JPH03248580A - Cooling method of oxide superconductor - Google Patents

Cooling method of oxide superconductor

Info

Publication number
JPH03248580A
JPH03248580A JP2044429A JP4442990A JPH03248580A JP H03248580 A JPH03248580 A JP H03248580A JP 2044429 A JP2044429 A JP 2044429A JP 4442990 A JP4442990 A JP 4442990A JP H03248580 A JPH03248580 A JP H03248580A
Authority
JP
Japan
Prior art keywords
refrigerant
water
cooling
state
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2044429A
Other languages
Japanese (ja)
Inventor
Shoichi Ogawa
彰一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2044429A priority Critical patent/JPH03248580A/en
Publication of JPH03248580A publication Critical patent/JPH03248580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To eliminate the need for a cryogenic refrigerator and a pressure vessel by using a refrigerant, which is brought to the state of a solid at approximately 10K and to the state of a liquid at approximately 300K, as a refrigerant for cooling an oxide group superconductor. CONSTITUTION:Since a refrigerant vessel 14 is kept at 10K under the state of normal operation, water 15 as a refrigerant is brought into ice, i.e., solid state. The thermal conductivity of water under solid state, i.e., ice, is improved, and a superconducting coil 11 is cooled efficiently. Ice melts and is changed into water by a temperature rise in a device when heat penetrates from the outside or when a quenching phenomenon is volumetric generated, but no pressure rise as a gas is generated because of the comparatively small coefficient of volumetric expansion of water. Accordingly, a thick firm pressure vessel need not be used and a normal vessel may be employed as the refrigerant vessel 14, a special refrigerator for recondensation need not also be used as a refrigerator 20, and cold heads 21, 22 at 10K and 80K can be utilized as cooling sources as they are.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導装置の冷却方法に関し、特に酸化物系高
温超電導体の冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for cooling a superconducting device, and particularly to a method for cooling an oxide-based high temperature superconductor.

(従来の技術) 従来の超電導装置においては、コイル等の超電導体は液
体ヘリウム等の冷媒を用いて極低温状態に冷却した状態
で運転される。このような冷却手段を備えた超電導装置
においては、その運転時、装置外部からの熱の侵入によ
り、あるいは超電導体コイルのクエンチ現象等により、
装置内の温度が液体ヘリウムの沸点である4.2により
上昇すると、液体ヘリウムが蒸発する。この時蒸発した
液体ヘリウムは配管を通して系外へ放出するか、または
気化したヘリウムをJ−T弁付冷凍機により凝縮再利用
していた。
(Prior Art) In conventional superconducting devices, superconductors such as coils are operated while being cooled to an extremely low temperature using a coolant such as liquid helium. In a superconducting device equipped with such a cooling means, during operation, heat may enter from outside the device or due to quenching of the superconducting coil, etc.
When the temperature inside the device increases by 4.2, which is the boiling point of liquid helium, the liquid helium evaporates. At this time, the evaporated liquid helium was discharged to the outside of the system through piping, or the evaporated helium was condensed and reused using a refrigerator with a J-T valve.

(発明が解決しようとする課題) このような従来の超電導装置ではその動作中の液体ヘリ
ウムの蒸発に対し、系外へ放出する場合には液体ヘリウ
ムの補充が必要となり、また凝縮再利用する場合には極
低温用冷凍機の設置、あるいはこの冷凍機による電力消
費が大きい等の欠点があった。さらにいずれの場合も、
超電導体コイルにいわゆるクエンチ現象が生ずると装置
内の温度の急上昇により液体ヘリウムが大量に蒸発する
ため、液体ヘリウムを収納する容器は圧力容器を用いる
必要がある。
(Problems to be Solved by the Invention) In such conventional superconducting devices, when liquid helium evaporates during operation, it is necessary to replenish liquid helium when discharging it outside the system, and when reusing it by condensation. had drawbacks such as the installation of a cryogenic refrigerator and the high power consumption of this refrigerator. Furthermore, in both cases,
When a so-called quench phenomenon occurs in a superconducting coil, a large amount of liquid helium evaporates due to a sudden rise in temperature within the device, so it is necessary to use a pressure vessel as a container for storing liquid helium.

ところで、例えばYBaCuO等の酸化物系高温超電導
体は液体ヘリウムの沸点である4、2により高い10K
前後でも十分使用できるため、液体ヘリウムを冷媒とし
て用いる場合は、液状でなくガス状の冷媒を使用するこ
とになる。しがし、ガス状の冷媒は液状の冷媒に比べて
、冷却すべきコイル装置との熱伝導率が低下し、冷却効
果が悪化する欠点かある。
By the way, oxide-based high-temperature superconductors such as YBaCuO have a temperature of 10K higher than the boiling point of liquid helium, which is 4,2.
Since it can be used both before and after, when liquid helium is used as a refrigerant, a gas refrigerant is used instead of a liquid refrigerant. However, compared to liquid refrigerants, gaseous refrigerants have the disadvantage that their thermal conductivity with the coil device to be cooled is lower, resulting in poorer cooling effects.

本発明はこの様な従来の超電導装置における冷却方法の
欠点を改良し、特に酸化物系高温超電導体に適した冷却
方法の提供を目的とするものである。
The present invention aims to improve the drawbacks of such conventional cooling methods in superconducting devices, and to provide a cooling method particularly suitable for oxide-based high-temperature superconductors.

(課題を解決するための手段) 本発明によれば、酸化物系超電導体を臨界磁場が大きく
なる10K前後で使用する系において、前記酸化物系超
電導体の冷却用の冷媒として10に前後で固体状態、3
00に前後で液体の状態となる冷媒を使用することを特
徴とする酸化物系超電導体の冷却方法により、上記欠点
を解決したものである。
(Means for Solving the Problems) According to the present invention, in a system where an oxide superconductor is used at a temperature of around 10K where the critical magnetic field increases, the refrigerant for cooling the oxide superconductor can be used at around 10K. solid state, 3
The above-mentioned drawbacks have been solved by a method for cooling an oxide-based superconductor, which is characterized by using a refrigerant that becomes liquid at around 0.00C.

(実施例) 以下図面により本発明の一実施例を説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の冷却方法が適用された超電導装置の構
成を示す断面図である。酸化物超電導コイル11はコイ
ル巻枠12に巻回され、FRP樹脂等の断熱材からなる
コイル支持材13により、冷媒容器14の上部から懸下
されている。この冷媒容器14内には水15が冷媒とし
て収納されている。この冷媒容器14は同じ(FRP樹
脂等の断熱材からなる容器支持材16により、真空容器
17の上部から懸下されている。また、冷媒容器14の
上部には排気管18か設けられ、冷媒容器14内の冷媒
を真空容器17の外部に導出するように配置されている
。さらに、真空容器17内には、例えば銅製の熱シール
ド板19が冷媒容器14の周囲を囲うように設けられて
いる。この熱シールド板19は冷媒容器14を支持する
容器支持材16により支持されている。そして真空容器
17の上部には冷凍機本体20が装着されている。
FIG. 1 is a sectional view showing the configuration of a superconducting device to which the cooling method of the present invention is applied. The oxide superconducting coil 11 is wound around a coil winding frame 12, and is suspended from the upper part of a refrigerant container 14 by a coil support member 13 made of a heat insulating material such as FRP resin. Water 15 is stored in this refrigerant container 14 as a refrigerant. The refrigerant container 14 is suspended from the upper part of the vacuum container 17 by a container supporting material 16 made of a heat insulating material such as FRP resin. The refrigerant in the container 14 is arranged to be led out to the outside of the vacuum container 17. Furthermore, a heat shield plate 19 made of copper, for example, is provided in the vacuum container 17 so as to surround the refrigerant container 14. This heat shield plate 19 is supported by a container support member 16 that supports the refrigerant container 14. A refrigerator main body 20 is attached to the upper part of the vacuum container 17.

この冷凍機本体20はそれぞれ冷媒容器14および熱シ
ールド板19に接触する第1および第2のコールドヘッ
ド21.22を備えている。これら第1および第2のコ
ールドヘッド21.22はそれぞれ、10K、80にの
温度に維持されている。
The refrigerator body 20 includes first and second cold heads 21 and 22 that contact the refrigerant container 14 and the heat shield plate 19, respectively. These first and second cold heads 21,22 are maintained at a temperature of 10K and 80K, respectively.

このように構成された超電導装置はその正常な動作状態
においては、冷媒容器14は10Kに維持されるため、
冷媒である水15は氷、すなわち固体状態にある。固体
状態の水、即ち氷の熱伝導率は良好であり(0” Cで
2.2w/km)、効率よく超電導コイル11を冷却す
る。次に、外部からの熱の侵入時、あるいはクエンチ現
象の発生時においては装置内の温度上昇により、氷が溶
は水となるが、水の体積膨張率は比較的体小さいため、
気体のような圧力上昇は生じない。
In the superconducting device configured in this way, in its normal operating state, the refrigerant container 14 is maintained at 10K.
Water 15, which is a refrigerant, is in ice, that is, in a solid state. Water in a solid state, that is, ice, has a good thermal conductivity (2.2 w/km at 0" C) and efficiently cools the superconducting coil 11. Next, when heat enters from the outside or the quench phenomenon When this happens, ice melts into water due to the rise in temperature inside the equipment, but since water has a relatively small volumetric expansion coefficient,
There is no pressure increase like in gases.

(発明の効果) 以上説明した本発明の超電導体の冷却方法によれば、正
常の使用状態では固体であり、温度上昇時に液体となる
例えば水のような冷媒を用いて超電導体を冷却している
ので、液体ヘリウムのように液体時の厳しいリーク対策
あるいは蒸発時の高い圧力上昇を生ずることがない。従
って、冷媒容器としては肉厚で強固な圧力容器を用いる
必要はなく通常の容器でよい。また冷凍機も特別な再凝
縮用の冷凍機を用いる必要はなく、10K、80にのコ
ールドヘッドをそのまま冷却源として利用できる。
(Effects of the Invention) According to the method for cooling a superconductor of the present invention described above, the superconductor is cooled using a refrigerant such as water, which is solid under normal use and becomes liquid when the temperature rises. Therefore, unlike liquid helium, there is no need for strict leakage countermeasures when it is liquid or a high pressure rise when it evaporates. Therefore, it is not necessary to use a thick and strong pressure vessel as the refrigerant container, and an ordinary container may be used. Further, there is no need to use a special recondensing refrigerator, and the cold head of 10K and 80K can be used as it is as a cooling source.

さらに、冷媒として水を用いると、水が低温で固化する
とき体積が膨張するため、コイル等の超電導体との熱接
触が十分に確保でき冷却効果を高めることができる。
Furthermore, when water is used as a refrigerant, the volume expands when the water solidifies at a low temperature, so that sufficient thermal contact with a superconductor such as a coil can be ensured and the cooling effect can be enhanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸化物系超電導体の冷却方法の一実施
例を示す超電導装置断面図である。 ・・・酸化物系超電導コイル、 2・・・コイル巻枠、 13・・・コイル支持材、14・・・冷媒容器、15・
・・水、16・・・容器支持材、17・・・真空容器、
18・・・排気管、19・・・熱シールド板、20・・
・冷凍機本体、21・・・第1のコールドヘッド、22
・・・第2のコールドヘッド。 第1図
FIG. 1 is a sectional view of a superconducting device showing an embodiment of the method for cooling an oxide-based superconductor of the present invention. ...Oxide-based superconducting coil, 2.. Coil winding frame, 13.. coil support material, 14.. refrigerant container, 15.
... Water, 16 ... Container support material, 17 ... Vacuum container,
18...Exhaust pipe, 19...Heat shield plate, 20...
- Refrigerator main body, 21...first cold head, 22
...Second cold head. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物系超電導体を臨界磁場が大きくなる10K
前後で使用する系において、前記酸化物系超電導体の冷
却用の冷媒として10K前後で固体状態、300K前後
で液体の状態となる冷媒を使用することを特徴とする酸
化物系超電導体の冷却方法。
(1) At 10K, the critical magnetic field increases for oxide-based superconductors.
A method for cooling an oxide superconductor, characterized in that in the system used before and after the oxide superconductor, a refrigerant that becomes a solid state at around 10 K and a liquid state at around 300 K is used as a refrigerant for cooling the oxide superconductor. .
(2)前記冷媒は水であることを特徴とする前記特許請
求の範囲(1)記載の酸化物系超電導体の冷却方法。
(2) The method for cooling an oxide superconductor according to claim (1), wherein the coolant is water.
JP2044429A 1990-02-27 1990-02-27 Cooling method of oxide superconductor Pending JPH03248580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2044429A JPH03248580A (en) 1990-02-27 1990-02-27 Cooling method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044429A JPH03248580A (en) 1990-02-27 1990-02-27 Cooling method of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH03248580A true JPH03248580A (en) 1991-11-06

Family

ID=12691249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044429A Pending JPH03248580A (en) 1990-02-27 1990-02-27 Cooling method of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH03248580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150011395A1 (en) * 2012-02-02 2015-01-08 Institute Of Electrical Engineering, Chinese Academy Of Sciences Superconducting magnetic suspension device having no liquid helium volatilization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150011395A1 (en) * 2012-02-02 2015-01-08 Institute Of Electrical Engineering, Chinese Academy Of Sciences Superconducting magnetic suspension device having no liquid helium volatilization

Similar Documents

Publication Publication Date Title
JP4854396B2 (en) Cryostat structure with low-temperature refrigerator
JP4417247B2 (en) MRI system with superconducting magnet and refrigeration unit
US5842348A (en) Self-contained cooling apparatus for achieving cyrogenic temperatures
JP4031121B2 (en) Cryostat equipment
EP0392771B1 (en) Cryogenic precooler for superconductive magnet
US10203068B2 (en) Method and device for precooling a cryostat
JP2007205709A (en) Closed-loop pre-cooling method of cryogenically cooled apparatus, and its device
KR100843389B1 (en) Undercooled horizontal cryostat configuration
JP2008249201A (en) Recondenser, its mounting method and superconducting magnet using the same
JPH08222429A (en) Device for cooling to extremely low temperature
US20090224862A1 (en) Magnetic apparatus and method
JP6616717B2 (en) Cryogenic cooling device and cryogenic cooling method
JP5833284B2 (en) Cooling system
US5979176A (en) Refrigerator
US6708503B1 (en) Vacuum retention method and superconducting machine with vacuum retention
JPH03248580A (en) Cooling method of oxide superconductor
JPH0445740B2 (en)
JPH02212699A (en) Storage device for liquid helium
Yayama et al. Installation of a superconducting magnet in a cryogen-free dilution refrigerator
JP2002208511A (en) Refrigerator cooling superconducting magnet unit
JPH0582045B2 (en)
JPH0423476A (en) Superconducting magnet system
Chandratilleke et al. Gas—Gap Thermal Switch for Precooling of Cryocooler—Cooled Superconducting Magnets
Yamamoto et al. Precooling of a superconducting magnet using a cryocooler and thermal switches
JPH0426100A (en) Super conducting accelerator