JP2001066354A - Cryogenic container for superconducting quantum interference device storage - Google Patents

Cryogenic container for superconducting quantum interference device storage

Info

Publication number
JP2001066354A
JP2001066354A JP24254999A JP24254999A JP2001066354A JP 2001066354 A JP2001066354 A JP 2001066354A JP 24254999 A JP24254999 A JP 24254999A JP 24254999 A JP24254999 A JP 24254999A JP 2001066354 A JP2001066354 A JP 2001066354A
Authority
JP
Japan
Prior art keywords
container
cooling
heat
shield plate
heat shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24254999A
Other languages
Japanese (ja)
Inventor
Norihide Saho
典英 佐保
Hiroyuki Tanaka
弘之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24254999A priority Critical patent/JP2001066354A/en
Publication of JP2001066354A publication Critical patent/JP2001066354A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cryogenic container for SQUID(Superconducting Quantum Interference Device) element storage which eliminates the vaporization of a cooling medium for cooling SQUID elements, uniformly cool a group of many arranged SQUID elements, and can be arranged at all directional attitudes. SOLUTION: The cryogenic container 1 for SQUID element storage consists of an internal container 4 which contains SQUID elements and a cooling medium 3 having a higher solidification point than the cooling temperature of the SQUID elements 2 and cooling the SQUID elements 2, a heat conductor 30 which comes into contact with the outer peripheral part of the internal container 4 to cover the internal container 4, a heat shield plate 13b which covers the internal container 4 containing the heat conductor 30, an external container 6 which covers the heat shield plate 13b and forms a heat insulation space 5 with the heat shield plate 13b, and a pulse tube refrigerator 89 which is provided above the external container 6 and cools the heat conductor 30 and heat shield plate 13b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人体或いは生物体
等の被検体物から発生する磁場の計測を行う医療用診断
装置及び材料の透磁率を測定する物性測定装置に使用さ
れ、磁気的な信号伝送のトランジューサとして用いる超
電導量子干渉デバイスを格納することに適した超電導量
子干渉デバイス格納用極低温容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for a medical diagnostic apparatus for measuring a magnetic field generated from an object such as a human body or a living body, and a physical property measuring apparatus for measuring the magnetic permeability of a material. The present invention relates to a cryogenic container for storing a superconducting quantum interference device suitable for storing a superconducting quantum interference device used as a transducer for signal transmission.

【0002】[0002]

【従来の技術】超電導量子干渉デバイス(Sujperconduct
ing Quantum Interference Devices、以下、SQUID素子
と略す)とは、冷却手段の液体ヘリウムや液体窒素等に
より断熱容器(クライオスタット等)内で極低温状態に
維持され、ループ内にジョセフソン接合を含む超電導ル
ープであるSQUID素子ループに直流電流をバイアス電流
として印加して駆動し、このSQUID素子ループ内に、ピ
ックアップコイルや入力コイル等を介して、外部からの
磁束を結合して印加すると、SQUID素子ループに周回電
流が誘起され、ループ内のジョセフソン接合における量
子的な干渉効果により、印加された外部磁束の微弱な変
化を出力電圧の大きな変化に変換するトランデューサと
して動作することことを利用して、微少磁束変化を測定
する素子である。
[Prior Art] Superconducting quantum interference device (Sujperconduct
ing Quantum Interference Devices (hereinafter abbreviated as SQUID element) is a superconducting loop that is maintained at a very low temperature in an insulated container (such as a cryostat) by liquid helium or liquid nitrogen as a cooling means and includes a Josephson junction in the loop. When a DC current is applied as a bias current to the SQUID element loop and driven, and an external magnetic flux is coupled and applied to the SQUID element loop via a pickup coil, an input coil, and the like, the SQUID element loop is applied to the SQUID element loop. By utilizing the fact that a circulating current is induced and acts as a transducer that converts a small change in the applied external magnetic flux into a large change in the output voltage due to the quantum interference effect at the Josephson junction in the loop, This is an element for measuring a minute magnetic flux change.

【0003】したがって、ジョセフソン接合を超電導状
態にするために、超電導発生温度以下に冷却する必要が
ある。このためSQUID素子をSQUID素子格納用極低温容器
内の液体ヘリウムや液体窒素の冷却媒体の中に侵漬して
冷却する。又は、SQUID素子を直接に冷却手段の冷凍機
で冷却する構造がある。
Therefore, in order to bring the Josephson junction into a superconducting state, it is necessary to cool the junction below the superconducting generation temperature. Therefore, the SQUID element is immersed in a cooling medium of liquid helium or liquid nitrogen in the cryogenic container for storing the SQUID element and cooled. Alternatively, there is a structure in which the SQUID element is directly cooled by a refrigerator as a cooling means.

【0004】被検体物とSQUID素子格納用極低温容器と
は、外部の磁場から遮断するためパーマロイ等の強磁性
体で囲んで構成した磁気シールド室内に配置して被検体
物から発生する磁束をSQUID素子で計測する。
An object and a cryogenic container for storing a SQUID element are arranged in a magnetically shielded room surrounded by a ferromagnetic material such as permalloy for shielding from an external magnetic field to generate a magnetic flux generated from the object. Measure with a SQUID element.

【0005】液体ヘリウムや液体窒素の冷却媒体の中に
侵漬して冷却する従来のSQUID素子格納用極低温容器
は、特開平7ー321382号公報に記載された極低温
断熱容器や特開平7ー321382号公報に記載された
極低温断熱容器がある。
A conventional cryogenic container for storing a SQUID element, which is cooled by immersion in a cooling medium of liquid helium or liquid nitrogen, is a cryogenic heat insulating container described in JP-A-7-321382 or a cryogenic container described in JP-A-7-321382. JP-A-321382 discloses a cryogenic heat insulating container.

【0006】液体ヘリウム等の液化冷媒中に侵漬して冷
却する従来のSQUID素子格納用極低温容器では、SQUID素
子群を冷媒中に埋没させて冷却するので、SQUID素子群
を同一温度に均一に冷却できるが、格納用極低温容器は
室温から極低温部への熱侵入があり、格納用極低温容器
を真空断熱容器で構成し極力熱侵入を小さくしている
が、液体ヘリウムが徐々に蒸発する。このため、冷媒で
ある液体ヘリウムを毎週毎に補充する必要があり、この
充填作業が煩雑で、冷媒が高価な液体ヘリウムであるの
で運転費用が増加する問題がある。
In a conventional cryogenic container for storing a SQUID element, which is immersed and cooled in a liquefied refrigerant such as liquid helium, the SQUID element group is cooled by being buried in the refrigerant, so that the SQUID element group is kept at the same temperature. Although the cryogenic container for storage has heat intrusion from room temperature to the cryogenic part, the cryogenic container for storage is composed of a vacuum insulated container to minimize the heat infiltration. Evaporate. For this reason, it is necessary to replenish the liquid helium, which is a refrigerant, every week, and this charging operation is complicated, and there is a problem that the operation cost increases because the refrigerant is expensive liquid helium.

【0007】これを解決するためには、特開平7ー32
1382号公報に記載された医療用の超電導磁石を使用
した核磁気共鳴画像処理装置は、超電導磁石を冷却する
液体ヘリウムの蒸発量を抑制するために、真空断熱され
た低温容器に冷凍機を組み込み、室温から極低温部への
熱侵入を冷凍機の寒冷で冷却し、液体ヘリウムの蒸発量
を小さくする構成になっている。
[0007] To solve this, Japanese Patent Laid-Open No. 7-32 is disclosed.
The nuclear magnetic resonance imaging apparatus using a medical superconducting magnet described in Japanese Patent No. 1382 incorporates a refrigerator in a vacuum-insulated low-temperature container in order to suppress the amount of liquid helium that cools the superconducting magnet. In addition, the heat infiltration from the room temperature to the extremely low temperature portion is cooled by the cooling of the refrigerator to reduce the evaporation amount of the liquid helium.

【0008】しかし、この構成では、半年毎に液体ヘリ
ウムを補充する必要があり、この充填作業が煩雑で、か
つ地震等で真空断熱容器の真空が破壊した場合、格納極
低温容器内の液体ヘリウムが瞬時に蒸発してなくなり、
容器内の温度が上昇して計測ができなくなる問題があ
る。
However, in this configuration, it is necessary to replenish the liquid helium every six months, and this filling operation is complicated, and when the vacuum of the vacuum insulated container is broken due to an earthquake or the like, the liquid helium in the stored cryogenic container is lost. Disappears instantaneously,
There is a problem that the temperature inside the container rises and measurement becomes impossible.

【0009】また、格納極低温容器を傾けて使用した
り、逆さまに向けて下方から測定する場合、液体ヘリム
等の冷却冷却媒体の液面が傾きが素子群の頭が露出して
素子の冷却不足になったり、容器からこぼれたりして測
定できない問題があった。
In addition, when the storage cryogenic container is used at an angle or is measured upside down from below, the liquid surface of a cooling cooling medium such as a liquid helm is inclined so that the head of the element group is exposed and the element is cooled. There was a problem that it could not be measured due to lack or spillage from the container.

【0010】上記問題を解決する方法として、低温工
学、28巻、8号(1993年) 430頁に記載され
た、SQUID素子を冷凍機の寒冷で直接冷却するSQUID素子
格納用極低温容器では、冷凍機の寒冷で素子を冷却する
場合、金属等の固体で構成した素子冷却支持体を冷凍機
の寒冷で冷却し、この冷却支持体を介して真空中で素子
を冷却する。
As a method for solving the above-mentioned problem, a cryogenic container for storing a SQUID element for directly cooling the SQUID element by refrigeration of a refrigerator described in Low Temperature Engineering, Vol. 28, No. 8, page 430 (1993) When the element is cooled by the cooling of the refrigerator, the element cooling support made of a solid such as a metal is cooled by the cooling of the refrigerator, and the element is cooled in vacuum through the cooling support.

【0011】しかし、SQUID素子では微小磁束を測定す
るために使用するのでSQUID素子近傍の冷却支持体は測
定磁束による渦電流の発生を防止するため非電導体で構
成しなければならず、当然この非電導体熱伝導率は小さ
い。しかも、SQUID素子は保守点検、交換する場合を考
え、冷却支持体から容易にSQUID素子を脱着できる構造
が必要で冷却支持体にネジ等で軽く支持するため、冷却
支持体とSQUID素子との伝熱接触程度がそれぞれのSQUID
素子について一定に制御できない。このため、それぞれ
のSQUID素子の冷却温度にばらつきが生じる問題があ
る。
However, since the SQUID element is used to measure a small magnetic flux, the cooling support near the SQUID element must be made of a non-conductor to prevent the generation of eddy current due to the measured magnetic flux. Non-conductor thermal conductivity is small. In addition, in consideration of maintenance and inspection and replacement of the SQUID element, a structure that allows the SQUID element to be easily attached to and detached from the cooling support is necessary.Since the SQUID is lightly supported on the cooling support with screws, the transmission between the cooling support and the SQUID element is required. The degree of thermal contact is different for each SQUID
The element cannot be controlled constantly. For this reason, there is a problem that the cooling temperature of each SQUID element varies.

【0012】また、冷却支持体およびSQUID素子本体
は、真空中に配置されているため、冷却支持体およびSQ
UID素子本体には、この温度よりも高い温度の周囲の構
成体から輻射熱が侵入し、この輻射熱の大きさは、配置
位置、受熱面面積が異なるので、冷却支持体およびSQUI
D素子本体に浸入熱量にばらつきが生じ、このため、そ
れぞれのSQUID素子の冷却温度にばらつきが生じる問題
がある。
Further, since the cooling support and the SQUID element body are arranged in a vacuum, the cooling support and the SQUID element are arranged in a vacuum.
Radiation heat enters the UID element body from surrounding components at a temperature higher than this temperature, and the size of the radiation heat varies depending on the arrangement position and the heat receiving surface area.
There is a problem in that the amount of infiltration heat varies in the D element body, and thus the cooling temperature of each SQUID element varies.

【0013】SQUID素子の感度は冷却温度に敏感である
ので、これらのようにSQUID素子温度にばらつきがある
と、SQUID素子群のSQUID素子間に感度のばらつきが生
じ、測定精度が大幅に低下する重要な問題がある。
Since the sensitivity of the SQUID element is sensitive to the cooling temperature, if the SQUID element temperature fluctuates as described above, the sensitivity fluctuates between the SQUID elements of the SQUID element group, and the measurement accuracy is greatly reduced. There is an important problem.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、SQUI
D素子冷却用の冷却媒体の蒸発をなくし、かつ多数のSQU
ID素子を配置したSQUID素子群を均一に冷却する全方位
姿勢配置可能な超電導量子干渉デバイス格納用極低温容
器を提供することにある。
The object of the present invention is to provide a SQUI
Eliminates the evaporation of the cooling medium for cooling the D element
An object of the present invention is to provide a cryogenic container for storing a superconducting quantum interference device that can be arranged in all directions and uniformly cools a group of SQUIDs in which ID elements are arranged.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明における超電導量子干渉デバイス格納用極低
温容器の特徴とするところは、超電導量子干渉デバイス
と該超電導量子干渉デバイス冷却温度より高い凝固点を
有し前記超電導量子干渉デバイスを冷却する冷却媒体と
が格納されている内部容器の外周部を熱伝導体で包み、
さらに熱伝導体を含む内部容器を熱シールド板で包囲
し、冷凍機で熱伝導体及び熱シールド板を冷却すること
にある。
In order to achieve the above object, a cryogenic container for storing a superconducting quantum interference device according to the present invention is characterized in that the superconducting quantum interference device and the cooling temperature of the superconducting quantum interference device are higher than the cooling temperature. A cooling medium that has a freezing point and cools the superconducting quantum interference device is wrapped with a heat conductor around the outer periphery of the internal container in which the cooling medium is stored,
Another object of the present invention is to surround the inner container containing the heat conductor with a heat shield plate and cool the heat conductor and the heat shield plate with a refrigerator.

【0016】具体的には本発明は次に掲げる極低温容器
を提供する。本発明は、超電導量子干渉デバイスと該超
電導量子干渉デバイス冷却温度より高い凝固点を有し前
記超電導量子干渉デバイスを冷却する冷却媒体とが格納
されている内部容器と、該内部容器の外周部に接し前記
内部容器を包む熱伝導体と、該熱伝導体を含む前記内部
容器を包囲する熱シールド板と、該熱シールド板を包囲
すると共に前記熱シールド板との間に断熱空間を形成す
る外部容器と、該外部容器の上部に設けられ前記熱伝導
体及び前記熱シールド板を冷却する冷凍機とを有するこ
とを特徴とする超電導量子干渉デバイス格納用極低温容
器を提供する。
Specifically, the present invention provides the following cryogenic containers. The present invention provides an inner container in which a superconducting quantum interference device and a cooling medium having a freezing point higher than the cooling temperature of the superconducting quantum interference device and cooling the superconducting quantum interference device are stored, and an outer peripheral portion of the inner container. A heat conductor surrounding the inner container, a heat shield plate surrounding the inner container including the heat conductor, and an outer container surrounding the heat shield plate and forming an adiabatic space between the heat shield plate and the heat shield plate And a refrigerator provided on an upper part of the outer container for cooling the heat conductor and the heat shield plate.

【0017】また、本発明は、複数の超電導量子干渉デ
バイスと該各超電導量子干渉デバイスの外周に螺旋状に
巻き付けられた第1の熱伝導体と前記超電導量子干渉デ
バイス冷却温度より高い凝固点を有し前記第1の熱伝導
体及び前記超電導量子干渉デバイスを冷却する冷却媒体
とが格納されている内部容器と、該内部容器の中心部に
設けられ前記各第1の熱伝導体の外周部の一部に接触す
る第2の熱伝導体と、前記第2の熱伝導体を含む内部容
器を包囲する熱シールド板と、該熱シールド板を包囲す
ると共に前記熱シールド板との間に断熱空間を形成する
外部容器と、該外部容器の上部に設けられ前記第2の熱
伝導体及び前記熱シールド板を冷却する冷凍機とを有す
ることを特徴とする超電導量子干渉デバイス格納用極低
温容器を提供する。
Further, the present invention has a plurality of superconducting quantum interference devices, a first heat conductor spirally wound around the outer periphery of each superconducting quantum interference device, and a freezing point higher than a cooling temperature of the superconducting quantum interference device. An inner container in which the first heat conductor and a cooling medium for cooling the superconducting quantum interference device are stored, and an outer peripheral portion of each of the first heat conductors provided at the center of the inner container. A second heat conductor in contact with a portion thereof, a heat shield plate surrounding the inner container including the second heat conductor, and an insulating space between the heat shield plate and the heat shield plate And a cryogenic container for storing a superconducting quantum interference device, comprising a refrigerator provided on an upper portion of the external container and cooling the second heat conductor and the heat shield plate. provide

【0018】また、本発明は、被冷却物と該被冷却物冷
却温度より高い凝固点を有し前記被冷却物を冷却する冷
却媒体とが格納されている内部容器と、該内部容器の外
側或いは内側に設けられ前記被冷却物と熱的に一体化す
る熱伝導体と、該熱伝導体を含む前記内部容器を包囲す
る熱シールド板と、該熱シールド板を包囲すると共に前
記熱シールド板との間に断熱空間を形成する外部容器
と、該外部容器の上部に設けられ前記熱伝導体及び前記
熱シールド板を冷却する冷凍機とを有することを特徴と
する冷却物格納用極低温容器を提供する。
Further, the present invention provides an internal container in which an object to be cooled and a cooling medium having a freezing point higher than the cooling temperature of the object to be cooled and for cooling the object to be cooled are stored; A heat conductor provided inside and thermally integrated with the object to be cooled, a heat shield plate surrounding the inner container including the heat conductor, and a heat shield plate surrounding the heat shield plate and An outer container forming an adiabatic space between the outer container and a refrigerator provided at an upper portion of the outer container and cooling the heat conductor and the heat shield plate, wherein a cryogenic container for storing a cooled object is provided. provide.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態例に係
るSQUID素子格納用極低温容器を、図を用いて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A cryogenic container for storing a SQUID element according to an embodiment of the present invention will be described below with reference to the drawings.

【0020】図1は、本発明の第1の実施の形態例に係
るSQUID素子格納用極低温容器の全体構成を示す図であ
り、図2は、図1のSQUID素子取り付け部の拡大図、図
3は図2のX−X断面図である。
FIG. 1 is a view showing an entire configuration of a cryogenic container for storing a SQUID element according to a first embodiment of the present invention. FIG. 2 is an enlarged view of a SQUID element mounting portion of FIG. FIG. 3 is a sectional view taken along line XX of FIG.

【0021】図1に示すように、SQUID素子格納用極低
温容器1は、SQUID素子2と、該SQUID素子2を冷却する
ための媒体である冷却媒体3と、SQUID素子2及び冷却
媒体3を収納可能な内部容器4と、該内部容器4の外周
部に接するように囲む熱伝導体30と、熱伝導体30を
含む内部容器を包囲する熱シールド板13bと、熱シー
ルド板13bを包囲すると共に熱シールド板13bとの
間に断熱空間5を形成する外部容器6と、内部容器4内
および断熱空間5と外部空気とを遮断するフランジ8
と、フランジ8の上面に設けられ熱伝導体30を冷却す
るパルス管式冷凍機89と、SQUID素子2からの計測電
流をSQUID素子格納用極低温容器1の外部に導く計測用
導線9と、内部容器4の上部を冷却板27に固定し支持
するねじ42とを備えて構成されている。
As shown in FIG. 1, a cryogenic container 1 for storing a SQUID element includes a SQUID element 2, a cooling medium 3 as a medium for cooling the SQUID element 2, and a SQUID element 2 and a cooling medium 3. An inner container 4 that can be stored, a heat conductor 30 surrounding the inner container 4 so as to be in contact with the outer peripheral portion, a heat shield plate 13b surrounding the inner container including the heat conductor 30, and a heat shield plate 13b. And an outer container 6 forming an insulating space 5 between itself and the heat shield plate 13b, and a flange 8 for shutting off the inside air and the insulating space 5 from the outside air.
A pulse tube refrigerator 89 provided on the upper surface of the flange 8 for cooling the heat conductor 30, a measuring wire 9 for guiding the measured current from the SQUID element 2 to the outside of the SQUID element storing cryogenic container 1, A screw 42 for fixing and supporting the upper portion of the inner container 4 to the cooling plate 27 is provided.

【0022】SQUID素子2は、温度約7K以下の臨界温
度(例えば、大気圧の液体ヘリウム温度の4.2K)で
超電導状態となるNbTi等の材料で構成されたSQUID
素子2aや、温度約90K以下の高臨界温度(例えば、
大気圧の液体窒素温度の77K)で超電導状態となるY
Ba2Cu3O7等の材料で構成されたSQUID素子2aaが
ある。
The SQUID element 2 is a SQUID made of a material such as NbTi which is in a superconducting state at a critical temperature of about 7 K or less (for example, 4.2 K of liquid helium temperature at atmospheric pressure).
The element 2a or a high critical temperature of about 90K or less (for example,
Y in superconducting state at atmospheric liquid nitrogen temperature (77 K)
There is a SQUID element 2aa made of a material such as Ba2Cu3O7.

【0023】冷却媒体3には、SQUID素子2の冷却前に
流動性のあるシリコン油(大気圧下沸点410K以
上)、パーフロロカーボン(大気圧下沸点313K以
上)及び室温以上に融点がある蝋やパラフィンやワック
ス、等の大気圧下でかつ室温以上で流動性がある冷却媒
体や、SQUID素子冷却温度を超える温度に沸点がある冷
却媒体がある。
Before the cooling of the SQUID element 2, the cooling medium 3 contains fluid silicon oil (boiling point at atmospheric pressure of 410 K or more), perfluorocarbon (boiling point at atmospheric pressure of 313 K or more), and wax having a melting point at room temperature or higher. There are cooling media such as paraffin and wax which have fluidity at atmospheric pressure and room temperature or higher, and cooling media having a boiling point at a temperature exceeding the cooling temperature of the SQUID element.

【0024】11は、計測用導線の大気引き出し口であ
る。上記内部容器4及び外部容器6は、測定磁束による
渦電流の発生を防止するため、非電導体の例えばガラス
エポキシ樹脂等の非磁性材料で製作される。
Reference numeral 11 denotes an atmospheric outlet of a measuring lead. The inner container 4 and the outer container 6 are made of a non-conductive material, such as a non-magnetic material such as a glass epoxy resin, in order to prevent eddy currents from being generated by the measured magnetic flux.

【0025】また、上記の断熱空間5内には、外部容器
6からの輻射熱の侵入を防止するアルミニュウム蒸着マ
イラー等の積層断熱材12a,12b,12cと、外部
からの磁場変動で生じノイズとなる渦電流が発生し難
い、短冊状の銅板や小径のエナメル被覆銅線で構成した
熱シールド板13aと、エナメル被覆銅線で構成した熱
シールド板13bとが、内部容器4群の外側を包囲よう
に設けられている。
Further, in the heat insulating space 5, laminated heat insulating materials 12 a, 12 b, 12 c such as aluminum vapor-deposited mylar for preventing radiant heat from entering from the external container 6, and noise generated due to a magnetic field fluctuation from the outside. A heat shield plate 13a composed of a strip-shaped copper plate or a small-diameter enamel-coated copper wire and a heat shield plate 13b composed of an enamel-coated copper wire, in which eddy current is unlikely to be generated, surround the outside of the inner container 4 group. It is provided in.

【0026】熱シールド板13bの外周部の断熱空間部
には、アルミニュウム蒸着マイラー等の積層断熱材15
aが配置されている。熱シールド板13a,13bは、
パルス管式冷凍機89の第一冷却ステージ94及び第二
冷却ステージ95の所定温度例えば50Kと5K以下の
温度域の第一冷却ステージ94及び第二冷却ステージ9
5の壁に、熱的に直接もしくは熱的に間接に一体化され
ている。
In a heat insulating space around the heat shield plate 13b, a laminated heat insulating material 15 such as an aluminum vapor-deposited mylar is provided.
a is arranged. The heat shield plates 13a and 13b
The first cooling stage 94 and the second cooling stage 9 of the first cooling stage 94 and the second cooling stage 95 of the pulse tube refrigerator 89 at a predetermined temperature of, for example, 50K and 5K or lower.
5 is directly or thermally indirectly integrated into the wall.

【0027】ここで、パルス管式冷凍機89は、第一蓄
冷器90と、第二蓄冷器91と、第一パルス管92と、
第二パルス管93と、第一冷却ステージ94と、第二冷
却ステージ95と、圧縮機からのガスの供給、圧縮機へ
のガスの排気を行う配管96と、第一および第二パルス
管内のガスの圧力をそれぞれ調整する保圧タンク97
a,保圧タンク97bと、それぞれのパルス管の常温部
と保圧タンク97に連通し、所定のガス流動抵抗圧力損
失をサイズ及び長さで調整した配管98a,98bとで
構成されている。
Here, the pulse tube refrigerator 89 includes a first regenerator 90, a second regenerator 91, a first pulse tube 92,
A second pulse tube 93, a first cooling stage 94, a second cooling stage 95, a pipe 96 for supplying gas from the compressor and exhausting gas to the compressor, and a pipe 96 in the first and second pulse tubes. Pressure holding tank 97 for adjusting the pressure of each gas
a, a pressure holding tank 97b, and pipes 98a, 98b communicating with the normal temperature portion of each pulse tube and the pressure holding tank 97, and adjusting a predetermined gas flow resistance pressure loss by size and length.

【0028】第一蓄冷器90と第二蓄冷器91は直列に
連通され、また、第一パルス管92と第二パルス管93
は並列に連通され、第一パルス管92の端部は第一冷却
ステージ94内で第一蓄冷器90と連通し、第二パルス
管93の端部は第二冷却ステージ95内で、第二パルス
管93の端部と連通し、第二パルス管93の中央部は第
一冷却ステージ94と熱的に一体化されている。
The first regenerator 90 and the second regenerator 91 are connected in series, and a first pulse tube 92 and a second pulse tube 93 are connected.
Are communicated in parallel, the end of the first pulse tube 92 communicates with the first regenerator 90 in the first cooling stage 94, and the end of the second pulse tube 93 is in the second cooling stage 95. The center of the second pulse tube 93 is thermally integrated with the first cooling stage 94, communicating with the end of the pulse tube 93.

【0029】流路切り替え器23aを通り圧縮機20か
ら供給された高圧ヘリウムガスは、配管96からパルス
管式冷凍機89の上端部に供給され、まず、第一蓄冷器
90の頭部に流入し第一蓄冷器の冷熱で温度約50Kに
冷却された後、第二蓄冷器91の頭部と、第一パルス管
92の底部とへ流入する。残りのガスは、第二蓄冷器9
1で温度約5Kに冷却され第二パルス管93の底部へ流
入する。
The high-pressure helium gas supplied from the compressor 20 through the flow path switch 23 a is supplied to the upper end of the pulse tube refrigerator 89 from the pipe 96, and first flows into the head of the first regenerator 90. Then, after being cooled to a temperature of about 50 K by the cold heat of the first regenerator, it flows into the head of the second regenerator 91 and the bottom of the first pulse tube 92. The remaining gas is stored in the second regenerator 9
At 1, the temperature is cooled to about 5K and flows into the bottom of the second pulse tube 93.

【0030】第一パルス管92の底部へ流入した高圧ヘ
リウムガスは、流路切り替え器23aで圧縮機低圧回路
に切り替わった時点で断熱膨張して寒冷を発生し、第一
冷却ステージ94を冷却した後第一蓄冷器90を冷却し
圧縮機20に戻る。同時に、第二パルス管93の底部へ
流入した高圧ヘリウムガスは圧縮機低圧回路に切り替わ
った時点で断熱膨張して寒冷を発生し、第二冷却ステー
ジ95を冷却した後第二蓄冷器91を冷却し圧縮機20
に戻る。
The high-pressure helium gas that has flowed into the bottom of the first pulse tube 92 adiabatically expands when it is switched to the compressor low-pressure circuit by the flow path switch 23a, generating cold, and cooling the first cooling stage 94. Thereafter, the first regenerator 90 is cooled and returns to the compressor 20. At the same time, when the high-pressure helium gas flowing into the bottom of the second pulse tube 93 is switched to the compressor low-pressure circuit, it adiabatically expands to generate cold, cools the second cooling stage 95, and then cools the second regenerator 91. Compressor 20
Return to

【0031】第二パルス管93の中央部は第一冷却ステ
ージ94で冷却される。それぞれのパルス管頭部内の時
間的圧力波形は、保圧タンク97a及び保圧タンク97
bで流路切り替え器23aの圧力波形と時間的に位相差
が生じるように調整され、効率的に寒冷を発生できるよ
うになっている。
The center of the second pulse tube 93 is cooled by the first cooling stage 94. The temporal pressure waveform in each pulse tube head is represented by a holding tank 97a and a holding tank 97.
The pressure is adjusted so that a phase difference is temporally generated with the pressure waveform of the flow path switch 23a in b, so that cold can be generated efficiently.

【0032】冷凍機にパルス管式冷凍機89を使用する
場合、冷凍機の振動が小さいので、素子への振動ノイズ
が小さく、磁束計測前に被検査者の測定位置に装置位置
を、磁束を計測しながら調整移動設定する際に冷凍機を
運転してても、ノイズが小さくできるので、移動設定を
容易にかつ短時間で行うことができる。
When the pulse tube type refrigerator 89 is used as the refrigerator, the vibration of the refrigerator is small, so that the vibration noise to the element is small. Even if the refrigerator is operated during adjustment movement setting while measuring, noise can be reduced, so that movement setting can be performed easily and in a short time.

【0033】また、この冷凍機の振動や電気ノイズをほ
とんど無くすため、磁束計測時のみに冷凍機運転を一時
停止する。
Further, in order to almost eliminate the vibration and electric noise of the refrigerator, the refrigerator operation is temporarily stopped only at the time of measuring the magnetic flux.

【0034】以下、SQUID素子2を冷却する方法につい
て説明する。シリコン油等の常温で流動性のある冷却媒
体3を、SQUID素子組み込み時或いはSQUID素子冷却前に
内部容器4内に所定の容量を入れ、冷却媒体3でSQUID
素子2を浸漬させる。
Hereinafter, a method for cooling the SQUID element 2 will be described. A cooling medium 3 having a fluidity at room temperature, such as silicone oil, is put in a predetermined volume in the inner container 4 when the SQUID element is incorporated or before the SQUID element is cooled.
The element 2 is immersed.

【0035】また、常温より高い温度で流動性を有する
冷却媒体3として、蝋、ワックス、パラフィン等を使用
する場合、ヒーターや温風ドライヤー等で加温して流動
化させ、冷却媒体を加温した別容器(図示せず)内で真
空脱気して内部の空気や揮発性成分を取り除き、加温し
た内部容器4内に注入し、さらに注入時に入り込んだ空
気を脱気したのち常温で放冷し固形化することにより、
常温においても傾けたり逆さまにしても冷却媒体が動く
ことがなく、全方向姿勢で運搬が可能となり、装置運
搬、移動がより容易になる。
When wax, wax, paraffin, or the like is used as the cooling medium 3 having fluidity at a temperature higher than the normal temperature, the cooling medium is heated by a heater or a hot-air drier to be fluidized. In a separate container (not shown), the air and volatile components are removed by vacuum degassing, and the air is injected into the heated internal container 4. Further, the air that has entered at the time of injection is degassed and then released at room temperature. By cooling and solidifying,
The cooling medium does not move even if it is tilted or turned upside down at room temperature, so that it can be transported in all directions and the device can be transported and moved more easily.

【0036】弁17を開き真空ポンプ19で断熱空間5
を真空排気する。内部容器4内は、通気口14a,14
b,14cを介して断熱空間5と均一な圧力となる。
Open the valve 17 and use the vacuum pump 19
Is evacuated. The inside of the inner container 4 has ventilation holes 14a, 14
The pressure becomes uniform with the heat insulating space 5 via b and 14c.

【0037】次に、パルス管式冷凍機89を運転する。
冷凍機運転開始と同時に第1冷却ステージ94および第
2冷却ステージ95は徐々に冷却し始め、第1冷却ステ
ージ94に熱的に一体化された冷却板26が温度約50
Kまで冷却され、第2冷却ステージ95に熱的に一体化
された冷却板27が温度約4Kに冷却される。冷却板2
6および冷却板27は、非磁性体で熱伝導率が良好なア
ルミニュウムや銅やサファイヤ等の物質で製作される。
Next, the pulse tube refrigerator 89 is operated.
Simultaneously with the start of the refrigerator operation, the first cooling stage 94 and the second cooling stage 95 gradually cool down, and the cooling plate 26 thermally integrated with the first cooling stage 94 has a temperature of about 50 ° C.
K, and the cooling plate 27 thermally integrated with the second cooling stage 95 is cooled to a temperature of about 4K. Cooling plate 2
The cooling plate 6 and the cooling plate 27 are made of a material such as aluminum, copper, or sapphire, which is a non-magnetic material and has good thermal conductivity.

【0038】冷却板26の外周部に、熱シールド板13
bおよび内部容器4群を取り囲むように熱シールド板1
3aを設け、熱シールド板13aのつば部28との熱接
触が良好にできるようにシリコングリース等を塗った
り、インジュウムシートを介して熱伝導機能を向上し、
温度約50Kに冷却する。
The heat shield plate 13 is provided on the outer periphery of the cooling plate 26.
b and the heat shield plate 1 so as to surround the inner container 4 group.
3a is provided, and silicon grease or the like is applied so that thermal contact with the flange portion 28 of the heat shield plate 13a can be made favorable, or the heat conduction function is improved through an indium sheet.
Cool to a temperature of about 50K.

【0039】一方、冷却板27の外周部に、内部容器4
群を取り囲むように熱シールド板13bを設け熱シール
ド板13bのつば部29との熱接触が良好にできるよう
にシリコングリース等を塗ったり、インジュウムシート
を介して熱伝導機能を向上し、温度7K以下に冷却す
る。
On the other hand, the inner container 4
A heat shield plate 13b is provided so as to surround the group, silicon grease or the like is applied so that thermal contact with the flange portion 29 of the heat shield plate 13b can be made good, and the heat conduction function is improved via an indium sheet, and the temperature is improved. Cool down to 7K or less.

【0040】冷却板27の下部には、内部容器4の外周
部を囲むように設けた、非磁性体で熱伝導率が良好なア
ルミニュウムや銅やサファイヤ等の物質でかつ渦電流が
発生しにくい形状製作され、渦電流が発生しにくい位置
に配置する例えばエナメル被覆された銅線の熱伝導体3
0が、内部容器4の外周部に接着剤99で熱的に一体化
されている。
At the lower part of the cooling plate 27, a material such as aluminum, copper, or sapphire, which is a non-magnetic material and has good thermal conductivity and is hard to generate eddy current, is provided so as to surround the outer peripheral portion of the inner container 4. A heat conductor 3 of, for example, an enamel-coated copper wire which is shaped and arranged at a position where eddy current is unlikely to be generated
0 is thermally integrated with the outer periphery of the inner container 4 with an adhesive 99.

【0041】また、熱伝導体30の上部は、冷却板27
と、蝋、グリース、半田、低融点のウッドメタル、イン
ジュウム等の止着剤31とで熱的に一体化されている。
The upper portion of the heat conductor 30 is provided with a cooling plate 27.
And a fastening agent 31 such as wax, grease, solder, low-melting wood metal, or indium.

【0042】冷却媒体3は、この熱伝導体30により内
部容器4を介して均一に温度約7K以下に冷却される。
内部容器4の上部は、ねじ部4bで内部容器4と一体化
した蓋4aで蓋われ、蓋4aをビス42で冷却板27に
固定することにより、内部容器4は冷却板27に対し正
確位置に固定される。
The cooling medium 3 is uniformly cooled by the heat conductor 30 to a temperature of about 7 K or less via the inner container 4.
The upper part of the inner container 4 is covered with a lid 4a integrated with the inner container 4 with a screw part 4b, and the lid 4a is fixed to the cooling plate 27 with a screw 42, so that the inner container 4 is accurately positioned with respect to the cooling plate 27. Fixed to

【0043】ここで、蓋4aで蓋うまえに、内部容器4
内にはSQUID素子2と冷却媒体3が挿入される。この場
合、冷却板27より下側の内部容器4は温度約7K以下
に冷却された熱シールド13bで外部を取り囲まれてい
るので外部からの輻射熱の熱浸入は非常に少ない。
Here, before the lid 4a is closed, the inner container 4
The SQUID element 2 and the cooling medium 3 are inserted into the inside. In this case, since the inside of the inner container 4 below the cooling plate 27 is surrounded by the heat shield 13b cooled to a temperature of about 7 K or less, the heat intrusion of radiant heat from the outside is very small.

【0044】また、冷却板26と止着体31aとで計測
用導線9は熱的に一体化され、また冷却板27と止着体
31bとで計測用導線9は熱的に一体化されているの
で、計測用導線9は、それぞれ50Kと7K以下で冷却
され、計測用導線9を伝わってくる常温からの熱伝導に
よる熱浸入もほとんどない。
The measuring conductor 9 is thermally integrated with the cooling plate 26 and the fixing body 31a, and the measuring conductor 9 is thermally integrated with the cooling plate 27 and the fixing body 31b. Therefore, the measuring conductor 9 is cooled at a temperature of 50K or less and 7K or less, respectively, and there is almost no heat infiltration through the measuring conductor 9 due to heat conduction from room temperature.

【0045】したがって、冷却媒体3に浸漬されたSQUI
D素子2は、外部からの浸入熱により加熱される影響は
極めて小さく、さらに、SQUID素子2全体が冷却媒体3
に接触しているので、熱伝導体30、内部容器4、冷却
媒体3間の熱抵抗による温度差はほとんどなく、均一に
温度約7K以下に冷却される。
Therefore, the SQUI immersed in the cooling medium 3
The D element 2 has a very small influence of being heated by the infiltration heat from the outside.
, There is almost no temperature difference due to the thermal resistance between the heat conductor 30, the inner container 4, and the cooling medium 3, and the temperature is uniformly reduced to about 7K or less.

【0046】また、パルス管式冷凍機89により冷却さ
れる冷却板27は、熱シールド板13aにより、外部か
らの輻射熱の熱浸入は非常に少なく、全体的に均一温度
となるので、この冷却板27から熱的に一体化されたSQ
UID素子2群も全体的に均一温度となり、温度均一化に
よるSQUID素子群としての計測性能が向上する効果があ
る。
Further, the cooling plate 27 cooled by the pulse tube refrigerator 89 has a very low heat infiltration of radiant heat from the outside due to the heat shield plate 13a and has a uniform temperature as a whole. SQ thermally integrated from 27
The UID element group 2 also has a uniform temperature as a whole, which has the effect of improving the measurement performance of the SQUID element group by uniforming the temperature.

【0047】パルス管式冷凍機89の第1冷却ステージ
94または第2冷却ステージ95の温度が70K以下に
なると、内部容器4内の残留水分、炭酸ガス等は各ステ
ージ表面にトラップされクライオポンプ効果で内部容器
4内の圧力は低下し始めるので、弁17を閉じ、真空ポ
ンプ19は停止させる。また、弁17を開いたまま真空
ポンプ19を停止させても良い。
When the temperature of the first cooling stage 94 or the second cooling stage 95 of the pulse tube refrigerator 89 is reduced to 70 K or less, residual moisture, carbon dioxide and the like in the inner container 4 are trapped on the surface of each stage and the cryopump effect is obtained. Then, the pressure in the inner container 4 starts to decrease, so that the valve 17 is closed and the vacuum pump 19 is stopped. Further, the vacuum pump 19 may be stopped while the valve 17 is open.

【0048】内部容器4内の残留空気等の定沸点ガス
は、第2冷却ステージ95の温度が20K以下になる
と、クライオポンプ効果で第2冷却ステージ95面上に
トラップされ、内部容器4内の圧力は高真空に排気され
る。しかし、低飽和蒸気圧の低温の冷却媒体3であるシ
リコン油や蝋等の冷却媒体3は、高真空雰囲気でもほと
んど蒸発しない。
When the temperature of the second cooling stage 95 becomes equal to or lower than 20 K, the constant boiling point gas such as residual air in the inner container 4 is trapped on the surface of the second cooling stage 95 by a cryopump effect. The pressure is evacuated to high vacuum. However, the cooling medium 3 such as silicon oil or wax, which is a low-temperature cooling medium 3 having a low saturated vapor pressure, hardly evaporates even in a high vacuum atmosphere.

【0049】断熱空間5内で外部容器6内側には、円筒
形の形を保持できる程度の剛性を有した非磁性で非電導
性の、例えばポリエステル製で内外面にアルミニュウム
を蒸着した円筒体48を配置し、フランジ43に接続さ
れたパルス管式冷凍機89や熱シールド板13a等を外
部容器6から出し入れする際の案内筒となり、断熱のた
め円筒体48の外側および底部にはアルミニュウム蒸着
マイラー等の積層断熱材44を配置する。案内筒48が
なくても測定機能上は問題ない。
In the heat insulating space 5, inside the outer container 6, a cylindrical body 48 made of non-magnetic and non-conductive, for example, made of polyester and having aluminum deposited on its inner and outer surfaces, is rigid enough to hold a cylindrical shape. And serves as a guide tube when the pulse tube refrigerator 89, the heat shield plate 13a, and the like connected to the flange 43 are taken in and out of the external container 6. The aluminum vapor-deposited mylar is provided on the outside and bottom of the cylindrical body 48 for heat insulation. Is disposed. Even without the guide tube 48, there is no problem in the measurement function.

【0050】また、冷却板27の上部には、非磁性で非
電導性で、熱伝導性がよい熱伝導体45が冷却板27と
熱的に一体化され、その外面にはガス吸着材例えば活性
炭46が熱的に一体化され、冷却板27温度に冷却され
る。
A non-magnetic, non-conductive, and thermally conductive heat conductor 45 is thermally integrated with the cooling plate 27 on the upper portion of the cooling plate 27. Activated carbon 46 is thermally integrated and cooled to the temperature of cooling plate 27.

【0051】弁17を閉じ、真空ポンプ19と配管を外
し分離した後も、断熱空間5内にある残留ガスや断熱空
間5に面した構成品の表面から発生するガスを低温の活
性炭46で吸着し、断熱空間5の真空度を高し、断熱性
能を維持できる。
Even after the valve 17 is closed and the vacuum pump 19 and the pipe are disconnected and separated, the residual gas in the heat insulating space 5 and the gas generated from the surface of the component facing the heat insulating space 5 are adsorbed by the low-temperature activated carbon 46. In addition, the degree of vacuum in the heat insulating space 5 can be increased, and the heat insulating performance can be maintained.

【0052】この場合、冷却板27より下側の内筒容器
4群は温度約7K以下に冷却された熱シールド13bで
外部を取り囲まれているので外部からの輻射熱の熱浸入
は非常に少なく、かつ冷却板27は冷凍機下部で支持さ
れているので常温からの熱伝導による熱浸入はない。
In this case, the inner cylindrical container group 4 below the cooling plate 27 is surrounded by the heat shield 13b cooled to a temperature of about 7 K or less, so that the heat radiated heat from the outside is very small. Further, since the cooling plate 27 is supported at the lower part of the refrigerator, there is no heat infiltration due to heat conduction from room temperature.

【0053】SQUID素子2群が所定の温度に冷却される
と測定準備が整い、磁気シールド壁34内のベッド35
上の被検査者36から発生する微弱な磁束を測定する。
この数分間の測定時には、この数分間だけ一時パルス管
式冷凍機89の運転を停止し、冷凍機振動をなくすこと
により測定精度を向上させることができる。
When the group of SQUIDs 2 is cooled to a predetermined temperature, the preparation for measurement is completed, and the bed 35 in the magnetic shield wall 34 is set.
The weak magnetic flux generated from the upper subject 36 is measured.
During the measurement for several minutes, the operation of the pulse tube refrigerator 89 is temporarily stopped for the several minutes, and the measurement accuracy can be improved by eliminating the refrigerator vibration.

【0054】測定後、再びパルス管式冷凍機89を運転
開始し冷却する。この運転停止は、圧縮機20を停止さ
せるか、または、圧縮機運転のまま流路切り替え器23
aの運転のみを停止することで十分である。
After the measurement, the operation of the pulse tube refrigerator 89 is started again and cooled. This operation stop is performed by stopping the compressor 20 or by operating the flow path switch 23 while the compressor is operating.
It is sufficient to stop only the operation of a.

【0055】SQUID素子2を修理等で大気中に取り出す
場合には、冷凍機運転を停止するか、もしくは冷凍機の
運転サイクルを逆転させることにより、加温運転を行い
内部容器4内を常温にした後、弁17から空気又は乾燥
窒素を注入し内部容器4内を大気圧にして、フランジ8
以下の構成物を外部に抜き出し、蝋等の止着剤31を熱
で溶かし、内部容器4内からSQUID素子2抜き出し交換
する。
When the SQUID element 2 is taken out to the atmosphere for repair or the like, the operation of the refrigerator is stopped or the operation cycle of the refrigerator is reversed to perform a heating operation to bring the inside of the inner container 4 to room temperature. After that, air or dry nitrogen is injected from the valve 17 to make the inside of the inner container 4 atmospheric pressure, and the flange 8
The following components are extracted to the outside, the fixing agent 31 such as wax is melted by heat, and the SQUID element 2 is extracted from the inner container 4 and replaced.

【0056】したがって、本実施の形態例においては、
冷却媒体3に浸漬されたSQUID素子2は、外部からの浸
入熱により加熱される影響は極めて小さく、さらに、SQ
UID素子2全体が冷却媒体3に接触しているので、熱伝
導体30、内部容器4、冷却媒体3間の熱抵抗による温
度差はほとんどなく、均一に温度約7K以下に冷却され
る。
Therefore, in this embodiment,
The SQUID element 2 immersed in the cooling medium 3 has an extremely small effect of being heated by external heat of penetration.
Since the entire UID element 2 is in contact with the cooling medium 3, there is almost no temperature difference due to the thermal resistance between the heat conductor 30, the inner container 4, and the cooling medium 3, and the UID element 2 is uniformly cooled to a temperature of about 7K or less.

【0057】また、パルス管式冷凍機89により冷却さ
れる冷却板27は、熱シールド板13aにより、外部か
らの輻射熱の熱浸入は非常に少なく、全体的に均一温度
となるので、この冷却板27から熱的に一体化されたSQ
UID素子2群も全体的に均一温度となり、温度均一化に
よるSQUID素子群としての計測性能が向上する効果があ
る。
The cooling plate 27 cooled by the pulse tube refrigerator 89 has a very low heat penetration of radiant heat from the outside due to the heat shield plate 13a and has a uniform temperature as a whole. SQ thermally integrated from 27
The UID element group 2 also has a uniform temperature as a whole, which has the effect of improving the measurement performance of the SQUID element group by uniforming the temperature.

【0058】また、SQUID素子格納用極低温容器1を傾
けたり、逆さまにしても冷却媒体3は凝固しているので
SQUID素子2群の冷却性能には変化がなく、また、傾け
たり、逆さまにしても冷却媒体3が零れることがないの
で、全方位姿勢配置可能で、かつ全方位姿勢で測定が可
能である。
Even if the cryogenic container 1 for storing the SQUID element is tilted or inverted, the cooling medium 3 is solidified.
Since there is no change in the cooling performance of the SQUID element 2 group, and the cooling medium 3 does not spill even if it is tilted or turned upside down, it can be arranged in all directions and can be measured in all directions.

【0059】また、本実施の形態例では、内部容器4の
内外の圧力を均等に維持できるので内部容器4は圧力容
器である必要がなく、内部容器4の壁の肉厚及び底板3
7の肉厚を薄くできる。
Further, in this embodiment, since the pressure inside and outside the internal container 4 can be uniformly maintained, the internal container 4 does not need to be a pressure container, and the wall thickness of the wall of the internal container 4 and the bottom plate 3 are not required.
7 can be made thinner.

【0060】したがって、内部容器4の壁の肉厚を0.
5mm程度に薄くすることにより熱抵抗が小さくなり、
SQUID素子2は、熱伝導体30により、内部容器4を介
して、より低温に、かつより均一に温度約7K以下に冷
却される。
Accordingly, the thickness of the wall of the inner container 4 is set to be equal to 0.
By reducing the thickness to about 5mm, the thermal resistance is reduced,
The SQUID element 2 is cooled to a lower temperature and more uniformly to a temperature of about 7 K or less by the heat conductor 30 via the inner container 4.

【0061】また、底板37を0.5mm程度以下に薄
くできるので、SQUID素子2をより被検査者36に近づ
けることができ、SQUID素子2群をより被検査者36の
磁束発生源に接近でき、計測精度をさらに向上させるこ
とができる。
Further, since the bottom plate 37 can be thinned to about 0.5 mm or less, the SQUID element 2 can be brought closer to the subject 36, and the SQUID element 2 group can be closer to the magnetic flux generation source of the subject 36. The measurement accuracy can be further improved.

【0062】ここで、冷却媒体3には、熱伝導率を大き
くするため、冷却媒体3の熱伝導率より大きな熱伝導率
を有する例えば銅網を積層したり、ハンダ粒子やアルミ
ニュウム微粒子や電気絶縁材のセラミック粒子や銅繊維
や比熱が冷却媒体3より大きなヘリウムガスや窒素ガス
等を密封入した銅やステンレス鋼製の金属球やヘリウム
ガスや窒素ガス等を密封入した金属製の細管群等や冷却
媒体3の凝固後の熱変形を防止するためガラス繊維等の
補強剤を混入物を混入させることにより、冷却媒体3の
冷却速度を早くしたり、極低温時の熱容量を大きくし
て、短時間冷凍機の運転停止時のSQUID素子2の温度変
化を小さくしたりして、凝固体の変形を小さくしクラッ
クが生じないようにすることができる。
Here, in order to increase the thermal conductivity of the cooling medium 3, for example, a copper net having a higher thermal conductivity than that of the cooling medium 3 is laminated, or solder particles, aluminum fine particles, electric insulating Copper or stainless steel metal spheres sealed with helium gas or nitrogen gas, etc., whose material has a specific heat greater than that of the cooling medium 3, or a group of thin metal tubes sealed with helium gas, nitrogen gas, etc. In order to prevent thermal deformation after solidification of the cooling medium 3 or the like, a contaminant such as glass fiber is mixed with the contaminant to increase the cooling rate of the cooling medium 3 or to increase the heat capacity at extremely low temperatures, By reducing the temperature change of the SQUID element 2 when the operation of the refrigerator is stopped for a short time, it is possible to reduce the deformation of the solidified body and prevent cracks from occurring.

【0063】この時、前記混入物が電導性であれば、そ
の表面エナメル被覆等の電気絶縁剤をコーティングする
ことにより、渦電流の発生を防止し、測定時のノイズを
小さくする方が良い。
At this time, if the contaminant is conductive, it is better to prevent generation of eddy current and reduce noise at the time of measurement by coating an electric insulating agent such as a surface enamel coating.

【0064】また、本実施の形態例の冷凍機には、作動
冷却媒体にヘリウム、窒素、空気、水素、フロン系ガス
を使用する機器やペルチェ素子を使用した電子式の機器
が使用されてもよい。ガスを作動流体に使用した冷凍機
の方式としては、他にギフォード・マクマホン式、ソル
ベイ式、スターリング式、クロード式、膨張タービン
式、膨張弁式、これらを組み合わせたジュール・トムソ
ン膨張弁を有する機器等が使用されてもよい。
Further, in the refrigerator of this embodiment, a device using helium, nitrogen, air, hydrogen, or chlorofluorocarbon as a working cooling medium or an electronic device using a Peltier element may be used. Good. Other types of refrigerators that use gas as a working fluid include Gifford McMahon type, Solvay type, Stirling type, Claude type, expansion turbine type, expansion valve type, and devices with a Joule-Thomson expansion valve that combines these. Etc. may be used.

【0065】図4は、本発明の第2の実施の形態例に係
るSQUID素子格納用極低温容器のSQUID素子取り付け部の
拡大図であり、図5は図4のY−Y断面図である。
FIG. 4 is an enlarged view of the SQUID element mounting portion of the cryogenic container for storing a SQUID element according to the second embodiment of the present invention, and FIG. 5 is a sectional view taken along line YY of FIG. .

【0066】本実施の形態例では、内部容器80に4個
のSQUID素子2を1ユニットとして配置し、冷却媒体3
を内部容器80に注入する構成になっている。各SQUID
素子2の外周には第1の熱伝導体81として例えばエナ
メル被覆銅線が螺旋状に巻き付けられ接着剤等で熱的に
一体化されている。
In the present embodiment, four SQUID elements 2 are arranged as one unit in the inner container 80 and the cooling medium 3
Is injected into the internal container 80. Each SQUID
An enamel-coated copper wire, for example, is spirally wound around the outer periphery of the element 2 as a first heat conductor 81 and is thermally integrated with an adhesive or the like.

【0067】また、ぞれぞれの第1の熱伝導体81の外
周部の一部は、例えばガラスファイバ入りのエポキシ樹
脂製の芯82aの周りに例えばエナメル被覆銅線82b
を束ねて接着剤等で一体化した第2の熱伝導体82と、
その接線部で接着剤や蝋等で熱的に一体化され、かつ芯
82aの上部は、ビス42で冷却板27に固定され、ま
た、エナメル被覆銅線82bの上部は接着剤や蝋等で冷
却板27と熱的に一体化されている。
A part of the outer peripheral portion of each of the first heat conductors 81 is formed, for example, around an epoxy resin core 82a containing a glass fiber, for example, by enamel-coated copper wire 82b.
A second thermal conductor 82 which is bundled and integrated with an adhesive or the like;
The tangential portion is thermally integrated with an adhesive or wax, and the upper portion of the core 82a is fixed to the cooling plate 27 with screws 42, and the upper portion of the enamel-coated copper wire 82b is bonded with an adhesive or wax. It is thermally integrated with the cooling plate 27.

【0068】内部容器80内の各SQUID素子2は冷却媒
体3で浸漬され、計測線9は孔84で内部容器80外に
導かれ、この孔を通じて内部容器80内外は連通してい
る。
Each SQUID element 2 in the inner container 80 is immersed in the cooling medium 3, and the measurement line 9 is led to the outside of the inner container 80 through the hole 84, and the inside and the outside of the inner container 80 communicate with each other through this hole.

【0069】SQUID素子2は、冷却板27で冷却された
上部のエナメル被覆銅線82bでは銅線内の熱抵抗が小
さい銅素線に沿って上下方向に熱移動が温度差が小さく
状態で生じ、下部を冷却する。
In the SQUID element 2, in the upper enamel-covered copper wire 82b cooled by the cooling plate 27, heat transfer in the vertical direction along the copper wire having a small thermal resistance in the copper wire occurs with a small temperature difference. Cool the lower part.

【0070】一方、下部では第1の熱伝導体81のエナ
メル被覆銅線により、銅線内の熱抵抗が小さい銅素線に
沿って円周方向に熱移動が温度差が小さく状態で生じSQ
UID素子2全体を均一に冷却できる。ここで、第2の熱
伝導体82の内周側エナメル被覆銅線82bの上部を螺
旋状に構成しても良い。
On the other hand, in the lower portion, the enamel-coated copper wire of the first heat conductor 81 causes heat transfer in the circumferential direction along the copper wire having a small thermal resistance in the copper wire in a state where the temperature difference is small, and SQ
The entire UID element 2 can be cooled uniformly. Here, the upper part of the inner enamel-coated copper wire 82b of the second heat conductor 82 may be formed in a spiral shape.

【0071】本実施の形態例によれば、複数のSQUID素
子2を同一の内部容器80に収納し、内部容器壁を介せ
ず熱伝導体を介して冷却できるので、更に熱抵抗が小さ
くでき、冷却板27の温度により近い低温に、かつ均一
に冷却できるので、計測精度がさらに向上する。また、
冷却板27に取り付ける熱伝導体の数を少なくできるの
で、構造が簡素化され、製作コストを低減することがで
きる。
According to the present embodiment, a plurality of SQUID elements 2 are housed in the same inner container 80 and can be cooled via the heat conductor without passing through the inner container wall, so that the thermal resistance can be further reduced. Since the cooling can be uniformly performed at a low temperature closer to the temperature of the cooling plate 27, the measurement accuracy is further improved. Also,
Since the number of heat conductors attached to the cooling plate 27 can be reduced, the structure is simplified and the manufacturing cost can be reduced.

【0072】図6は、図4のSQUID素子取り付け部の拡
大図であり、図5に示すZ−Z方向の断面図である。図
6に示すように、冷却媒体3の充填位置が各SQUID素子
2の下部側のみにあった場合においても、第1の熱伝導
体81の螺旋状のエナメル被覆銅線を伝わり、下部の冷
却された冷却媒体3により各SQUID素子2の上部も均一
に冷却することができる。
FIG. 6 is an enlarged view of the SQUID element mounting portion in FIG. 4, and is a cross-sectional view in the ZZ direction shown in FIG. As shown in FIG. 6, even when the filling position of the cooling medium 3 is only on the lower side of each SQUID element 2, the cooling medium 3 is transmitted through the spiral enamel-coated copper wire of the first heat conductor 81 to cool the lower part. The upper part of each SQUID element 2 can also be uniformly cooled by the cooling medium 3 thus obtained.

【0073】したがって、冷却媒体3の充填量が注入作
業時に誤って少なくなったとしても、複数のSQUID素子
2を熱伝導体を介して冷却できるので、熱抵抗が小さく
でき、冷却板27の温度により近い低温に、かつ均一に
冷却できるので、冷却媒体3の充填作業時の充填量不足
の場合でも、計測精度を得ることができる。
Therefore, even if the filling amount of the cooling medium 3 is erroneously reduced during the injection operation, the plurality of SQUID elements 2 can be cooled via the heat conductor, so that the thermal resistance can be reduced and the temperature of the cooling plate 27 can be reduced. Therefore, even if the amount of cooling medium 3 is insufficient during the charging operation, measurement accuracy can be obtained.

【0074】図7は、本発明の第3の実施の形態例に係
るSQUID素子格納用極低温容器のSQUID素子取り付け部の
拡大図である。本実施の形態例が図4と異なる点は、各
SQUID素子の内部に空洞84を設け、その内部に第3の
熱伝導体85として例えばエナメル被覆銅線を挿入し接
着剤等で熱的に一体化していることである。
FIG. 7 is an enlarged view of the SQUID element mounting portion of the cryogenic container for storing a SQUID element according to the third embodiment of the present invention. This embodiment is different from FIG.
A cavity 84 is provided inside the SQUID element, and an enamel-coated copper wire, for example, as a third heat conductor 85 is inserted into the cavity 84 and thermally integrated with an adhesive or the like.

【0075】空洞84の上部には連通口86を設け、素
子外部と連通している。本実施の形態例では、空洞84
内部にも冷却媒体3が満たされ、SQUID素子2内部から
も素子上下方向の温度差をなくすように作用し、素子温
度をさらに均一に冷却できる効果があり、SQUID素子2
群を均一に冷却することができる。したがって、本実施
の形態例によれば、計測精度をさらに向上させることが
できる。
A communication port 86 is provided above the cavity 84 and communicates with the outside of the device. In the present embodiment, the cavity 84
The inside of the SQUID element 2 is also filled with the cooling medium 3 and acts so as to eliminate the temperature difference in the vertical direction from the inside of the SQUID element 2, so that the element temperature can be more uniformly cooled.
The group can be cooled uniformly. Therefore, according to the present embodiment, the measurement accuracy can be further improved.

【0076】以上の実施の形態例でのSQUID素子を、ジ
ョセフソン素子部分に直接冷却冷媒が浸透し、凝固によ
る熱変形を防ぐため、直接冷却冷媒が浸透しないように
樹脂等でジョセフソン素子電子回路部分のみを封じて
も、冷却等に同様な効果が生じる。
In the SQUID element of the above embodiment, in order to prevent the cooling refrigerant from directly penetrating into the Josephson element portion and to prevent thermal deformation due to solidification, the Josephson element electronic device is made of resin or the like so that the cooling refrigerant does not directly penetrate. Even if only the circuit portion is sealed, a similar effect is obtained for cooling and the like.

【0077】前述した実施の形態例によれば、SQUID素
子冷却用の冷却媒体の蒸発をなくし、冷却媒体の補給を
必要とせず、SQUID素子を均一に冷却することができ
る。また、低温定常運転時に極低温容器の内部圧力が大
気圧より増加しないようにでき、かつ被検査体の周りの
自由な測定部位、方向にSQUID素子格納用極低温容器が
配置できる全方位姿勢配置可能な構造を実現することが
できる。
According to the above-described embodiment, the SQUID element can be uniformly cooled without evaporating the cooling medium for cooling the SQUID element and without replenishing the cooling medium. In addition, the cryogenic container inside the cryogenic container can be arranged so that the internal pressure of the cryogenic container does not increase above the atmospheric pressure during steady-state low-temperature operation, and the cryogenic container for storing the SQUID element can be placed in any measurement site and direction around the test object A possible structure can be realized.

【0078】また、前述した実施の形態例では、SQUID
素子を被冷却物として説明したが、被冷却物が超電導磁
石や、低温にて性能が向上するCMOS等の半導体電子
素子、生物の細胞類であっても、同様な効果を得ること
ができる。
In the above-described embodiment, the SQUID
Although the element has been described as an object to be cooled, a similar effect can be obtained even if the object to be cooled is a superconducting magnet, a semiconductor electronic element such as a CMOS having improved performance at low temperature, or a biological cell.

【0079】また、冷却媒体凝固温度以下で超電導とな
る超電導体を含む被冷却物の冷却システムにも、本発明
は適用できる。
The present invention can also be applied to a cooling system for an object to be cooled including a superconductor which becomes superconductive below the cooling medium solidification temperature.

【0080】[0080]

【発明の効果】本発明によれば、SQUID素子冷却用の冷
却媒体の蒸発をなくし、かつ多数のSQUID素子を配置し
たSQUID素子群を均一に冷却することができるので、SQU
ID素子間の感度のばらつきがなくなり、計測精度の向上
を図ることができる。
According to the present invention, the cooling medium for cooling the SQUID element can be prevented from evaporating and the SQUID element group having a large number of SQUID elements can be uniformly cooled.
Variations in sensitivity among ID elements are eliminated, and measurement accuracy can be improved.

【0081】また、冷却媒体を計測時には固形化するこ
とによってどんな方向位でも冷却媒体が零れることがな
くなり、全方位姿勢配置が可能となり、医療用診断装置
等への使用展開が容易になる。
Further, by solidifying the cooling medium at the time of measurement, the cooling medium is prevented from spilling in any direction, the omnidirectional posture can be arranged, and the use of the cooling medium in medical diagnostic devices and the like is facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態例に係るSQUID素子
格納用極低温容器の全体構成図である。
FIG. 1 is an overall configuration diagram of a cryogenic container for storing a SQUID element according to a first embodiment of the present invention.

【図2】図1のSQUID素子取り付け部の拡大図である。FIG. 2 is an enlarged view of a SQUID element mounting portion of FIG.

【図3】図2のX−X断面図である。FIG. 3 is a sectional view taken along line XX of FIG. 2;

【図4】本発明の第2の実施の形態例に係るSQUID素子
格納用極低温容器のSQUID素子取り付け部の拡大図であ
る。
FIG. 4 is an enlarged view of a SQUID element mounting portion of a cryogenic container for storing a SQUID element according to a second embodiment of the present invention.

【図5】図4のY−Y断面図である。FIG. 5 is a sectional view taken along line YY of FIG. 4;

【図6】図4のSQUID素子取り付け部の拡大図であり、
図5に示すZ−Z方向の断面図である。
FIG. 6 is an enlarged view of a SQUID element mounting portion of FIG. 4;
It is sectional drawing of the ZZ direction shown in FIG.

【図7】本発明の第3の実施の形態例に係るSQUID素子
格納用極低温容器のSQUID素子取り付け部の拡大図であ
る。
FIG. 7 is an enlarged view of a SQUID element mounting portion of a cryogenic container for storing a SQUID element according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…SQUID素子格納用極低温容器、2…SQUID素子、3…
冷却媒体、4,80…内部容器、5…断熱空間、6…外
部容器、8…フランジ、13b…熱シールド板、30…
熱伝導体、81…第1の熱伝導体、82…第2の熱伝導
体、89…パルス管式冷凍機
1. Cryogenic container for storing SQUID elements, 2. SQUID elements, 3.
Cooling medium, 4,80 inner container, 5 heat insulating space, 6 outer container, 8 flange, 13b heat shield plate, 30
Heat conductor, 81: first heat conductor, 82: second heat conductor, 89: pulse tube refrigerator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G017 AA04 AC04 AD32 4M113 AC06 CA17 CA34 4M114 AA02 AA08 AA19 BB05 CC08 CC11 DA08 DA13 DA15  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G017 AA04 AC04 AD32 4M113 AC06 CA17 CA34 4M114 AA02 AA08 AA19 BB05 CC08 CC11 DA08 DA13 DA15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超電導量子干渉デバイスと該超電導量子干
渉デバイス冷却温度より高い凝固点を有し前記超電導量
子干渉デバイスを冷却する冷却媒体とが格納されている
内部容器と、該内部容器の外周部に接し前記内部容器を
包む熱伝導体と、該熱伝導体を含む前記内部容器を包囲
する熱シールド板と、該熱シールド板を包囲すると共に
前記熱シールド板との間に断熱空間を形成する外部容器
と、該外部容器の上部に設けられ前記熱伝導体及び前記
熱シールド板を冷却する冷凍機とを有することを特徴と
する超電導量子干渉デバイス格納用極低温容器。
1. An inner container in which a superconducting quantum interference device and a cooling medium having a freezing point higher than a cooling temperature of the superconducting quantum interference device and cooling the superconducting quantum interference device are stored, and an outer peripheral portion of the inner container. A heat conductor that is in contact with and wraps the inner container, a heat shield plate that surrounds the inner container including the heat conductor, and an outer that surrounds the heat shield plate and forms an adiabatic space between the heat shield plate and the heat shield plate. A cryogenic container for storing a superconducting quantum interference device, comprising: a container; and a refrigerator provided on an upper portion of the outer container to cool the heat conductor and the heat shield plate.
【請求項2】複数の超電導量子干渉デバイスと該各超電
導量子干渉デバイスの外周に螺旋状に巻き付けられた第
1の熱伝導体と前記超電導量子干渉デバイス冷却温度よ
り高い凝固点を有し前記第1の熱伝導体及び前記超電導
量子干渉デバイスを冷却する冷却媒体とが格納されてい
る内部容器と、該内部容器の中心部に設けられ前記各第
1の熱伝導体の外周部の一部に接触する第2の熱伝導体
と、前記第2の熱伝導体を含む内部容器を包囲する熱シ
ールド板と、該熱シールド板を包囲すると共に前記熱シ
ールド板との間に断熱空間を形成する外部容器と、該外
部容器の上部に設けられ前記第2の熱伝導体及び前記熱
シールド板を冷却する冷凍機とを有することを特徴とす
る超電導量子干渉デバイス格納用極低温容器。
2. A superconducting quantum interference device, a first heat conductor spirally wound around an outer periphery of each superconducting quantum interference device, and a first freezing point higher than a cooling temperature of the superconducting quantum interference device. And an inner container in which a heat conductor and a cooling medium for cooling the superconducting quantum interference device are stored, and a part of an outer peripheral portion of each of the first heat conductors provided at a central portion of the inner container. A second heat conductor, a heat shield plate surrounding the inner container including the second heat conductor, and an outside surrounding the heat shield plate and forming an adiabatic space between the heat shield plate and the outside. A cryogenic container for storing a superconducting quantum interference device, comprising: a container; and a refrigerator provided on an upper portion of the outer container to cool the second heat conductor and the heat shield plate.
【請求項3】被冷却物と該被冷却物冷却温度より高い凝
固点を有し前記被冷却物を冷却する冷却媒体とが格納さ
れている内部容器と、該内部容器の外側或いは内側に設
けられ前記被冷却物と熱的に一体化する熱伝導体と、該
熱伝導体を含む前記内部容器を包囲する熱シールド板
と、該熱シールド板を包囲すると共に前記熱シールド板
との間に断熱空間を形成する外部容器と、該外部容器の
上部に設けられ前記熱伝導体及び前記熱シールド板を冷
却する冷凍機とを有することを特徴とする冷却物格納用
極低温容器。
3. An internal container for storing an object to be cooled and a cooling medium having a freezing point higher than the cooling temperature of the object to be cooled and cooling the object to be cooled, and provided outside or inside the internal container. A heat conductor thermally integrated with the object to be cooled, a heat shield plate surrounding the inner container including the heat conductor, and heat insulation surrounding the heat shield plate and the heat shield plate A cryogenic container for storing a cooled object, comprising: an outer container forming a space; and a refrigerator provided on an upper portion of the outer container to cool the heat conductor and the heat shield plate.
JP24254999A 1999-08-30 1999-08-30 Cryogenic container for superconducting quantum interference device storage Pending JP2001066354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24254999A JP2001066354A (en) 1999-08-30 1999-08-30 Cryogenic container for superconducting quantum interference device storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24254999A JP2001066354A (en) 1999-08-30 1999-08-30 Cryogenic container for superconducting quantum interference device storage

Publications (1)

Publication Number Publication Date
JP2001066354A true JP2001066354A (en) 2001-03-16

Family

ID=17090767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24254999A Pending JP2001066354A (en) 1999-08-30 1999-08-30 Cryogenic container for superconducting quantum interference device storage

Country Status (1)

Country Link
JP (1) JP2001066354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107463A1 (en) * 2003-05-30 2004-12-09 Riken Beam current meter
JP2013515964A (en) * 2009-12-29 2013-05-09 コリア・リサーチ・インスティチュート・オブ・スタンダーズ・アンド・サイエンス Low noise cooling device
CN105627610A (en) * 2016-03-15 2016-06-01 北京美尔斯通科技发展股份有限公司 High-temperature superconductor refrigerating equipment based on fixed nitrogen
JP2019207191A (en) * 2018-05-30 2019-12-05 独立行政法人石油天然ガス・金属鉱物資源機構 Magnetic measuring device, cooling device and magnetic survey system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107463A1 (en) * 2003-05-30 2004-12-09 Riken Beam current meter
JP2004356573A (en) * 2003-05-30 2004-12-16 Institute Of Physical & Chemical Research Beam current meter
JP4550375B2 (en) * 2003-05-30 2010-09-22 独立行政法人理化学研究所 Beam ammeter
JP2013515964A (en) * 2009-12-29 2013-05-09 コリア・リサーチ・インスティチュート・オブ・スタンダーズ・アンド・サイエンス Low noise cooling device
CN105627610A (en) * 2016-03-15 2016-06-01 北京美尔斯通科技发展股份有限公司 High-temperature superconductor refrigerating equipment based on fixed nitrogen
CN105627610B (en) * 2016-03-15 2018-02-06 北京美尔斯通科技发展股份有限公司 A kind of high-temperature superconductor refrigeration plant based on fixed nitrogen
JP2019207191A (en) * 2018-05-30 2019-12-05 独立行政法人石油天然ガス・金属鉱物資源機構 Magnetic measuring device, cooling device and magnetic survey system
JP7116418B2 (en) 2018-05-30 2022-08-10 独立行政法人石油天然ガス・金属鉱物資源機構 Magnetic measuring device and magnetic exploration system

Similar Documents

Publication Publication Date Title
JP3867158B2 (en) Cryogenic container and magnetometer using the same
JP4960539B2 (en) Zero-boil-off refrigerant-cooled recondensing superconducting magnet assembly
CN102054554B (en) System and method for refrigerating superconducting magnet
US7764153B2 (en) Magnetic field generator
JP5713671B2 (en) Method and apparatus for hyperpolarizing materials for advanced MR techniques
JP2662639B2 (en) Magnetometer
US6230499B1 (en) Detector device
JPH10282200A (en) Cooler for superconducting magnet system
JPH08128742A (en) Extremely low temperature device
EP0334382B1 (en) Magnet apparatus for use in magnetic resonance imaging system
WO2015079921A1 (en) Magnetic resonance imaging apparatus
JP4142754B2 (en) Permanent magnet system
Demikhov et al. 8 T cryogen free magnet with a variable temperature insert using a heat switch
US10732239B2 (en) Cryogen-free magnet system comprising a magnetocaloric heat sink
JPH11337631A (en) Strong magnetic field low-temperature device for measuring physical property
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
JPS59224187A (en) Exciting leading conductor unit for superconductive unit andparticularly magnet
Batey et al. Integration of superconducting magnets with cryogen-free dilution refrigerator systems
JP2952552B2 (en) Current leads for superconducting equipment
Jirmanus Introduction to laboratory cryogenics
Swartz Charcoal‐pumped 3He cryostats for storage Dewars
JP4043892B2 (en) Prober device with superconducting electromagnet and cooling device for superconducting electromagnet
Reinders et al. Novel top-loading 20 mK/15 T cryomagnetic system
JP2003179277A (en) Cryogenic container for superconducting quantum interference device storage
JPH04263768A (en) Cooling method of superconductive magnetic sealed vessel and device therefor