Cryogenic vessel - Google Patents

Cryogenic vessel

Info

Publication number
JPH06163251A
JPH06163251A JP31503892A JP31503892A JPH06163251A JP H06163251 A JPH06163251 A JP H06163251A JP 31503892 A JP31503892 A JP 31503892A JP 31503892 A JP31503892 A JP 31503892A JP H06163251 A JPH06163251 A JP H06163251A
Authority
JP
Japan
Prior art keywords
thermal anchor
tank
heat
inner tank
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31503892A
Other languages
Japanese (ja)
Inventor
Chizuru Suzawa
千鶴 須澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP31503892A priority Critical patent/JPH06163251A/en
Publication of JPH06163251A publication Critical patent/JPH06163251A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a simple, small-sized cryogenic vessel of low cost having a thermal anchor wherein an exclusive cooling source is nunecessary. CONSTITUTION:A vessel wherein an inner vessel 11 is surrounded by an outer vessel 12, and a vacuum heat insulation part 13 is formed between both vessels is an object. A thermal anchor 15 having a structure wherein cold storing material 16 is accommodated in a case 17 is installed in the middle part of a heat conduction path (refrigerant introducing port 11b in figure) from the upper part of the inner vessel to a refrigerant liquid accommodation part 11a. The thermal anchor is cooled by using evaporation gas of refrigerant liquid A. Since the heat capacity of the thermal anchor 15 is large and cold is stored therein, permeation of external heat can be prevented without using an exclusive cooling source. When the capacity is sufficient, a radiant heat shielding plate 14 can be cooled by applying the thermal anchor to a cooling source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体ヘリウム等の冷媒
液と共に超電導コイルを収納してそのコイルを冷却する
のに用いられる液溜め式の極低温容器(クライオタッ
ト)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid storage cryogenic container (cryotat) used for accommodating a superconducting coil together with a refrigerant liquid such as liquid helium and cooling the coil.

【0002】[0002]

【従来の技術】従来の液溜め式極低温容器の一例を図3
に示す。この容器は広口バケット型のものであって、液
体ヘリウム(以下LHeと記す)を収納する内槽1と、
これを囲う外槽2間に真空断熱部3を形成し、さらに、
その真空断熱部3中に液体窒素(以下LN2 )を充填し
た輻射熱シールド槽4を配置し、このシールド槽を良伝
熱性の金属で内槽の上端近くの外周に接続してこの部分
をサーマルアンカ5として働かせるようにしてある。
2. Description of the Related Art An example of a conventional liquid storage type cryogenic container is shown in FIG.
Shown in. This container is a wide-mouthed bucket type, and includes an inner tank 1 for storing liquid helium (hereinafter referred to as LHe),
A vacuum heat insulating section 3 is formed between the outer tanks 2 surrounding this, and further,
A radiant heat shield tank 4 filled with liquid nitrogen (hereinafter referred to as LN 2 ) is arranged in the vacuum heat insulating portion 3, and this shield tank is connected to the outer periphery near the upper end of the inner tank by a metal having good heat conductivity to thermally connect this portion. It is designed to work as anchor 5.

【0003】サーマルアンカ5は、LN2 による冷却で
その設置点における内槽温度をLN2 温度(77k)付
近に保ち、内槽の壁材を伝って流入する外部からの侵入
熱をこの部分で喰い止める目的で設けられる。
[0003] thermal anchor 5, maintaining the internal bath temperature in the vicinity of LN 2 temperatures (77k) at the installation point by cooling with LN 2, the heat intrusion from the outside to flow along the wall material of the inner tank in this part It is provided for the purpose of stopping.

【0004】その効果は、例えば、低温工学ハンドブッ
ク(昭和57年9月15日発行、内田老鶴圃新社)のP
288〜P289、P583に報告されている。その報
告では、広口ステンレス製極低温容器の場合、サーマル
アンカ無しでの熱伝導積分値が約30W/cmに対し、7
7k付近でサーマルアンカをとるとその値が約3.1W
/cmとほぼ1/10になっている。
The effect is described in, for example, P of Low Temperature Engineering Handbook (published on September 15, 1982, Uchida Otsuruho Shinsha).
288-P289, P583. In the report, in the case of a wide-mouth stainless steel cryogenic container, the integrated thermal conductivity without a thermal anchor was about 30 W / cm,
The value is about 3.1W when the thermal anchor is taken near 7k.
/ Cm is almost 1/10.

【0005】このように、サーマルアンカは熱侵入防止
の面で重要な役割を果たすが、図3のように輻射熱シー
ルド槽4を冷却源とすると槽4内のLN2 の液面低下時
に冷熱の伝達経路が長くなってその効果が薄れる。
As described above, the thermal anchor plays an important role in preventing heat invasion. However, when the radiation heat shield tank 4 is used as a cooling source as shown in FIG. 3, cold heat is generated when the liquid level of LN 2 in the tank 4 is lowered. The transmission path becomes longer and the effect diminishes.

【0006】このため、より信頼性の高いサーマルアン
カが求められるときには、輻射熱シールド槽から独立さ
せた専用のLN2 槽6を設けてこれを冷却源にしたり、
特開平4−116907号に示されるように輻射熱シー
ルド板を冷凍機で冷却してこれを冷却源とすることが行
われている。
Therefore, when a more reliable thermal anchor is required, a dedicated LN 2 tank 6 independent of the radiant heat shield tank is provided and used as a cooling source.
As shown in Japanese Patent Laid-Open No. 4-116907, a radiant heat shield plate is cooled by a refrigerator and used as a cooling source.

【0007】[0007]

【発明が解決しようとする課題】熱侵入防止効果を高め
るために専用のLN2 槽や冷凍機を設けると容器の構造
の複雑化、コストアップ、維持、管理の手間の増加等を
招く。
If a dedicated LN 2 tank or a refrigerator is provided to enhance the effect of preventing heat intrusion, the structure of the container becomes complicated, and the cost, maintenance, and maintenance work increase.

【0008】そこで、本発明は、このような不具合を招
かずに外部熱の侵入防止効果を高めることを課題として
いる。
Therefore, an object of the present invention is to enhance the effect of preventing external heat from entering without causing such a problem.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
解決するため、内槽の上部から冷媒収納部に至る熱伝達
経路の途中にサーマルアンカを設ける極低温容器におい
て、上記サーマルアンカを蓄冷材を内蔵する構造にし、
内槽内の蒸発冷媒ガスで冷却する。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a cryogenic container provided with a thermal anchor in the middle of a heat transfer path from an upper part of an inner tank to a refrigerant accommodating portion, in which the thermal anchor is provided. With a structure that contains a cold storage material,
It is cooled by the evaporated refrigerant gas in the inner tank.

【0010】なお、本発明で用いるサーマルアンカは、
内槽と外槽間に設置される輻射熱シールド板の冷却源と
しても利用することができる。
The thermal anchor used in the present invention is
It can also be used as a cooling source for the radiant heat shield plate installed between the inner tank and the outer tank.

【0011】[0011]

【作用】蓄冷材を内蔵させるとサーマルアンカの熱容量
が大きくなる。
[Function] When the regenerator material is incorporated, the thermal capacity of the thermal anchor increases.

【0012】一方、内槽に収納する冷媒液(LHeやL
2 )は常時少しずつ蒸発し、これによって生じた蒸発
ガスが内槽上端の冷媒導出入口に向かう途中にサーマル
アンカ部を冷却する。このとき、サーマルアンカは熱容
量の大きいものほど蒸発ガスの顕熱を多く吸収するの
で、LN2 槽や冷凍機による冷却を行わなくても自己貯
蔵の冷熱で外部からの熱侵入を喰い止めることができ
る。
On the other hand, the refrigerant liquid (LHe or L
N 2 ) always evaporates little by little, and the vaporized gas generated thereby cools the thermal anchor portion on the way to the refrigerant outlet port at the upper end of the inner tank. At this time, the greater the heat capacity of the thermal anchor, the more sensible heat of the vaporized gas is absorbed, so that it is possible to prevent the intrusion of heat from the outside by the cold heat of self-storage without cooling by the LN 2 tank or the refrigerator. it can.

【0013】また、熱容量に余力があれば余分に貯えた
冷熱を他の個所にまわすことができるので、従来とは正
反対にサーマルアンカを冷却源として輻射熱シールド板
等を冷却することも可能になる。
Further, if there is a surplus in the heat capacity, the stored cold heat can be diverted to other places, so that it is possible to cool the radiant heat shield plate and the like by using the thermal anchor as a cooling source, which is contrary to the conventional case. .

【0014】[0014]

【実施例】図1に、本発明の極低温容器の一具体例を示
す。
FIG. 1 shows a specific example of the cryogenic container of the present invention.

【0015】この極低温容器10は、LHe、LN2
の冷媒液Aを収納する内槽11と、この内槽を囲う外槽
12と、両槽間の真空断熱部13中に設置する輻射熱シ
ールド板14と、内槽の上部から冷媒液収納部に至る槽
壁の途中に設けるサーマルアンカ15とで構成されてい
る。
The cryogenic container 10 includes an inner tank 11 for storing a refrigerant liquid A such as LHe and LN 2 , an outer tank 12 surrounding the inner tank 12, and radiant heat installed in a vacuum heat insulating section 13 between the both tanks. It comprises a shield plate 14 and a thermal anchor 15 provided in the middle of the tank wall from the upper part of the inner tank to the refrigerant liquid storage section.

【0016】ここに示す内槽11は、冷媒液収納部11
aの上部に円筒状の冷媒導出入ポート11bを接続した
形にして冷媒導出入ポート11bの長手方向途中にサー
マルアンカ15を設けてある。この内槽11には超電導
コイル(図示せず)を予め組込んでおく。そのコイルの
大きさや用途次第では11aの部分を中空環状にしてコ
イルを同心的に収納することがある。
The inner tank 11 shown here is a refrigerant liquid storage portion 11
A thermal anchor 15 is provided midway in the longitudinal direction of the refrigerant inlet / outlet port 11b in a form in which a cylindrical refrigerant inlet / outlet port 11b is connected to the upper part of a. A superconducting coil (not shown) is incorporated in the inner tank 11 in advance. Depending on the size and use of the coil, the portion 11a may be formed in a hollow ring shape to accommodate the coil concentrically.

【0017】内槽11を囲う外槽12と輻射熱シールド
板14は、内槽と相似した形にし、外槽の上壁12aに
冷媒導出入ポート11bの上端を接続している。また、
輻射熱シールド板14は上端をサーマルアンカ15の部
分に接続してサーマルアンカによる冷却を行うようにし
ている。
The outer tank 12 surrounding the inner tank 11 and the radiant heat shield plate 14 are similar in shape to the inner tank, and the upper wall 12a of the outer tank is connected to the upper end of the refrigerant inlet / outlet port 11b. Also,
The radiant heat shield plate 14 has its upper end connected to a portion of the thermal anchor 15 for cooling by the thermal anchor.

【0018】サーマルアンカ15は、蓄冷材16をケー
ス17に入れ、そのケースを冷媒導出入ポート11bの
内面(外面でもよい)に溶接して作られている。このサ
ーマルアンカ15は、冷媒導出入ポートの上端から下端
に至る間の熱勾配を考えて適正位置に設置する。例え
ば、80kのアンカーにしたいときには80kの温度が
得られる位置に、20kにしたいときには20kの温度
が得られる位置に設ける。繋留温度の異なるアンカーを
複数個設けるとより効果的である。
The thermal anchor 15 is made by putting a regenerator material 16 in a case 17 and welding the case to the inner surface (or the outer surface) of the refrigerant inlet / outlet port 11b. The thermal anchor 15 is installed at an appropriate position in consideration of the thermal gradient from the upper end to the lower end of the refrigerant inlet / outlet port. For example, it is provided at a position where a temperature of 80k can be obtained when making an anchor of 80k, and at a position where a temperature of 20k can be obtained when making an anchor of 20k. It is more effective to provide a plurality of anchors having different tethering temperatures.

【0019】蓄冷材16は、20k〜80k付近の温度
を保ちたいときにはこの範囲で比熱(体積比熱)の大き
いPbを、また、20k以下では極低温で比熱の大きい
Er3 Ni、Ho1.5 Er1.5 Ruなどを用いるとよ
い。また、これ等の蓄冷材は熱交換性の面で体積比表面
積の大きい微粒子が好ましい。
The regenerator material 16 has a large specific heat (volume specific heat) in this range when it is desired to keep the temperature in the vicinity of 20 to 80 k, and below 20 k, Er 3 Ni, Ho 1.5 Er 1.5 , which has a large specific heat at extremely low temperature. It is preferable to use Ru or the like. In addition, these cold storage materials are preferably fine particles having a large volume specific surface area in terms of heat exchange properties.

【0020】なお、ケース17中には熱伝達を良くする
不活性ガス(N2 又はHe)を併せて封入しておくこと
ができる。
The case 17 may be filled with an inert gas (N 2 or He) which improves heat transfer.

【0021】また、サーマルアンカ15は、冷媒の蒸発
ガスが触れる面に凹凸を付けたり、図2に示すフィン1
8を付けたりすると蒸発ガスとの接触面積が増加して熱
交換が良くなる。
Further, the thermal anchor 15 is provided with irregularities on the surface in contact with the evaporated gas of the refrigerant, or the fin 1 shown in FIG.
When 8 is attached, the contact area with the evaporative gas is increased and heat exchange is improved.

【0022】[0022]

【発明の効果】以上述べたように、本発明の極低温容器
は、サーマルアンカに蓄冷材を具備させて冷媒の蒸発ガ
スによる冷却を行うようにしたので、LN2 槽や冷凍機
等のアンカー専用の冷却源が不要になり、また、余力が
あれば、サーマルアンカを輻射熱シールド板の冷却源と
することも可能になる。
As described above, in the cryogenic container of the present invention, the thermal anchor is provided with the regenerator material for cooling by the evaporative gas of the refrigerant, so that the anchor of the LN 2 tank, the refrigerator or the like is used. A dedicated cooling source becomes unnecessary, and if there is extra power, the thermal anchor can be used as a cooling source for the radiant heat shield plate.

【0023】従って、容器の簡素化、小型化、低コスト
化、維持の手間の削減等が図れると云う効果がある。
Therefore, there are effects that the container can be simplified, downsized, the cost can be reduced, and the maintenance labor can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】フィン付きのサーマルアンカの断面図FIG. 2 is a cross-sectional view of a thermal anchor with fins.

【図3】従来の極低温容器の一例を示す断面図FIG. 3 is a sectional view showing an example of a conventional cryogenic container.

【符号の説明】[Explanation of symbols]

1、11 内槽 11a 冷媒液収納部 11b 冷媒導出入ポート 2、12 外槽 12a 上壁 3、13 真空断熱部 4 輻射熱シールド槽 14 輻射熱シールド板 5、15 サーマルアンカ 6 LN2 槽 16 蓄冷材 17 ケース 18 フィン1, 11 Inner tank 11a Refrigerant liquid storage section 11b Refrigerant inlet / outlet port 2, 12 Outer tank 12a Upper wall 3, 13 Vacuum heat insulating section 4 Radiant heat shield tank 14 Radiant heat shield plate 5, 15 Thermal anchor 6 LN 2 tank 16 Cooling material 17 Case 18 fins

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上部に冷媒液の導出入口を有する内槽と
これを囲う外槽との間に真空断熱部を設け、さらに、外
槽に接続した内槽の上部から内槽の冷媒液収納部に至る
熱伝達経路の途中にサーマルアンカを設けた極低温容器
において、前記サーマルアンカを蓄冷材を内蔵する構造
にして内槽内の蒸発冷媒ガスで冷却するようにしたこと
を特徴とする極低温容器。
1. A vacuum heat insulation section is provided between an inner tank having a refrigerant liquid outlet at the top and an outer tank surrounding the inner tank, and the refrigerant liquid is stored in the inner tank from the upper portion of the inner tank connected to the outer tank. In a cryogenic container provided with a thermal anchor in the middle of the heat transfer path to the heat exchanger, a pole characterized in that the thermal anchor has a structure containing a regenerator material and is cooled by the evaporated refrigerant gas in the inner tank Cryogenic container.
【請求項2】 前記サーマルアンカを、内槽と外槽間に
設置される輻射熱シールド板の冷却源として併用した極
低温容器。
2. A cryogenic container in which the thermal anchor is used as a cooling source for a radiant heat shield plate installed between an inner tank and an outer tank.
JP31503892A 1992-11-25 1992-11-25 Cryogenic vessel Pending JPH06163251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31503892A JPH06163251A (en) 1992-11-25 1992-11-25 Cryogenic vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31503892A JPH06163251A (en) 1992-11-25 1992-11-25 Cryogenic vessel

Publications (1)

Publication Number Publication Date
JPH06163251A true JPH06163251A (en) 1994-06-10

Family

ID=18060680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31503892A Pending JPH06163251A (en) 1992-11-25 1992-11-25 Cryogenic vessel

Country Status (1)

Country Link
JP (1) JPH06163251A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082229A (en) * 2009-10-05 2011-04-21 Hitachi Ltd Conduction-cooled superconducting magnet
WO2017047164A1 (en) * 2015-09-15 2017-03-23 三菱電機株式会社 Superconducting magnet device
WO2018172200A1 (en) * 2017-03-23 2018-09-27 Koninklijke Philips N.V. Thermal bus heat exchanger for superconducting magnet
US11227709B2 (en) 2018-06-27 2022-01-18 Mitsubishi Electric Corporation Superconducting magnet
CN114684506A (en) * 2020-12-29 2022-07-01 北京航天试验技术研究所 Horizontal container for storing cryogenic liquid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082229A (en) * 2009-10-05 2011-04-21 Hitachi Ltd Conduction-cooled superconducting magnet
WO2017047164A1 (en) * 2015-09-15 2017-03-23 三菱電機株式会社 Superconducting magnet device
JPWO2017047164A1 (en) * 2015-09-15 2018-02-01 三菱電機株式会社 Superconducting magnet system
US10614940B2 (en) 2015-09-15 2020-04-07 Mitsubishi Electric Corporation Superconducting magnet device
WO2018172200A1 (en) * 2017-03-23 2018-09-27 Koninklijke Philips N.V. Thermal bus heat exchanger for superconducting magnet
CN110462760A (en) * 2017-03-23 2019-11-15 皇家飞利浦有限公司 Hot bus heat exchanger for superconducting magnet
JP2020513977A (en) * 2017-03-23 2020-05-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Thermal bath heat exchanger for superconducting magnets
US11227709B2 (en) 2018-06-27 2022-01-18 Mitsubishi Electric Corporation Superconducting magnet
CN114684506A (en) * 2020-12-29 2022-07-01 北京航天试验技术研究所 Horizontal container for storing cryogenic liquid

Similar Documents

Publication Publication Date Title
KR101046323B1 (en) Cryogenic cooling method and apparatus for high temperature superconductor devices
JP2008025858A (en) Subcooled low-temperature device
US6804968B2 (en) Cryostat configuration with improved properties
JP2008170145A (en) Cryostat for transporting cooled device at cryogenic temperature
JPH06163251A (en) Cryogenic vessel
JPH046085A (en) Device for cooling beverage component in automatic beverage supply device
JP3096969B2 (en) Reliquefaction equipment for liquefied gas for cooling of physics and chemistry equipment
KR20220130924A (en) Cooling control device for superconducting fault current limiter
US3436926A (en) Refrigerating structure for cryostats
US4601175A (en) Reduction of water condensation on neck tubes of cryogenic containers
JP4360037B2 (en) Cryostat
JP3417797B2 (en) Superfluid helium generator
JPH11233839A (en) Low-temperature thermostat
JPH064567Y2 (en) Cryogenic container
JPS624309A (en) Cryogenic apparatus
JPH06101946A (en) Cryogenic container
US5385027A (en) Continuous flow cryogen sublimation cooler
JPS62262408A (en) Superconducting device
JPS60155099A (en) Low-temperature liquid container
JPH0322683B2 (en)
JPH05110146A (en) Cryostat
JP2982310B2 (en) Heat shield plate cooling system
JPS60196561A (en) Superfluid helium generator
JPS61159066A (en) Cryostat
JPH03248580A (en) Cooling method of oxide superconductor