JP2982310B2 - Heat shield plate cooling system - Google Patents

Heat shield plate cooling system

Info

Publication number
JP2982310B2
JP2982310B2 JP3000570A JP57091A JP2982310B2 JP 2982310 B2 JP2982310 B2 JP 2982310B2 JP 3000570 A JP3000570 A JP 3000570A JP 57091 A JP57091 A JP 57091A JP 2982310 B2 JP2982310 B2 JP 2982310B2
Authority
JP
Japan
Prior art keywords
liquid nitrogen
heat shield
shield plate
tank
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3000570A
Other languages
Japanese (ja)
Other versions
JPH04261078A (en
Inventor
俊之 天野
昭徳 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3000570A priority Critical patent/JP2982310B2/en
Publication of JPH04261078A publication Critical patent/JPH04261078A/en
Application granted granted Critical
Publication of JP2982310B2 publication Critical patent/JP2982310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えば超電導コイル
を収める極低温容器の熱シールド板冷却システムに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system for a heat shield plate of a cryogenic vessel containing, for example, a superconducting coil.

【0002】[0002]

【従来の技術】従来技術として磁気浮上式鉄道用の超電
導コイルとそれを収納する極低温容器を例として説明す
る。図2は文献(電気学会・リニアドライブ研究会資料
(1988−4−26)27ページ)に掲載された磁気
浮上式鉄道用の超電導マグネットである。図において、
2は超電導コイルと冷媒である液体ヘリウムを納めた内
槽、3は内槽2に液体ヘリウムを供給するための液体ヘ
リウム槽、4は内槽2および液体ヘリウム槽3を覆う熱
シールド板、7は超電導コイルを永久電流モードで運転
するための永久電流スイッチ、8は内槽2を断熱的に支
持するための荷重支持材、6は内槽2、液体ヘリウム槽
3、熱シールド板3、永久電流スイッチ7、荷重支持材
8などの各構成物を収納した外槽つまり極低温真空容器
である。9は本図には図示されていない液体窒素槽から
液体窒素ポンプにより液体窒素を供給するための冷却配
管である。
2. Description of the Related Art As a prior art, a superconducting coil for a magnetic levitation type railway and a cryogenic container accommodating the coil will be described as an example. FIG. 2 shows a superconducting magnet for a magnetically levitated railway described in a document (IEEE / Linear Drive Research Group Material (1988-4-26), page 27). In the figure,
2 is an inner tank containing a superconducting coil and liquid helium as a refrigerant, 3 is a liquid helium tank for supplying liquid helium to the inner tank 2, 4 is a heat shield plate covering the inner tank 2 and the liquid helium tank 3, 7 Is a permanent current switch for operating the superconducting coil in the permanent current mode, 8 is a load supporting member for supporting the inner tank 2 insulated, 6 is the inner tank 2, liquid helium tank 3, heat shield plate 3, permanent This is an outer tank, that is, a cryogenic vacuum vessel, in which components such as the current switch 7 and the load support member 8 are stored. Reference numeral 9 denotes a cooling pipe for supplying liquid nitrogen from a liquid nitrogen tank (not shown) by a liquid nitrogen pump.

【0003】図2のように構成されている超電導マグネ
ットの動作について熱シールド関連を主眼として説明す
る。内槽2には超電導コイルが納められており、これと
共に超電導コイルを超電導状態に維持するためヘリウム
槽3より供給された液体ヘリウムが満たされている。こ
の超電導コイル2は図示されていない励磁電源により電
流を供給され、永久電流スイッチ7を利用することによ
り永久電流モードで運転される。超電導コイルおよび永
久電流スイッチを運転するには超電導状態を保持する必
要がある。そのためには内槽2への外部からの熱侵入を
極力減らす必要があり、多くの対策が採られている。例
えば、断熱荷重支持材8の採用であり、熱シールド板4
の設置である。断熱荷重支持材8は外槽6から内槽2へ
の熱伝導による熱侵入を低減するための対策であり、熱
シールド板4は同じく熱ふく射による熱侵入を低減する
ための対策である。この熱シールド板4は通常液体窒素
温度(1気圧下で77.3K)レベルに冷却されるが、
本従来例では冷却配管9に液体窒素を通ずることにより
液体窒素温度近傍に維持する方式としている。つまり、
冷却配管9は図示されていない液体窒素槽から導かれて
おり、本装置では液体窒素槽に取り付けられた液体窒素
ポンプにより冷却配管9内に液体窒素を強制循環させ、
熱シールド板4を液体窒素温度近傍に維持するようにし
ている。もちろん熱シールド板4にも外槽6からの熱ふ
く射が存在するが、その熱侵入量を液体ヘリウムより安
価な液体窒素により賄うというのがこの種の超電導マグ
ネットを製作する際の基本的な設計思想といえる。
The operation of the superconducting magnet configured as shown in FIG. 2 will be described with a focus on heat shielding. A superconducting coil is accommodated in the inner tank 2 and is filled with liquid helium supplied from the helium tank 3 to maintain the superconducting coil in a superconducting state. The superconducting coil 2 is supplied with a current from an exciting power supply (not shown), and is operated in a permanent current mode by using a permanent current switch 7. To operate the superconducting coil and the persistent current switch, it is necessary to maintain the superconducting state. For this purpose, it is necessary to minimize the intrusion of heat from the outside into the inner tank 2, and many measures have been taken. For example, the heat shield plate 4
Installation. The heat-insulating load supporting member 8 is a measure for reducing heat penetration due to heat conduction from the outer tub 6 to the inner tub 2, and the heat shield plate 4 is also a measure for reducing heat penetration due to heat radiation. The heat shield plate 4 is usually cooled to a liquid nitrogen temperature (77.3K under one atmosphere).
In this conventional example, liquid nitrogen is passed through the cooling pipe 9 to maintain the temperature near the liquid nitrogen temperature. That is,
The cooling pipe 9 is guided from a liquid nitrogen tank (not shown). In the present apparatus, liquid nitrogen is forcibly circulated in the cooling pipe 9 by a liquid nitrogen pump attached to the liquid nitrogen tank.
The heat shield plate 4 is maintained near the temperature of liquid nitrogen. Of course, heat radiation from the outer bath 6 also exists in the heat shield plate 4, but the amount of heat penetration is covered by liquid nitrogen which is cheaper than liquid helium. It can be called thought.

【0004】さて従来例は、液体窒素槽を別置きにして
循環ポンプにより液体窒素を強制流動させる構成である
が、この改良形として液体ヘリウム槽3の側に液体窒素
槽を置いた一体形が考えられる。このタイプはシステム
としてコンパクトになること、分散タイプであることか
ら故障に対する冗長性などの点で優れている。最も理想
的な構成は液体ヘリウム槽の周囲に液体窒素槽を配置す
るものであるが、重量的にあるいはスペース的に難しい
場合が多く、その場合には液体ヘリウム槽と液体窒素槽
を横に並べる構成を採らざるを得ない。ただこのタイプ
では、熱シールド板に付いている冷却配管9への液体窒
素の供給は、液体窒素槽内の圧力による自圧供給か、あ
るいは液体窒素自身の重量による自重落下供給で行われ
ることになる。
In the prior art, a liquid nitrogen tank is separately provided and liquid nitrogen is forcibly flowed by a circulation pump. As an improved version, an integrated type in which a liquid nitrogen tank is placed on the liquid helium tank 3 side is used. Conceivable. This type is excellent in that it is compact as a system and that it is a distributed type, so that it has redundancy against failures. The most ideal configuration is to arrange a liquid nitrogen tank around the liquid helium tank, but it is often difficult to save weight or space, in which case the liquid helium tank and the liquid nitrogen tank are arranged side by side I have to adopt a configuration. However, in this type, the supply of the liquid nitrogen to the cooling pipe 9 attached to the heat shield plate is performed by the self-pressure supply by the pressure in the liquid nitrogen tank or the self-weight drop supply by the weight of the liquid nitrogen itself. Become.

【0005】[0005]

【発明が解決しようとする課題】従来の超電導マグネッ
トは、上述のように構成され、動作しているため以下の
ような問題点がある。
The conventional superconducting magnet has the following problems because it is constructed and operates as described above.

【0006】液体窒素の強制循環装置を使用する場合、
液体窒素ポンプが高価なこと、ポンプの設置スペースが
必要であること、装置の重量が重くなること、ポンプを
駆動する動力(モータ)が必要なこと、ポンプからの熱
負荷により液体窒素の蒸発が促進されてしまうこと、超
伝導コイルの発生する大きな磁場の影響を受けないよう
に、ポンプの設置個所が制限されること等の種々の問題
がある。加えて循環ポンプが異常を来たした時には液体
窒素槽内の圧力を上昇させ液体窒素を自圧供給すること
により対処するが、それにはバルブ等の補助機器が必要
となり、また、運転制御機能も必要となる。従って、自
重落下方式の方がシンプルな構成であり、運転もしやす
いという利点がある。
When using a forced circulation device for liquid nitrogen,
Liquid nitrogen pump is expensive, pump installation space
Requirements, heavy equipment, pumps
Power (motor) to drive, heat from pump
That the load accelerates the evaporation of liquid nitrogen,
Not be affected by the large magnetic field generated by the conducting coil
In addition, there are various problems such as restrictions on the installation location of the pump.
There is. In addition, when the circulating pump becomes abnormal, the pressure in the liquid nitrogen tank is increased and the liquid nitrogen is self-supplied to cope with this.However, auxiliary equipment such as a valve is required, and the operation control function is also provided. Required. Therefore, the self-weight drop method has a simpler configuration and has an advantage that it is easy to drive.

【0007】ただ自重落下方式では、冷却配管が自重の
効果を期待できるような角度で熱シールド板に取付られ
ていなければならない。つまり、冷却配管は水平方向に
設置できないという欠点があり、液体窒素槽と熱シール
ド板が水平方向に位置している場合には、熱シールド板
の冷却はシールド材の熱伝導のみに頼らざるを得ず、多
くの場合熱シールド板をうまく冷却できないという問題
点があった。
However, in the self-weight dropping method, the cooling pipe must be attached to the heat shield plate at an angle at which the effect of the self-weight can be expected. In other words, there is a disadvantage that the cooling pipe cannot be installed in the horizontal direction.If the liquid nitrogen tank and the heat shield plate are located in the horizontal direction, cooling of the heat shield plate must rely only on the heat conduction of the shield material. There was a problem that the heat shield plate could not be cooled well in many cases.

【0008】本発明は上記のような問題点を解消するた
めになされたもので、熱シールド板と液体窒素槽位置
的に水平に配置し、小型で軽量、かつ熱シールド板を効
率良く冷却できるような熱シールドシステムを得ること
を目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has a heat shield plate and a liquid nitrogen bath which are disposed horizontally in a horizontal position, so that the heat shield plate is small and light, and the heat shield plate is efficiently cooled. The purpose is to obtain a heat shield system that can be used.

【0009】[0009]

【課題を解決するための手段】この発明に係る熱シール
ド板冷却システムは、液体窒素槽と熱シールド板とを水
平位置関係に設置し、液体窒素槽の下部から導入された
下部冷却配管と液体窒素槽の上部から導入された上部冷
却配管とを液体窒素槽と離れた位置で連通させて、上記
冷却配管内を上記液体窒素が自由に流通できるように
し、少なくとも上記下部冷却配管内に上記液体窒素が溜
まった状態となるように構成するとともに、上記配管と
熱シールド板とを熱的に連結したものである。
A heat shield plate cooling system according to the present invention has a liquid nitrogen tank and a heat shield plate installed in a horizontal positional relationship, and a lower cooling pipe introduced from a lower portion of the liquid nitrogen tank and a liquid. an upper cooling pipe introduced from the top of the nitrogen tank communicates at a distance with the liquid nitrogen tank, by the inside of the cooling pipe above liquid nitrogen Ru can circulate freely Unishi, at least the lower cooling the pipe The pipe is configured to be in a state in which the liquid nitrogen is stored, and the pipe and the heat shield plate are thermally connected.

【0010】[0010]

【作用】このように構成された熱シールドシステムで
は、液体窒素槽と熱シールド板の位置的関係から自重落
下方式が使えない場合や液体窒素槽からの伝導距離が長
く伝導のみで冷却するのが難しい熱シールド板であって
も、液体窒素槽と熱シールド板との熱の授受を良好に行
え、熱シールド板の温度を十分低い温度に維持すること
ができる。
[Function] In the heat shield system configured as described above, when the self-weight drop method cannot be used due to the positional relationship between the liquid nitrogen tank and the heat shield plate, or when the conduction distance from the liquid nitrogen tank is long, cooling is performed only by conduction. Even with a difficult heat shield plate, heat can be transferred between the liquid nitrogen tank and the heat shield plate satisfactorily, and the temperature of the heat shield plate can be maintained at a sufficiently low temperature.

【0011】[0011]

【実施例】実施例1. 以下、この発明の一実施例を図にしたがって説明する。
図1において、1は超電導コイル、2は内槽、3は液体
ヘリウム槽、4aは内槽まわりの熱シールド板、4bは
液体ヘリウム槽まわりの熱シールド板、5は液体窒素
槽、5aは液体窒素槽の下部から導入された下部冷却配
管部、5bは液体窒素槽の上部から導入された上部冷却
配管部、5cは冷却配管5aおよび5bを連通させる連
通配管部、5dおよび5eは蒸発窒素ガスを放出する排
気管部であり、少なくとも、下部冷却配管部5aと上部
冷却配管部5bと連通配管部5cとにより配管構成体を
構成する。6は真空容器すなわち外槽である。この図で
は、熱シールド部4aに渡る冷却配管は省略している。
[Embodiment 1] An embodiment of the present invention will be described below with reference to the drawings.
In FIG. 1, 1 is a superconducting coil, 2 is an inner tank, 3 is a liquid helium tank, 4a is a heat shield plate around the inner tank, 4b is a heat shield plate around the liquid helium tank, 5 is a liquid nitrogen tank, and 5a is a liquid. A lower cooling pipe section introduced from the lower part of the nitrogen tank, 5b is an upper cooling pipe section introduced from the upper part of the liquid nitrogen tank, 5c is a communicating pipe section for communicating the cooling pipes 5a and 5b, 5d and 5e are evaporative nitrogen gas. Exhaust pipe part , and at least a lower cooling pipe part 5a and an upper part
A piping structure is formed by the cooling piping portion 5b and the communication piping portion 5c.
Constitute. Reference numeral 6 denotes a vacuum vessel, that is, an outer tank. In this figure, a cooling pipe extending to the heat shield part 4a is omitted.

【0012】このように構成された超電導マグネットの
基本動作は従来例と同様であるが、熱シールド板4b部
の冷却方式のみ異なることになる。
The basic operation of the superconducting magnet thus configured is the same as that of the conventional example, except for the cooling method of the heat shield plate 4b.

【0013】少し詳しく説明する。従来例に鑑みれば、
熱シールド板4bの冷却は熱シールド板自身の熱伝導率
に頼るしかなかった。つまり水平方向では自重による落
下が起こり得ないからである。しかるに、本実施例のご
とく連通管を設置することにより、冷却配管5aおよび
5c部にも液体窒素が溜まることになり、あたかも液体
窒素溜が熱シールド板4bの下部と端部に存在するがご
とき構成となる。従って熱シールド板の冷却特性は、液
体窒素槽5を寒冷発生部として単にシールド材の熱伝導
のみに頼る場合に比べ著しく改善される。なぜなら熱伝
導距離が非常に短くなるからである。例えば、通常の超
電導マグネットにおいて液体窒素槽5の温度は78K程
度、熱シールド板3の温度は高くても100K程度に抑
える必要がある。条件にもよるが、熱伝導のみで冷却し
た時に熱シールド板の温度が100K以上になる場合で
も、本実施例のように連通管を設置すれば熱シールド板
の温度を80〜90K程度にできる。
A more detailed description will be given. Considering the conventional example,
The cooling of the heat shield plate 4b had to rely on the thermal conductivity of the heat shield plate itself. That is, in the horizontal direction, a fall due to its own weight cannot occur. However, by installing the communication pipe as in the present embodiment, liquid nitrogen also accumulates in the cooling pipes 5a and 5c, and the liquid nitrogen accumulates at the lower and end portions of the heat shield plate 4b. Configuration. Therefore, the cooling characteristic of the heat shield plate is remarkably improved as compared with the case where the liquid nitrogen tank 5 is used as a cold generation part and only depends on the heat conduction of the shield material. This is because the heat conduction distance becomes very short. For example, in a normal superconducting magnet, the temperature of the liquid nitrogen tank 5 needs to be suppressed to about 78K, and the temperature of the heat shield plate 3 needs to be suppressed to about 100K at most. Although depending on the conditions, even when the temperature of the heat shield plate becomes 100K or more when cooled only by heat conduction, the temperature of the heat shield plate can be set to about 80 to 90K by installing the communication pipe as in the present embodiment. .

【0014】排気管部5dを設ける理由は、液体窒素槽
5内の蒸発窒素ガスをこの排気管部から逃がすことによ
り上部冷却配管部5bでのガス流動による冷却効果が期
待できるからである。もちろんなくても良い。また、連
通管部5cは複数本あっても良く、さらにこれら冷却連
通配管が複数組あっても良い。これらの複数構成を巧み
に実施することでより一層冷却性能の向上が図れる
The reason why the exhaust pipe section 5d is provided is that a cooling effect by gas flow in the upper cooling pipe section 5b can be expected by allowing the evaporated nitrogen gas in the liquid nitrogen tank 5 to escape from the exhaust pipe section. Of course, it is not necessary. Further, a plurality of communication pipes 5c may be provided, and a plurality of sets of these cooling communication pipes may be provided. Skillful implementation of these multiple configurations can further improve cooling performance

【0015】[0015]

【発明の効果】以上のように、この発明によれば、熱シ
ールド板冷却システムにおいて、液体ヘリウムまたは超
伝導コイルを収めた貯槽を覆う熱シールド板と、少なく
とも部分的に上記熱シールド板と水平位置関係に配置さ
れ、上記熱シールド板を冷却する液体窒素を収めた液体
窒素槽と、上記液体窒素槽下部から導入された下部冷却
配管と上記液体窒素槽上部から導入された上部冷却配管
とを液体窒素槽より離れた位置で連通させた配管構成体
とを備え、上記配管構成体の少なくとも下部冷却配管内
に、上記液体窒素が溜まった状態で上記液体窒素が自由
に流通できるようにするとともに、上記配管構成体と上
記熱シールド板とを熱的に連結したので、熱シールド板
の要所要所に液体窒素槽が存在するのと同様な効果があ
り、良い冷却特性が得られる効果がある。また、液体ヘ
リウム槽の周囲に液体窒素槽を設置する構成に比べ著し
く重量の軽減化が図れる効果がある。
As described above, according to the present invention, in a heat shield plate cooling system, a heat shield plate covering a storage tank containing liquid helium or a superconducting coil, and at least partially horizontal to the heat shield plate. A liquid nitrogen tank that is arranged in a positional relationship and contains liquid nitrogen for cooling the heat shield plate, a lower cooling pipe introduced from the lower part of the liquid nitrogen tank, and an upper cooling pipe introduced from the upper part of the liquid nitrogen tank. and a pipe structure that is communicating at a position apart from the liquid nitrogen tank, in at least a lower cooling pipe of the pipe structure
The liquid nitrogen is free while the liquid nitrogen is stored
As well as the above piping structure
Since the heat shield plate is thermally connected to the heat shield plate, the heat shield plate has the same effect as the presence of the liquid nitrogen tank at a necessary portion of the heat shield plate, and has the effect of obtaining good cooling characteristics. Also, there is an effect that the weight can be significantly reduced as compared with the configuration in which the liquid nitrogen tank is provided around the liquid helium tank.

【0016】さらに本システムによれば、強制循環方式
を採用しないで済むことから、圧力調整弁などの補助部
品を取り付ける必要がなく、小型かつ軽量の装置が得ら
れるとともに、システム構成の簡易化も図れる。
Further, according to the present system , since it is not necessary to adopt the forced circulation system, there is no need to attach auxiliary parts such as a pressure regulating valve, and a small and lightweight apparatus can be obtained.
At the same time, the system configuration can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例による超電導コイル用極低
温容器を模式的に示す構成図である。
FIG. 1 is a configuration diagram schematically showing a cryogenic container for a superconducting coil according to one embodiment of the present invention.

【図2】この発明の従来の超電導コイル用極低温容器を
示した斜視図である。
FIG. 2 is a perspective view showing a conventional cryogenic container for a superconducting coil according to the present invention.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 内槽 3 液体ヘリウム槽 4a 内槽を覆う熱シールド板 4b 液体ヘリウム槽を覆う熱シールド板 5 液体窒素槽 5a 下部冷却配管 5b 上部冷却配管 5c 連通配管 5d 連通管に接続されている排気管 5e 液体窒素槽に接続されている排気管 6 外槽 7 永久電流スイッチ 8 断熱荷重支持材 9 液体窒素供給配管 Reference Signs List 1 superconducting coil 2 inner tank 3 liquid helium tank 4a heat shield plate covering inner tank 4b heat shield plate covering liquid helium tank 5 liquid nitrogen tank 5a lower cooling pipe 5b upper cooling pipe 5c communication pipe 5d connected to communication pipe Exhaust pipe 5e Exhaust pipe connected to liquid nitrogen tank 6 Outer tank 7 Permanent current switch 8 Adiabatic load support 9 Liquid nitrogen supply pipe

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−4309(JP,A) 特開 昭63−67706(JP,A) 特開 昭60−41271(JP,A) 実開 昭59−185806(JP,U) 実開 昭63−46808(JP,U) 特公 平3−17057(JP,B2) (58)調査した分野(Int.Cl.6,DB名) H01L 39/04 F25D 3/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-4309 (JP, A) JP-A-63-67706 (JP, A) JP-A-60-41271 (JP, A) 185806 (JP, U) JP-A-63-46808 (JP, U) JP 3-17057 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 39/04 F25D 3 /Ten

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 液体ヘリウムまたは超伝導コイルを収め
た貯槽を覆う熱シールド板と、少なくとも部分的に上記
熱シールド板と水平位置関係に配置され、上記熱シール
ド板を冷却する液体窒素を収めた液体窒素槽と、上記液
体窒素槽下部から導入された下部冷却配管と上記液体窒
素槽上部から導入された上部冷却配管とを液体窒素槽よ
り離れた位置で連通させた配管構成体とを備え、上記配
管構成体の少なくとも下部冷却配管内に、上記液体窒素
が溜まった状態で上記液体窒素が自由に流通できるよう
にするとともに、上記配管構成体と上記熱シールド板と
を熱的に連結したことを特徴とする熱シールド板冷却シ
ステム。
1. A heat shield plate for covering a storage tank containing liquid helium or a superconducting coil, and at least partially disposed in a horizontal positional relationship with the heat shield plate and containing liquid nitrogen for cooling the heat shield plate. with a liquid nitrogen tank, and a pipe structure that is communicating at a position where the upper cooling pipe introduced from the lower cooling pipe and the liquid nitrogen tank top introduced from the liquid nitrogen tank bottom away from the liquid nitrogen bath, Above
At least in the lower cooling pipe of the pipe structure, the liquid nitrogen
So that the liquid nitrogen can flow freely when
And the pipe structure and the heat shield plate
A heat shield plate cooling system, wherein the heat shield plate is thermally connected .
JP3000570A 1991-01-08 1991-01-08 Heat shield plate cooling system Expired - Lifetime JP2982310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3000570A JP2982310B2 (en) 1991-01-08 1991-01-08 Heat shield plate cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3000570A JP2982310B2 (en) 1991-01-08 1991-01-08 Heat shield plate cooling system

Publications (2)

Publication Number Publication Date
JPH04261078A JPH04261078A (en) 1992-09-17
JP2982310B2 true JP2982310B2 (en) 1999-11-22

Family

ID=11477371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3000570A Expired - Lifetime JP2982310B2 (en) 1991-01-08 1991-01-08 Heat shield plate cooling system

Country Status (1)

Country Link
JP (1) JP2982310B2 (en)

Also Published As

Publication number Publication date
JPH04261078A (en) 1992-09-17

Similar Documents

Publication Publication Date Title
US10101420B2 (en) Cryostat arrangement with a vacuum container and an object to be cooled, with evacuable cavity
US5584184A (en) Superconducting magnet and regenerative refrigerator for the magnet
US5744959A (en) NMR measurement apparatus with pulse tube cooler
KR102506491B1 (en) Fault-tolerant cryogenic cooling system
US7528510B2 (en) Superconducting machine device with a superconducting winding and thermosiphon cooling
US20070089432A1 (en) Cryostat configuration with cryocooler
US6967480B2 (en) Superconducting magnet for MRI
US20090121561A1 (en) Machine System with Thermosyphon Cooled Superconductor Rotor Winding
CN101111985B (en) Motor device with thermosiphon cooling of its superconductive rotor winding
US20240164058A1 (en) Cooling apparatus for superconducting fault current limiter
JP2982310B2 (en) Heat shield plate cooling system
JP2009168272A (en) Cryostat
JP4039528B2 (en) Vacuum holding method and superconducting machine with vacuum holding
JP3199967B2 (en) Cryogenic equipment
US20240222960A1 (en) Cooling control apparatus for superconducting fault current limiter
JP2008091802A (en) Cryogenic container
JPH04335991A (en) Loop type heat pipe
JPH06163251A (en) Cryogenic vessel
JPH04261077A (en) Thermal shield cooling method
JP3417797B2 (en) Superfluid helium generator
JP2701517B2 (en) Cryogenic equipment for superconducting coils
JP3739474B2 (en) Magnetic levitation transport device
JP2000353614A (en) Cryogenic apparatus
JPH05223424A (en) Cryogenic container
JPH07176424A (en) Superconducting coil apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12