JPH0322683B2 - - Google Patents

Info

Publication number
JPH0322683B2
JPH0322683B2 JP26615485A JP26615485A JPH0322683B2 JP H0322683 B2 JPH0322683 B2 JP H0322683B2 JP 26615485 A JP26615485 A JP 26615485A JP 26615485 A JP26615485 A JP 26615485A JP H0322683 B2 JPH0322683 B2 JP H0322683B2
Authority
JP
Japan
Prior art keywords
liquid helium
tank
helium tank
liquid
radiant heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26615485A
Other languages
Japanese (ja)
Other versions
JPS62126604A (en
Inventor
Katsuyoshi Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60266154A priority Critical patent/JPS62126604A/en
Priority to DE19863639760 priority patent/DE3639760A1/en
Priority to US06/934,992 priority patent/US4713941A/en
Publication of JPS62126604A publication Critical patent/JPS62126604A/en
Publication of JPH0322683B2 publication Critical patent/JPH0322683B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/10Vessels not under pressure with provision for thermal insulation by liquid-circulating or vapour-circulating jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、極低温容器に関し、特に輻射熱が
液体ヘリウム槽内に侵入するのを防止するのに役
立つ極低温容器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to cryogenic vessels, and more particularly to cryogenic vessels useful for preventing radiant heat from entering a liquid helium bath.

〔従来の技術〕[Conventional technology]

第2図は例えば特開昭56−116555号公報に示さ
れた従来の極低温容器を示す断面図であり、液体
ヘリウム1中に浸漬された超電導コイル2が、強
度および溶接性の点からステンレス鋼からなる液
体ヘリウム槽3内に収納されている。この液体ヘ
リウム槽3の外側には真空層4を介して室温にあ
る外槽5が設けられている。真空層4中には断熱
材からなる第1の支持部材7aと第2の支持部材
7bとで支持された輻射熱シールド板8が設けら
れている。輻射熱シールド板8の表面には入口部
9aが液体ヘリウム槽3の上部中央から液体ヘリ
ウム槽3内に臨んでいる冷却管9が設けられてい
る。冷却管9の出口部9bは外槽5から外部に臨
んでいる。
FIG. 2 is a cross-sectional view showing a conventional cryogenic container shown in, for example, Japanese Patent Application Laid-Open No. 56-116555, in which the superconducting coil 2 immersed in liquid helium 1 is made of stainless steel from the viewpoint of strength and weldability. It is housed in a liquid helium tank 3 made of steel. An outer tank 5 at room temperature is provided outside the liquid helium tank 3 with a vacuum layer 4 interposed therebetween. A radiant heat shield plate 8 is provided in the vacuum layer 4 and supported by a first support member 7a and a second support member 7b made of a heat insulating material. A cooling pipe 9 is provided on the surface of the radiant heat shield plate 8 and has an inlet portion 9a facing into the liquid helium tank 3 from the upper center of the liquid helium tank 3. An outlet portion 9b of the cooling pipe 9 faces the outside from the outer tank 5.

次に、上記構成の動作について説明する。外槽
5と液体ヘリウム槽3との間には、約300Kの温
度差があり、輻射熱シールド板8がなければステ
フアン・ボルツマンの法則から解るように絶対温
度の4乗の差に比例する大きな輻射熱が、外槽5
から液体ヘリウム槽3に入射し、大量の液体ヘリ
ウム1を蒸発させる。輻射熱シールド板8は、外
槽5から直接液体ヘリウム槽3に入射する輻射熱
を防止するものであり、この輻射熱シールド板8
の温度が低いほど液体ヘリウム槽3への入射熱は
少ない。したがつて、輻射熱シールド板8の表面
には、冷却管9を取り付け、蒸発したヘリウムガ
スの寒冷を利用して輻射熱シールド板8を冷却す
るようになつている。冷却管9の入口部9aは通
常1箇所であり、液体ヘリウム槽3の上部の中央
部付近にある。
Next, the operation of the above configuration will be explained. There is a temperature difference of approximately 300K between the outer tank 5 and the liquid helium tank 3, and if there is no radiant heat shield plate 8, a large amount of radiant heat will be generated that is proportional to the difference in absolute temperature to the fourth power, as understood from the Stefan-Boltzmann law. However, outer tank 5
The liquid helium enters the liquid helium tank 3 from above and evaporates a large amount of liquid helium 1. The radiant heat shield plate 8 prevents radiant heat from directly entering the liquid helium tank 3 from the outer tank 5.
The lower the temperature, the less heat is incident on the liquid helium tank 3. Therefore, a cooling pipe 9 is attached to the surface of the radiant heat shield plate 8, and the radiant heat shield plate 8 is cooled using the cold of the evaporated helium gas. There is usually one inlet 9a of the cooling pipe 9, and it is located near the center of the upper part of the liquid helium tank 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の極低温容器は以上のように構成されてい
るので、液体ヘリウム1が液体ヘリウム槽3内に
充分に満たされている場合には、液体ヘリウム槽
3の上部もヘリウムガスにより冷却されており、
液体ヘリウム槽3の上部から液体ヘリウム1への
輻射熱は充分小さい値であり、液体ヘリウム1の
蒸発量は少ない。しかしながら、液体ヘリウム1
が蒸発し、液面が下がると、ヘリウムガスの流れ
は第3図に示すように液体ヘリウム槽3の上部の
隅の部分を通過する量が少なくなり、その隅の部
分の冷却効果は悪くなるという問題点があつた。
特に、液体ヘリウム槽3は、ステンレス鋼から作
られているので熱伝導が悪く、外槽5からの輻射
熱で上記隅の部分の温度が上昇し、液体ヘリウム
1への輻射熱が多くなり、その結果液体ヘリウム
1の蒸発量がさらに増加するといつた問題点があ
つた。
Since the conventional cryogenic container is constructed as described above, when the liquid helium tank 3 is sufficiently filled with liquid helium 1, the upper part of the liquid helium tank 3 is also cooled by the helium gas. ,
The radiant heat from the upper part of the liquid helium tank 3 to the liquid helium 1 is a sufficiently small value, and the amount of evaporation of the liquid helium 1 is small. However, liquid helium 1
evaporates and the liquid level falls, the amount of helium gas flowing through the upper corner of the liquid helium tank 3 decreases as shown in Figure 3, and the cooling effect in that corner deteriorates. There was a problem.
In particular, since the liquid helium tank 3 is made of stainless steel, heat conduction is poor, and the temperature of the corner portion increases due to radiant heat from the outer tank 5, increasing the amount of radiant heat to the liquid helium 1. There was a problem that the amount of evaporation of liquid helium 1 further increased.

この発明は、かかる問題点を解決するためにな
されたもので、液体ヘリウムの液面が降下しても
液体ヘリウム槽の上部全体を低温のままに保ち、
液体ヘリウムの蒸発量の少ない極低温容器を得る
ことを目的とする。
This invention was made to solve this problem, and it keeps the entire upper part of the liquid helium tank at a low temperature even if the liquid level of the liquid helium falls.
The purpose is to obtain a cryogenic container with a small amount of evaporation of liquid helium.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る極低温容器は、液体ヘリウム槽
の上部に例えば銅のような熱伝導率のよい均熱板
を取り付けたものである。
The cryogenic container according to the present invention is one in which a heat equalizing plate made of, for example, copper and having good thermal conductivity is attached to the upper part of a liquid helium tank.

〔作用〕[Effect]

この発明における、極低温容器は、液体ヘリウ
ムの液面が降下し、液体ヘリウム槽の上部の隅の
部分を通過するヘリウムガスの量が少なくなり、
ヘリウムガスによるその部分の冷却効果が悪くな
つても、液体ヘリウム槽の上部の隅の部分は例え
ば銅からなる均熱板の熱伝導により他の上部部分
と同じく均一に冷却される。
In the cryogenic container of this invention, the liquid level of the liquid helium falls, and the amount of helium gas passing through the upper corner of the liquid helium tank decreases,
Even if the cooling effect of helium gas deteriorates in that part, the upper corner part of the liquid helium tank is cooled uniformly like the other upper parts by heat conduction through a heat equalizing plate made of, for example, copper.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明す
る。第1図はこの発明の一実施例を示す断面図
で、第2図、第3図と同一または相当部分は同一
符号を付し、その説明は省略する。図において、
液体ヘリウム槽3の上部内面には熱良導体からな
る均熱部即ち均熱板10が取り付けられている。
この均熱板10は熱伝導率のよい例えば銅材から
作られている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention, and the same or corresponding parts as in FIGS. 2 and 3 are designated by the same reference numerals, and the explanation thereof will be omitted. In the figure,
A heat equalizing section or heat equalizing plate 10 made of a good thermal conductor is attached to the upper inner surface of the liquid helium tank 3.
The heat equalizing plate 10 is made of a material having good thermal conductivity, such as copper.

このように構成された極低温容器においては、
液体ヘリウム槽3の上部は均熱板10の熱伝導の
作用により全体に均一に冷却され、液体ヘリウム
1の液面が降下しても液体ヘリウム槽3の上部で
温度上昇する部分がなく、液体ヘリウム槽3内の
液体ヘリウム1の蒸発量は抑制される。
In the cryogenic container configured in this way,
The upper part of the liquid helium tank 3 is uniformly cooled throughout by the heat conduction effect of the heat equalizing plate 10, and even if the liquid level of the liquid helium 1 falls, there is no part where the temperature rises in the upper part of the liquid helium tank 3, and the liquid The amount of evaporation of liquid helium 1 in helium tank 3 is suppressed.

なお、上記実施例では、均熱板10を、液体ヘ
リウム槽3の内部に取り付けたが、外部に取り付
けても同様の効果が得られる。また、液体ヘリウ
ム槽3の上部自身を熱良導体からなる材料で構成
してもよい。
In the above embodiment, the heat soaking plate 10 is attached inside the liquid helium tank 3, but the same effect can be obtained even if it is attached outside. Further, the upper part of the liquid helium tank 3 itself may be made of a material that is a good thermal conductor.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、液体ヘリウ
ム槽の上部に熱良導体からなる均熱部を設けたこ
とにより、液体ヘリウムの液面降下時でも、液体
ヘリウム槽上部は均一に冷却されるので、液体ヘ
リウム槽内の液体ヘリウムに侵入する輻射熱は常
に小さくなり、液体ヘリウムの蒸発量を低く抑え
ることができるという効果がある。
As described above, according to the present invention, by providing the soaking section made of a good thermal conductor at the top of the liquid helium tank, the top of the liquid helium tank can be cooled uniformly even when the liquid level of the liquid helium falls. , the radiant heat that enters the liquid helium in the liquid helium tank is always small, and the effect is that the amount of evaporation of the liquid helium can be kept low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面図、第
2図は従来の極低温容器の一例を示す断面図、第
3図は第2図の極低温容器の別の使用態様を示す
断面図である。 1……液体ヘリウム、2……超電導コイル、3
……液体ヘリウム槽、4……真空層、5……外
槽、10……均熱板。なお、各図中、同一符号は
同一または相当部分を示す。
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a sectional view showing an example of a conventional cryogenic container, and Fig. 3 is a sectional view showing another usage of the cryogenic container shown in Fig. 2. It is a diagram. 1...Liquid helium, 2...Superconducting coil, 3
... Liquid helium tank, 4 ... Vacuum layer, 5 ... Outer tank, 10 ... Soaking plate. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 液体ヘリウム中に浸漬されている超電導コイ
ルを収納している液体ヘリウム槽と、この液体ヘ
リウム槽の外側に真空層を介して設けられている
外槽と、前記液体ヘリウム槽の上部に設けられ前
記液体ヘリウムから蒸発したヘリウムガスによる
冷熱を液体ヘリウム槽の上部全体に伝導する熱良
導体からなる均熱部とを備えていることを特徴と
する極低温容器。
1 A liquid helium tank containing a superconducting coil immersed in liquid helium, an outer tank provided outside the liquid helium tank via a vacuum layer, and a liquid helium tank provided above the liquid helium tank. A cryogenic container characterized by comprising: a soaking section made of a good thermal conductor that conducts cold heat from helium gas evaporated from the liquid helium to the entire upper part of the liquid helium tank.
JP60266154A 1985-11-28 1985-11-28 Cryogenic vessel Granted JPS62126604A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60266154A JPS62126604A (en) 1985-11-28 1985-11-28 Cryogenic vessel
DE19863639760 DE3639760A1 (en) 1985-11-28 1986-11-21 COOLANT CONTAINER
US06/934,992 US4713941A (en) 1985-11-28 1986-11-26 Cryogenic vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266154A JPS62126604A (en) 1985-11-28 1985-11-28 Cryogenic vessel

Publications (2)

Publication Number Publication Date
JPS62126604A JPS62126604A (en) 1987-06-08
JPH0322683B2 true JPH0322683B2 (en) 1991-03-27

Family

ID=17427039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266154A Granted JPS62126604A (en) 1985-11-28 1985-11-28 Cryogenic vessel

Country Status (1)

Country Link
JP (1) JPS62126604A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282806A (en) * 1988-05-09 1989-11-14 Mitsubishi Electric Corp Superconducting magnet device

Also Published As

Publication number Publication date
JPS62126604A (en) 1987-06-08

Similar Documents

Publication Publication Date Title
US4713941A (en) Cryogenic vessel
US4651117A (en) Superconducting magnet with shielding apparatus
JPH0322683B2 (en)
US4745313A (en) Stator having three-phase superconducting windings
JPH0324045B2 (en)
JPH0324046B2 (en)
JPH06163251A (en) Cryogenic vessel
JPH0511647B2 (en)
JPH11233839A (en) Low-temperature thermostat
JPH0560295A (en) Low temperature vessel
JPS58184775A (en) Heat insulating container for superconductive magnet
JP2937794B2 (en) Cryogenic container
JPS6134907A (en) Low temperature vessel
JPH04576B2 (en)
JPS61208206A (en) Superconductive magnet
JPH11237456A (en) Heat shield body
JPH054264Y2 (en)
JPH0416059Y2 (en)
JP4360037B2 (en) Cryostat
JPS6310911B2 (en)
JPH01205576A (en) Cryostat
JPS6289307A (en) Cryostat for superconducting magnet
JPS63117409A (en) Cryogenic container with freezer
JPH0622168B2 (en) Radiant shield
JPS6155071B2 (en)