JPS62262408A - Superconducting device - Google Patents
Superconducting deviceInfo
- Publication number
- JPS62262408A JPS62262408A JP61104625A JP10462586A JPS62262408A JP S62262408 A JPS62262408 A JP S62262408A JP 61104625 A JP61104625 A JP 61104625A JP 10462586 A JP10462586 A JP 10462586A JP S62262408 A JPS62262408 A JP S62262408A
- Authority
- JP
- Japan
- Prior art keywords
- container
- helium
- refrigerant
- injection port
- liquid helium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002347 injection Methods 0.000 claims abstract description 29
- 239000007924 injection Substances 0.000 claims abstract description 29
- 239000003507 refrigerant Substances 0.000 claims description 17
- 239000001307 helium Substances 0.000 abstract description 66
- 229910052734 helium Inorganic materials 0.000 abstract description 66
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 66
- 239000007788 liquid Substances 0.000 abstract description 45
- 239000007789 gas Substances 0.000 abstract description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 12
- 230000005484 gravity Effects 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 6
- 230000009545 invasion Effects 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/08—Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
- F17C3/085—Cryostats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0128—Shape spherical or elliptical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0626—Multiple walls
- F17C2203/0629—Two walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/068—Special properties of materials for vessel walls
- F17C2203/0687—Special properties of materials for vessel walls superconducting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/014—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/016—Noble gases (Ar, Kr, Xe)
- F17C2221/017—Helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は超電導装置に係り、特に医療用核磁気共鳴−コ
ンピュータ断層撮影装置(以下NMR−CT装置と記す
)に使用するに好適な超電導装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superconducting device, and particularly a superconducting device suitable for use in a medical nuclear magnetic resonance-computed tomography device (hereinafter referred to as an NMR-CT device). Regarding.
NbTi、Nb5Sn の金属を極低温状態(4,2K
近辺)にすると電気抵抗が零となる。Metals such as NbTi and Nb5Sn are heated at extremely low temperatures (4.2K).
(near), the electrical resistance becomes zero.
いわゆる超電導状態となることが知られている。It is known that it becomes a so-called superconducting state.
この現象を利用すれば強力にして安定な静磁界を、電力
を損失することなく容易に発生することができる。By utilizing this phenomenon, a strong and stable static magnetic field can be easily generated without loss of power.
上記した全屈を利用して形成され、強力な磁界を、安定
に、かつ、W1カを損失することなく発生可能な超電導
磁石は、核磁気共鳴装置、磁気ン・ヌ上列車、荷電粒子
朶束装置等産業上静磁界発生装置としての応用分野が広
がりつつある。特に、高均一高安定な静磁界が要求され
る医療用NMR−CT装置には、超電導コイルが最適で
あり、近年室に脚光を浴びてきている。Superconducting magnets, which are formed using the above-mentioned total bending and can generate a strong magnetic field stably and without loss of W1 power, are used in nuclear magnetic resonance devices, magnetic flux trains, and charged particle planets. The field of application as an industrial static magnetic field generating device such as a flux device is expanding. In particular, superconducting coils are most suitable for medical NMR-CT devices that require a highly uniform and highly stable static magnetic field, and have been in the spotlight in recent years.
ところで、上記した産業用の超電導コイルにおいては1
発生静磁界空間の利゛用の容易さより第2図に示すよう
に、磁石の磁界中心軸方向が水平方向に設置されている
超電導装置(以下、横置型超電導装置と呼ぶ)が広く使
用されている。即ち、第2図に示すように、超電導磁石
は極低温冷媒である液体ヘリウム(4,2K)の冷媒中
で初めて安定に動作させることができるため、ヘリウム
容器1の中に設置され、液体ヘリウムに浸漬されている
。この冷却媒体である液体ヘリウムは、常温(300K
)からの熱侵入に対して熱的にしゃ断されている必要が
あり1通常はヘリウム容器1の周囲を約20にのガスヘ
リウムシールド板2、約80にの液体窒素シールド板3
にて覆い、更にそれらを断熱真空容器4に収納され、真
空断熱にて熱侵入量をおさえ、高価な液体ヘリウムの蒸
発量を極力おさえる構i?iとなっている(このような
極低温状態を維持するものとしては、特公昭54−43
:I5’l1号公報等で提案されている)、尚、5は磁
界利用空間である。By the way, in the industrial superconducting coil mentioned above, 1
As shown in Fig. 2, superconducting devices in which the central axis of the magnetic field of the magnet is installed in the horizontal direction (hereinafter referred to as horizontal superconducting devices) are widely used because of the ease of use of the generated static magnetic field space. There is. That is, as shown in Fig. 2, since superconducting magnets can only be operated stably in liquid helium (4.2K), which is an extremely low temperature refrigerant, they are installed in a helium container 1. is immersed in. This cooling medium, liquid helium, is kept at room temperature (300K).
) 1 Usually, the helium container 1 is surrounded by a gas helium shield plate 2 of about 20 mm and a liquid nitrogen shield plate 3 of about 80 mm.
Furthermore, they are housed in an insulated vacuum container 4, which suppresses the amount of heat intrusion through vacuum insulation, and minimizes the amount of evaporation of expensive liquid helium. i (To maintain such an extremely low temperature state, the
: Proposed in Publication No. I5'l1 etc.), where 5 is a magnetic field utilization space.
一方、超電導コイルを動作させるためには、まず、液体
ヘリウム温度まで超電導コイルを冷却し、主流を超電導
コイルに通電して励磁する必要がある。また、ヘリウム
容器1内の液体ヘリウムは蒸発するため液体ヘリウム量
が減少する恐れがあり、液体ヘリウムを供給する必要が
あると共に、蒸発したガスヘリウムを放出してやらねば
ならない。On the other hand, in order to operate the superconducting coil, it is first necessary to cool the superconducting coil to the temperature of liquid helium, and then energize the superconducting coil by passing current through the main stream. Further, since the liquid helium in the helium container 1 evaporates, there is a risk that the amount of liquid helium will decrease, and it is necessary to supply liquid helium and also to discharge the evaporated gas helium.
これを行うために、通常、超電導装置には冷媒である液
体ヘリウムの注入管、蒸発したガスヘリウムの放出管、
電流通電用のパワーリード10等を備えている。そして
、これら液体ヘリウムの注入管、ガスヘリウムの放出管
、及びパワーリード10等は、超電導装置に設けられて
いる液体ヘリウム注入用ポート6を介して導出されてい
る。また、液体ヘリウム注入用ポート6の内筒7は、液
体ヘリウム注入用ポート6の常温部(約300 K)と
4.2 Kのヘリウム容器部1を結合するものであり、
ヘリウム容器部1への熱侵入量を極力へらすため、熱伝
導長を充分に長くするとともに。To do this, superconducting devices typically include an injection tube for the coolant liquid helium, a discharge tube for the evaporated gas helium,
It is equipped with a power lead 10 for supplying current. These liquid helium injection tubes, gas helium discharge tubes, power leads 10, and the like are led out through liquid helium injection ports 6 provided in the superconducting device. Further, the inner cylinder 7 of the liquid helium injection port 6 connects the normal temperature part (approximately 300 K) of the liquid helium injection port 6 to the 4.2 K helium container part 1,
In order to reduce the amount of heat intrusion into the helium container part 1 as much as possible, the heat conduction length is made sufficiently long.
20にのガスヘリウムシールド板2からのサーマルアン
カ8、及び約80にの液体!!素シールド板3からのサ
ーマルアンカ9を設けている。Thermal anchor 8 from the gas helium shield plate 2 at 20 and the liquid at about 80! ! A thermal anchor 9 from the bare shield plate 3 is provided.
ところで、上述した従来技術は、病院等の狭い部屋でも
収納可能であると共に、極低温冷媒の注入作業等も容易
に行える超電導装置とするために。By the way, the above-mentioned conventional technology is intended to provide a superconducting device that can be stored even in a narrow room such as a hospital, and can also easily perform operations such as injection of cryogenic refrigerant.
超電導コイルの磁界中心軸が水平方向となるように設置
すると共に、これを極低温冷媒中に浸漬して収納するほ
ぼ円筒状のヘリウム容器1と連通し。The superconducting coil is installed so that the central axis of its magnetic field is in the horizontal direction, and communicates with a substantially cylindrical helium container 1 in which it is immersed in a cryogenic refrigerant.
少くともこれに極低温冷媒を注入するための液体ヘリウ
ム注入用ポート6を装置の周方向に傾斜させている。こ
の時、液体ヘリウム注入用ポート6のサーマルアンカ8
.及び9は1通常の垂直ポートと同様液体ヘリウム注入
用ポート内筒7に対し垂直に設置されている。これは、
常温部から80にサーマルアンカ9.80にサーマルア
ンカ9がら20にサーマルアンカ8.20にサーマルア
ンカ8から4.2 K部までの伝熱距離を最長にするた
めである。At least a liquid helium injection port 6 for injecting cryogenic refrigerant into this is inclined in the circumferential direction of the device. At this time, the thermal anchor 8 of the liquid helium injection port 6
.. 1 and 9 are installed perpendicularly to the liquid helium injection port inner cylinder 7, like a normal vertical port. this is,
This is to maximize the heat transfer distance from the normal temperature part to the thermal anchor 8 to 4.2K part.
しかし、液体ヘリウム注入用ポート内筒7は。 However, the liquid helium injection port inner cylinder 7.
ガスヘリウムで満たされており、ガスヘリウムは物性的
に温度の低いものが重力鉛直下方にたまり、温度の高い
ものが上方にたまることが明らかになった。そのため、
液体ヘリウム注入用ポート内筒7の温度分布は、内筒7
に対し直角方向に等温度線を持つものではなく、ガスヘ
リウムとの熱交換により1重力鉛直方向に対し直角方向
(水平方向)に等温度線を持つものとなることがわかっ
た。その場合、従来の液体ヘリウム注入用ポート内57
に対し直角方向にサーマルアンカをとったものは。It is filled with gas helium, and it has been revealed that the physical properties of gas helium with lower temperatures accumulate in the downward direction of gravity, and higher temperatures accumulate in the upper part. Therefore,
The temperature distribution of the liquid helium injection port inner cylinder 7 is as follows:
It was found that heat exchange with gas helium causes isothermal lines to be perpendicular (horizontal) to the vertical direction of 1 gravity, rather than having isothermal lines perpendicular to the direction of gravity. In that case, the conventional liquid helium injection port 57
The thermal anchor is placed perpendicular to .
重力船方向の下方にある部分より、ガスヘリウムの対流
と熱交換で直接4.2 K部分へ熱が侵入し、大きな熱
侵入量となるという問題点がある。There is a problem in that heat directly enters the 4.2 K section from the section below in the direction of the gravity ship through gas helium convection and heat exchange, resulting in a large amount of heat intrusion.
本発明は上述の点に鑑み成されたもので、その〔1的と
するところは、冷媒注入用ポートを装置の周方向に傾斜
させたものであっても、熱侵入量を低減し、液体ヘリウ
ム、蒸発量の少ない経済的な超電導装置を提供すること
にある。The present invention has been made in view of the above-mentioned points, and its first object is to reduce the amount of heat intrusion and to reduce the amount of liquid injected even if the refrigerant injection port is inclined in the circumferential direction of the device. The object of the present invention is to provide an economical superconducting device with a small amount of helium evaporation.
本発明は容器の中心軸より垂直真上における位置に対し
て所定角度を有する様に容器の周方向に設置されている
冷媒注入用ポートの常温部からの熱侵入を低減するため
に設けられたサーマルアンカを、容器の水平軸とほぼ平
行に設けることにより所期の目的を達成するようになし
たものである。The present invention is provided in order to reduce heat intrusion from the normal temperature part of a refrigerant injection port that is installed in the circumferential direction of the container so as to have a predetermined angle with respect to a position vertically above the center axis of the container. The desired purpose is achieved by providing the thermal anchor approximately parallel to the horizontal axis of the container.
上記構成とすることにより、サーマルアンカには温度差
が生じることがないので、冷媒注入用ポート内筒内のガ
スヘリウムの対流と熱交換があっても、ヘリウム容器部
分へ直接熱侵入がなく、液体ヘリウムの蒸発量を少なく
することができる。With the above configuration, no temperature difference occurs in the thermal anchor, so even if there is convection and heat exchange of gas helium in the inner cylinder of the refrigerant injection port, there is no direct heat intrusion into the helium container. The amount of evaporation of liquid helium can be reduced.
以下1図面の実施例に基づいて本発明の詳細な説明する
。The present invention will be described in detail below based on an embodiment shown in one drawing.
第1図に本発明の一実施例を示す、該図の如く。FIG. 1 shows an embodiment of the present invention, as shown in the figure.
本実施例の超電導装置も超電導コイルを液体ヘリウム1
2中に浸漬して収納するヘリウム容器1と、該ヘリウム
容器1の周囲を覆い液体ヘリウム12への常温からの熱
侵入をしゃ断するガスヘリウムシールド板2.及び液体
窒素シールド板3と、これらを収納する断熱真空容器4
とから概略構成され、そして、本実施例では液体ヘリウ
ム注入用ポート6を周方向に傾斜(超電導装置の垂直方
向に対してほぼ45″傾斜)させて設置していると共に
、液体ヘリウム注入用ポート内筒7のガスヘリウム20
にシールドからのサーマルアンカ8.液体窒素約80に
シールドからのサーマルアンカ9を、重力鉛直方向に対
してほぼ垂直(水平)方向に設置している。The superconducting device of this example also uses liquid helium 1 as a superconducting coil.
A helium container 1 that is immersed and stored in liquid helium 1 , and a gas helium shield plate 2 that covers the helium container 1 and blocks heat from entering the liquid helium 12 from room temperature. and a liquid nitrogen shield plate 3, and an insulated vacuum container 4 that houses them.
In this embodiment, the liquid helium injection port 6 is installed obliquely in the circumferential direction (approximately 45'' incline with respect to the vertical direction of the superconducting device), and the liquid helium injection port Gas helium 20 in inner cylinder 7
Thermal anchor from the shield 8. Thermal anchor 9 from the shield is installed in about 80 mm of liquid nitrogen in a direction substantially perpendicular (horizontal) to the vertical direction of gravity.
、このように構成することにより、液体ヘリウム注入用
ポート内筒7内のガスヘリウムの対流と熱交換により直
接侵入する熱を防ぎ、液体ヘリウム蒸発量の少ない経済
的な、超電導装置とすることができる。尚、その際のサ
ーマルアンカ8,9の角度は、水平方向に対し±20°
の範囲であれば。With this configuration, direct intrusion of heat can be prevented by convection and heat exchange of gas helium in the liquid helium injection port inner cylinder 7, and an economical superconducting device with a small amount of liquid helium evaporation can be achieved. can. In addition, the angle of the thermal anchors 8 and 9 at that time is ±20° with respect to the horizontal direction.
If it is within the range of .
同様な効果が得られる。A similar effect can be obtained.
また、NMR−CT装置で、永久電流モードで運転する
ものは、所定の電流を電流リード10にて流したあと、
電流リード10を液体ヘリウム注入用ポート6より取り
はずすことができる。電流リード10を取りはずしたあ
とは、液体ヘリウム注入用ポート6内の空間があくため
、内部の対流を防止するための輻射シールド板を通常挿
入するが、液体ヘリウム注入用ポート6の上に閉止フラ
ンジを付け、輻射シールド板13をほぼ水平方向に設置
するとより効果的である。In addition, in NMR-CT devices that operate in persistent current mode, after passing a predetermined current through the current lead 10,
The current lead 10 can be removed from the liquid helium injection port 6. After removing the current lead 10, there will be a space inside the liquid helium injection port 6, so a radiation shield plate is usually inserted to prevent internal convection, but a closing flange is placed above the liquid helium injection port 6. It is more effective to install the radiation shield plate 13 in a substantially horizontal direction.
以上説明した本発明の超電導装置によれば、容器の中心
軸より垂直真上における位置に対して所定角度を有する
様に容器の周方向に設置されている冷媒注入用ポートの
常温部からの熱侵入を低減するために設けら九たサーマ
ルアンカを、容器の水平軸とほぼ平行に設けたものであ
るから、設置空間の十分とれない病院等の狭い部屋であ
っても収納可能であることは勿論、液体ヘリウム蒸発量
の少なく経済的なので、此種超電導装置に使用する場合
には非常に有効である。According to the superconducting device of the present invention described above, heat from the normal temperature portion of the refrigerant injection port that is installed in the circumferential direction of the container at a predetermined angle with respect to the position vertically above the center axis of the container. The thermal anchors installed to reduce intrusion are placed almost parallel to the horizontal axis of the container, so it can be stored even in small rooms such as hospitals where there is not enough installation space. Of course, since the amount of liquid helium evaporates is small and it is economical, it is very effective when used in this type of superconducting device.
第1図は本発明の超電導装置の一実施例を示す断面図、
第2図は従来の超電導装置を示す断面図である。
1・・・ヘリウム容器、2・・・ガスヘリウムシールド
板、3・・・液体窒素シールド板、4・・・断熱真空容
器、5・・磁界利用空間、6・・・液体ヘリウム注入用
ポート。
7・・・液体ヘリウム注入用ポート内筒、8・・・20
にガスヘリウムシールド板からのサーマルアンカ、9・
・・80に液体窒素シールド板がらのサーマルアンカ、
10・・・電流リード、11・・・閉止フランジ。
12・・・液体ヘリウム。FIG. 1 is a sectional view showing an embodiment of the superconducting device of the present invention;
FIG. 2 is a sectional view showing a conventional superconducting device. DESCRIPTION OF SYMBOLS 1... Helium container, 2... Gas helium shield plate, 3... Liquid nitrogen shield plate, 4... Heat insulation vacuum container, 5... Magnetic field utilization space, 6... Port for liquid helium injection. 7...Liquid helium injection port inner cylinder, 8...20
Thermal anchor from gas helium shield plate, 9.
...80 has a thermal anchor made of liquid nitrogen shield plate,
10... Current lead, 11... Closing flange. 12...Liquid helium.
Claims (1)
ように設置すると共に、これを極低温冷媒中に浸漬して
収納するほぼ円筒状の冷媒容器と、該冷媒容器の周囲を
覆い外部と熱的にしや断する断熱シールド板と、これら
を収納する断熱真空容器と、前記冷媒容器と連通し、少
くともこれに極低温冷媒を注入するための冷媒注入用ポ
ートと、該冷媒注入用ポートの常温部からの熱侵入を低
減するために設けられたサーマルアンカとを備え、前記
冷媒注入用ポートが、前記容器の中心軸より垂直真上に
おける位置に対して所定角度を有する様に容器の周方向
に設置されている超電導装置において、前記サーマルア
ンカを容器の水平軸とほぼ平行に設けたことを特徴とす
る超電導装置。 2、前記サーマルアンカは、前記水平軸に対して±20
度の傾斜角範囲内に設置されていることを特徴とする特
許請求の範囲第1項記載の超電導装置。[Scope of Claims] 1. A substantially cylindrical refrigerant container in which a superconducting coil is installed so that its magnetic field center axis is horizontal, and is immersed in a cryogenic refrigerant; and the refrigerant container. a heat insulating shield plate that covers the surrounding area and thermally isolates it from the outside, a heat insulating vacuum container that houses these, and a refrigerant injection port that communicates with the refrigerant container and injects at least a cryogenic refrigerant into the refrigerant container. , a thermal anchor provided to reduce heat intrusion from the room temperature part of the refrigerant injection port, the refrigerant injection port being at a predetermined angle with respect to a position vertically directly above the central axis of the container. What is claimed is: 1. A superconducting device installed in the circumferential direction of a container such that the thermal anchor is provided substantially parallel to a horizontal axis of the container. 2. The thermal anchor is ±20 relative to the horizontal axis.
2. The superconducting device according to claim 1, wherein the superconducting device is installed within an inclination angle range of .degree.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61104625A JPS62262408A (en) | 1986-05-09 | 1986-05-09 | Superconducting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61104625A JPS62262408A (en) | 1986-05-09 | 1986-05-09 | Superconducting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62262408A true JPS62262408A (en) | 1987-11-14 |
JPH0511403B2 JPH0511403B2 (en) | 1993-02-15 |
Family
ID=14385623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61104625A Granted JPS62262408A (en) | 1986-05-09 | 1986-05-09 | Superconducting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62262408A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110254938A (en) * | 2019-06-28 | 2019-09-20 | 查特低温设备(成都)有限公司 | A kind of low-temperature (low temperature) vessel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0541103U (en) * | 1991-11-06 | 1993-06-01 | 株式会社小松製作所 | PTC thermistor device |
-
1986
- 1986-05-09 JP JP61104625A patent/JPS62262408A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110254938A (en) * | 2019-06-28 | 2019-09-20 | 查特低温设备(成都)有限公司 | A kind of low-temperature (low temperature) vessel |
Also Published As
Publication number | Publication date |
---|---|
JPH0511403B2 (en) | 1993-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4417247B2 (en) | MRI system with superconducting magnet and refrigeration unit | |
US8907594B2 (en) | Cooling systems and methods | |
US7764153B2 (en) | Magnetic field generator | |
US6332324B1 (en) | Cryostat and magnetism measurement apparatus using the cryostat | |
KR20020073428A (en) | Cryogenic cooling system with cooldown and normal modes of operation | |
JP2005116956A (en) | Superconducting magnet for mri | |
US6804968B2 (en) | Cryostat configuration with improved properties | |
EP2860781B1 (en) | Cooling container | |
US4680936A (en) | Cryogenic magnet systems | |
US6640552B1 (en) | Cryogenic superconductor cooling system | |
JP2013008975A (en) | Superconducting magnet systems | |
JP2005344991A (en) | Cryogenic cryostat | |
JPS62261866A (en) | Helium cooling device | |
JPS62262408A (en) | Superconducting device | |
JP2004259925A (en) | Conduction cooling type superconductive magnet device for nuclear magnetic resonator | |
JPS6163007A (en) | Superconductive device | |
JP2003303713A (en) | Cryogenic device | |
JP2949003B2 (en) | Cryogenic equipment | |
US20220068529A1 (en) | Apparatus and System to Enhance Thermal Gradients in Cryogenic Devices | |
JPH06163251A (en) | Cryogenic vessel | |
JPH11176630A (en) | Superconduction magnetic system for single crystal growth | |
JP2001066354A (en) | Cryogenic container for superconducting quantum interference device storage | |
JPS6229113A (en) | Superconducting device | |
JPH0511646B2 (en) | ||
JPS61208206A (en) | Superconductive magnet |