JPH11233839A - Low-temperature thermostat - Google Patents

Low-temperature thermostat

Info

Publication number
JPH11233839A
JPH11233839A JP10032880A JP3288098A JPH11233839A JP H11233839 A JPH11233839 A JP H11233839A JP 10032880 A JP10032880 A JP 10032880A JP 3288098 A JP3288098 A JP 3288098A JP H11233839 A JPH11233839 A JP H11233839A
Authority
JP
Japan
Prior art keywords
liquid refrigerant
temperature
container
low
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10032880A
Other languages
Japanese (ja)
Inventor
Yasuaki Komiyama
泰明 小見山
Norihide Saho
典英 佐保
Hitoshi Sasabuchi
笹渕  仁
Keiji Tsukada
啓二 塚田
Akihiko Kandori
明彦 神鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10032880A priority Critical patent/JPH11233839A/en
Publication of JPH11233839A publication Critical patent/JPH11233839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the amount of entering heat by providing a liquid refrigerant container with first and second baths and an insert, a body that is maintained at a low, constant temperature, a lid, and the like in the insert, and an exhaust port for externally discharging gas being evaporated from the liquid refrigerant in the lid. SOLUTION: A liquid refrigerant container in double structure is constituted of an inner bath 1 of a first bath and an outer bath 2 of a second bath. A heat-insulating material 6 is installed at the gap between the inner layer 2 and the outer layer 2 to maintain vacuum state. An insert 9 is provided in the liquid refrigerant container. The insert 9 is constituted of a sensor part 10 that is a body that is maintained at a low, constant temperature consisting of a superconductive coil and a superconductive quantum interference element circuit, a base plate 11, a support rod 12, a vacuum container 13, a heat insulator 14, and a lid 16 with the exhaust port. The heat insulator 16 is constituted by alternately piling up a mesh material 4 and a metal foil 5, thus reducing the amount of heat being propagated downward in the refrigerant container due to heat radiation. A liquid refrigerant 17 such as liquid helium is sealed to a depth where the sensor part 10 is dipped in the refrigerant container.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は低温恒温装置、特に
超伝導量子干渉素子(SQUID)回路を使って磁気計測を行
うのに適した低温恒温装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature thermostat, and more particularly to a low-temperature thermostat suitable for performing magnetic measurement using a superconducting quantum interference device (SQUID) circuit.

【0002】[0002]

【従来の技術】従来は、特開平6−331717にある
ように液体容器側面及び底面が二重構造の真空断熱層の
壁を有した液体容器であり、インサートの上部は小林俊
一、大塚洋一著(1987)「低温技術」東京大学出版会p.
77の図7.1にあるように発泡スチレン等の断熱材を使用
して、熱の侵入を防ぐ構造であった。
2. Description of the Related Art Conventionally, as disclosed in Japanese Patent Application Laid-Open No. Hei 6-331717, a liquid container has a double-walled vacuum heat insulating layer on the side and bottom surfaces. (1987) "Low temperature technology", University of Tokyo Press, p.
As shown in Fig. 7.1 of Fig. 77, the structure used heat insulation material such as expanded styrene to prevent heat from entering.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来技術
では、液体容器液体容器上面からは断熱材の熱伝導で熱
が侵入し、側面及び底面からの熱侵入と同程度の熱侵入
量に抑えることはできなかった。従って、液体冷媒の蒸
発量(消費量)も多く、液体容器内部の内容物を低温に保
つために頻繁に液体冷媒を補充しなければならず維持の
手間と費用は相当なものであった。
However, in the above-mentioned prior art, heat enters the liquid container from the upper surface of the liquid container due to heat conduction of the heat insulating material, and suppresses the amount of heat infiltration to the same extent as the heat intrusion from the side and bottom surfaces. I couldn't do that. Accordingly, the evaporation amount (consumption amount) of the liquid refrigerant is large, and the liquid refrigerant must be replenished frequently in order to keep the contents inside the liquid container at a low temperature, and the maintenance labor and cost are considerable.

【0004】また、従来の構造の液体容器では冷媒が蒸
発した気体(以下、「蒸発冷媒」)が充分な熱置換がなされ
ずに(低温のままで)外部に放出されるため、排気ポート
周辺が排気によって冷やされ、結露、或は、凍結といっ
た現象が見られた。
Further, in the liquid container having the conventional structure, the gas in which the refrigerant has evaporated (hereinafter referred to as “evaporated refrigerant”) is discharged to the outside (at a low temperature) without sufficient heat exchange. Was cooled by the exhaust, and phenomena such as dew condensation or freezing were observed.

【0005】更に、二重構造の液体容器の真空断熱層に
は、長い使用期間中には液体容器の内槽壁を通して蒸発
冷媒が真空部分に拡散し、真空度が低下して断熱効果が
低下し液体冷媒の蒸発量が多くなるため、数ヶ月に1回
の割合で真空の引き直しが必要とされた。
Further, in the vacuum heat insulating layer of the double-structured liquid container, during a long use period, the evaporative refrigerant diffuses into the vacuum portion through the inner tank wall of the liquid container, and the degree of vacuum is reduced to lower the heat insulating effect. Since the amount of evaporation of the liquid refrigerant increases, it is necessary to redraw the vacuum once every few months.

【0006】本発明の目的は浸入熱量の低減化を図るの
に適した低温恒温装置を提供することにある。
An object of the present invention is to provide a low-temperature constant-temperature apparatus suitable for reducing the amount of infiltration heat.

【0007】[0007]

【課題を解決するための手段】本発明は、一つの観点に
よれば、第1の槽及び第2の槽を有し、その間に真空断
熱層が形成された、液体冷媒を収容する液体冷媒容器
と、インサ−トとを備え、前記液体冷媒容器はその上部
に設けられた開口部を有し、前記インサ−トは前記液体
冷媒に浸すように保持されている被低温恒温維持体と、
前記開口部を開閉し得るように前記液体冷媒容器に結合
された蓋と、該蓋と前記被低温恒温維持体との間に設け
られた断熱材製の断熱体及び真空容器とを備え、前記蓋
は前記液体冷媒から蒸発する気体を前記液体容器外に放
出する排気ポートを有することを特徴とする。
SUMMARY OF THE INVENTION According to one aspect, the present invention provides a liquid refrigerant containing a liquid refrigerant having a first tank and a second tank, with a vacuum insulation layer formed therebetween. A liquid container having an opening provided in an upper part thereof, wherein the insert is held so as to be immersed in the liquid refrigerant;
A lid coupled to the liquid refrigerant container so as to be able to open and close the opening, a heat insulator made of a heat insulating material provided between the lid and the low-temperature constant temperature maintaining body, and a vacuum container, The lid has an exhaust port for discharging gas evaporating from the liquid refrigerant to the outside of the liquid container.

【0008】本発明は、もう一つの観点によれば、第1
の槽及び第2の槽を有し、その間に真空断熱層が形成さ
れた、液体冷媒を収容する液体冷媒容器と、前記真空断
熱層内に設けられた気体滞留部と、前記液体冷媒容器か
ら前記気体滞留部に前記液体冷媒から蒸発する気体を導
く導管と、インサ−トとを備え、前記液体冷媒容器はそ
の上部に設けられた開口部を有し、前記インサ−トは前
記液体冷媒に浸すように保持されている被低温恒温維持
体と、前記開口部を開閉し得るように前記液体冷媒容器
に結合された蓋と、該蓋と前記被低温恒温維持体との間
に介在された断熱材製の断熱体とを備え、前記蓋は前記
滞留部から前記液体冷媒容器外に前記気体を放出する排
気ポートを有することを特徴とする。
[0008] According to another aspect, the present invention provides a first method.
A liquid refrigerant container containing a liquid refrigerant, and a gas stagnation portion provided in the vacuum heat insulating layer, and a liquid refrigerant container, A conduit for introducing gas evaporating from the liquid refrigerant into the gas retaining portion; and an insert, wherein the liquid refrigerant container has an opening provided at an upper portion thereof, and the insert is provided to the liquid refrigerant. A low-temperature constant-maintenance body held to be immersed; a lid coupled to the liquid refrigerant container so as to open and close the opening; and a lid interposed between the lid and the low-temperature constant-temperature maintenance body. A heat insulator made of a heat insulating material, wherein the lid has an exhaust port for discharging the gas from the stagnation portion to the outside of the liquid refrigerant container.

【0009】本発明の更にもう一つの観点によれば、第
1の槽及びその外側に配置された第2の槽を有し、その
間に真空断熱層が形成された、液体冷媒を収容する液体
冷媒容器と、インサ−トと、前記真空断熱層内において
前記第1の槽の、前記液体冷媒に対応する部分を覆よう
に更なる真空断熱層を形成する真空隔離壁とを備え、前
記液体冷媒容器はその上部に設けられた開口部を有し、
前記インサ−トは前記液体冷媒に浸すように保持されて
いる被低温恒温維持体と、前記開口部を開閉し得るよう
に前記液体冷媒容器に結合された蓋と、該蓋と前記被低
温恒温維持体との間に介在された断熱材製の断熱体とを
備え、前記蓋は前記液体冷媒から蒸発する気体を前記液
体冷媒容器外に放出する排気ポートを有することを特徴
とする。
According to yet another aspect of the present invention, there is provided a liquid containing a liquid refrigerant, comprising a first tank and a second tank disposed outside the first tank, wherein a vacuum heat insulating layer is formed therebetween. A refrigerant container, an insert, and a vacuum isolation wall forming a further vacuum heat insulating layer in the vacuum heat insulating layer so as to cover a portion of the first tank corresponding to the liquid refrigerant; The refrigerant container has an opening provided at an upper part thereof,
The insert is a low-temperature constant-temperature maintaining body held so as to be immersed in the liquid refrigerant, a lid connected to the liquid refrigerant container so as to open and close the opening, and the lid and the low-temperature constant temperature. And a heat insulator made of a heat insulating material interposed between the retainer and the retainer, wherein the lid has an exhaust port for discharging gas evaporating from the liquid refrigerant to the outside of the liquid refrigerant container.

【0010】[0010]

【発明の実施の形態】液体冷媒容器上面側からの熱の侵
入量を側面側や底面側からのそれと同程度に抑えるに
は、上面側の断熱の手段を側面側や底面側と同じ構成と
すればよい。即ち、インサート上部の断熱材製の断熱体
に側面側や底面側にあるような真空容器を設けて熱伝導
による熱侵入を抑えると同時に、当該真空容器に後述す
るメッシュ材と金属箔とを何層にも交互に重ねた断熱材
を挿入することで真空容器内の熱輻射を抑える構成とす
ればよい。
BEST MODE FOR CARRYING OUT THE INVENTION In order to suppress the amount of heat intrusion from the upper side of the liquid refrigerant container to the same level as that from the side or bottom side, the heat insulating means on the upper side should have the same structure as the side or bottom side. do it. That is, a vacuum container is provided on the side surface or the bottom surface of a heat insulator made of a heat insulating material at the upper part of the insert to suppress heat intrusion due to heat conduction. The heat radiation in the vacuum chamber may be suppressed by inserting heat insulating materials alternately stacked in the layers.

【0011】また、蒸発冷媒の熱置換を促進するために
は、真空断熱層の側面部分と底面部分とに気体滞留部を
設けるとともに、液体冷媒容器から気体滞留部に蒸発冷
媒を導く導管を設け、側面と底面からの熱輻射による侵
入熱を気体滞留部分で蒸発冷媒に吸収させる構成とすれ
ばよい。
In order to promote the heat exchange of the evaporative refrigerant, a gas retaining portion is provided on the side and bottom portions of the vacuum heat insulating layer, and a conduit for guiding the evaporative refrigerant from the liquid refrigerant container to the gas retaining portion is provided. It is sufficient to adopt a configuration in which heat entering from the side and bottom surfaces due to heat radiation is absorbed by the evaporated refrigerant in the gas retaining portion.

【0012】更に、長期間の使用中に真空度が低下して
断熱効果が低下することについては、二重構造の液体容
器の内槽の液体冷媒の液面の高さから下の部分にその内
槽を覆うようにして更なる真空断熱槽が形成されるよう
にした真空隔離壁を設け、この更なる真空断熱層内にも
メッシュ材と金属箔とを何層にも交互に重ねた断熱材を
挿入する構成とすればよい。
[0012] Further, the fact that the degree of vacuum is reduced during long-term use and the heat insulating effect is reduced is described below in a part below the liquid level of the liquid refrigerant in the inner tank of the double-structured liquid container. A vacuum insulation wall is provided so that a further vacuum insulation tank is formed so as to cover the inner tank, and in this further vacuum insulation layer, a mesh material and a metal foil are alternately stacked in layers. What is necessary is just to be the structure which inserts a material.

【0013】以上の構成としたとき、インサート上部か
らの熱侵入は、真空容器側面の壁を伝わって真空容器上
面側からの熱伝導による侵入熱と真空容器内部を通過す
る熱輻射によるそれとなり、後者は前者に比して無視し
得るほど侵入熱は少ないので、結局、真空容器側面の壁
の断面積に相当する部分からの熱伝導による熱侵入とな
り、侵入熱量を格段に低下させることができる。加え
て、この熱侵入の経路が専ら真空容器側面に限定される
ため、すぐ横を下(液面)から上(排気ポート)へと通過す
る蒸発冷媒(カウンターフロー)によって側面が冷やされ
るため、更に侵入熱量の低下を図ることができる。
[0013] With the above structure, the heat intrusion from the upper part of the insert is caused by invasion heat transmitted from the upper surface side of the vacuum vessel through the side wall of the vacuum vessel and thermal radiation passing through the inside of the vacuum vessel. Since the latter has a negligible amount of heat infiltration as compared to the former, it eventually becomes heat infiltration due to heat conduction from a portion corresponding to the cross-sectional area of the side wall of the vacuum vessel, and the amount of heat intruded can be significantly reduced. . In addition, since the path of this heat intrusion is exclusively limited to the side of the vacuum vessel, the side is cooled by the evaporative refrigerant (counter flow) passing from immediately below (liquid level) to above (exhaust port), Further, the amount of invading heat can be reduced.

【0014】また、蒸発冷媒は気体滞留部で液体容器側
面及び底面の真空断熱層からの熱を受け取るので、外部
へ放出されるときの蒸発冷媒の温度を高くすることがで
き、排気ポート付近の結露、凍結の状態は緩和される。
また、外部から液体冷媒への侵入熱も減少するので、液
体冷媒の蒸発量も抑えられる。
Further, since the evaporative refrigerant receives heat from the vacuum heat insulating layers on the side and bottom surfaces of the liquid container in the gas retaining portion, the temperature of the evaporative refrigerant when discharged to the outside can be increased, and the evaporative refrigerant near the exhaust port can be increased. The conditions of condensation and freezing are alleviated.
In addition, since heat entering the liquid refrigerant from the outside is reduced, the amount of evaporation of the liquid refrigerant is also suppressed.

【0015】更に、蒸発冷媒が液体冷媒容器の内槽壁を
通過するのは、温度が高い容器上部付近であり、液体冷
媒付近の温度の低いところでは起きない。従って、真空
断熱層内では上部で壁を通過して侵入してきた蒸発冷媒
が拡散して真空度の低下の原因となり、外槽と内槽との
間で対流熱伝達による熱侵入が生じる。これに対して
は、二重構造の液体冷媒容器の内槽の液体冷媒の液面高
さから下の部分に該内槽を覆うようにして更なる真空断
熱層が形成されるようにした真空隔離壁を設け、この更
なる真空断熱層内にもメッシュ材と金属箔とを何層にも
交互に重ねた断熱材を挿入する構成とすることで、液体
容器内槽と繋がっている真空隔離壁は低温に保たれるの
で蒸発冷媒は真空隔離壁を通過せず、更なる真空断熱層
内の真空度は維持され侵入熱を抑えることができるの
で、液体冷媒の蒸発量を少なく抑えることができる。
Further, the evaporative refrigerant passes through the inner tank wall of the liquid refrigerant container near the upper portion of the container where the temperature is high, and does not occur near the liquid refrigerant where the temperature is low. Therefore, in the vacuum heat insulating layer, the evaporating refrigerant that has penetrated through the wall at the upper portion is diffused to cause a reduction in the degree of vacuum, and heat intrusion occurs between the outer tank and the inner tank by convective heat transfer. In order to cope with this, a vacuum in which a further vacuum heat insulating layer is formed so as to cover the inner tank in a portion below the liquid level of the liquid refrigerant in the inner tank of the liquid refrigerant container having a double structure. By providing a separating wall and inserting a heat insulating material in which a mesh material and a metal foil are alternately stacked in multiple layers also in this further vacuum heat insulating layer, vacuum isolation connected to the liquid container inner tank is performed. Since the walls are kept at a low temperature, the evaporated refrigerant does not pass through the vacuum isolation wall, the degree of vacuum in the further vacuum insulation layer is maintained and the amount of heat entering can be suppressed, so the amount of evaporation of the liquid refrigerant can be reduced. it can.

【0016】図1は本発明にもとづく低温恒温装置の一
実施例を示す。ガラス繊維強化プラスチック(GFRP)な
どの非導電性材料で製作された内槽1と外槽2とはOリ
ング等のシール材3を挟みこんだ二重構造の液体冷媒容
器を構成する。内槽1及び外槽2に非導電性材料を用い
るのは、本発明の低温恒温装置が磁気計測用として用い
られた場合、内槽1及び外槽2が導電性材料(例えば、
金属)で作られると、その材料中に渦電流が生じて磁気
ノイズが発生し、正確な磁気計測ができなくなるからで
ある。
FIG. 1 shows an embodiment of a low-temperature constant temperature apparatus according to the present invention. The inner tank 1 and the outer tank 2 made of a non-conductive material such as glass fiber reinforced plastic (GFRP) constitute a liquid refrigerant container having a double structure in which a sealing material 3 such as an O-ring is sandwiched. The non-conductive material used for the inner tank 1 and the outer tank 2 is such that when the low-temperature constant temperature apparatus of the present invention is used for magnetic measurement, the inner tank 1 and the outer tank 2 are made of a conductive material (for example,
This is because, when made of metal, an eddy current is generated in the material, magnetic noise is generated, and accurate magnetic measurement cannot be performed.

【0017】内槽1及び外槽2間の空間は真空状態に保
たれており、この中には塩化ビニルの線材で網目状に織
り上げたメッシュ材4と銅箔やアルミ箔等の金属箔5を
何層(例えば30層)にも交互に重ねた断熱材6が入って
いる。金属箔として銅箔やアルミ箔が適している理由
は、これらは低温での射出率εが小さいからである(「超
伝導・低温工学ハンドブック」第1版第1刷(1993)(株)
オーム社のp.1092の表3.4参照)。金属箔のうちの何枚か
は内槽1の外面に貼られた銅板7と繋がっている。この
ようにすると、外部から熱輻射によって侵入してきた熱
は金属箔5によって捕捉され、この熱は熱伝導によって
銅板7を経由して内槽1の内壁へと伝えられ、蒸発冷媒
がその内壁へ伝えられた熱を奪うからである。真空断熱
層の下部においては、互いに絶縁した銅線を何本も貼り
あわせてシート状にしたコイルフォイル8が金属箔5に
代わって用いられている。金属箔5を用いると、箔上に
渦電流が生じてこれが磁気計測のノイズとなるからであ
る。
The space between the inner tank 1 and the outer tank 2 is maintained in a vacuum state, and includes a mesh material 4 woven in a mesh shape with a vinyl chloride wire and a metal foil 5 such as a copper foil or an aluminum foil. The heat insulating material 6 is formed by alternately stacking any number of layers (for example, 30 layers). Copper foil and aluminum foil are suitable as metal foils because they have a low injection rate ε at low temperature (“Superconductivity and Low Temperature Engineering Handbook”, 1st edition, 1st printing (1993) Co., Ltd.)
See Table 3.4 on p.1092 of Ohmsha). Some of the metal foils are connected to a copper plate 7 attached to the outer surface of the inner tank 1. In this way, the heat that has entered from the outside by heat radiation is captured by the metal foil 5, and this heat is transmitted to the inner wall of the inner tank 1 via the copper plate 7 by heat conduction, and the evaporating refrigerant is transferred to the inner wall. This is because they take away the transmitted heat. In the lower part of the vacuum heat insulating layer, a sheet-like coil foil 8 formed by bonding a number of mutually insulated copper wires is used in place of the metal foil 5. This is because when the metal foil 5 is used, an eddy current is generated on the foil, and this causes noise in magnetic measurement.

【0018】液体冷媒容器内にはインサート9がある。
インサート9の径は冷媒容器内径とほぼ等しく、内槽1
を塞ぐ程度に大きい。インサート9と内槽1との間に隙
間があると、冷媒が蒸発した気体がその隙間で対流を起
こし、冷媒容器内上部空間の熱を下方へ運び液体冷媒へ
侵入する熱量が多くなり、冷媒の消費量(蒸発量)が多く
なるからである。インサート9は、下から順に配置され
た、磁気を捕捉するマンガニン線でできた超伝導検出コ
イルとSQUID(超伝導量子干渉素子)回路とからなる被低
温恒温保持体であるセンサ部10、センサ部10を固定
するベース板11、それを支える支持棒12、その上部
に熱伝導による熱侵入を防ぐ真空容器13、この真空容
器と結合する発泡ポリウレタン等の断熱材製断熱体1
4、排気ポート15を有する液体容器の蓋16で構成さ
れる。ここで、真空容器13の内部にはメッシュ材4と
金属箔5が交互に積み重なっており、冷媒容器内部を熱
輻射で下方へ伝わる熱量を少なくしている。そして、冷
媒容器には、インサートの下部並びに超伝導コイル及び
SQUID回路からなるセンサ部が浸る深さにまで液体ヘリ
ウム等の液体冷媒17が入っている。
There is an insert 9 in the liquid refrigerant container.
The diameter of the insert 9 is substantially equal to the inner diameter of the refrigerant vessel,
Large enough to close. When there is a gap between the insert 9 and the inner tank 1, the gas in which the refrigerant evaporates causes convection in the gap, and the amount of heat that carries the heat of the upper space in the refrigerant container downward and enters the liquid refrigerant is increased. This is because the consumption amount (evaporation amount) of is increased. The insert 9 includes a sensor unit 10 and a sensor unit, which are a low-temperature constant-temperature holding body including a superconducting detection coil made of a manganin wire for capturing magnetism and a SQUID (superconducting quantum interference device) circuit arranged in order from the bottom. 10, a base plate 11 for fixing the support 10, a support rod 12 for supporting the base plate 11, a vacuum container 13 for preventing heat from entering by heat conduction, and a heat insulator 1 made of a heat insulating material such as foamed polyurethane to be connected to the vacuum container
4. It comprises a lid 16 of a liquid container having an exhaust port 15. Here, the mesh members 4 and the metal foils 5 are alternately stacked inside the vacuum container 13 so as to reduce the amount of heat transmitted downward by heat radiation inside the refrigerant container. And in the refrigerant container, the lower part of the insert and the superconducting coil and
The liquid refrigerant 17 such as liquid helium is filled to a depth at which the sensor unit including the SQUID circuit is immersed.

【0019】以上の構成を有する低温恒温装置におい
て、熱の侵入を以下に説明する。まず、冷媒容器の側面
側及び底面側からの熱侵入を説明する。冷媒容器の側面
側及び底面側は真空断熱層を有する二重構造の槽で構成
されているため、この真空断熱層空間では熱は熱輻射に
よって侵入するのみである。しかし、真空断熱層空間内
には上述のようにメッシュ材4と金属箔5が何層にも交
互に重ねられているため熱輻射は小さい。例えば、外槽
2の内壁、内槽1の外壁、金属箔5の射出率が同じ値ε
であれば、メッシュ材4と金属箔5を30層重ねたときの
熱輻射は、真空層に何も入れないときに比して、1/31=
約3.2%と小さい。
The intrusion of heat in the low-temperature constant-temperature apparatus having the above configuration will be described below. First, heat intrusion from the side and bottom sides of the refrigerant container will be described. Since the side and bottom sides of the refrigerant container are constituted by a double-structured tank having a vacuum heat insulating layer, heat only enters by heat radiation in the vacuum heat insulating layer space. However, heat radiation is small because the mesh material 4 and the metal foil 5 are alternately layered in multiple layers in the vacuum heat insulating layer space as described above. For example, the inner wall of the outer tank 2, the outer wall of the inner tank 1, and the injection rate of the metal foil 5 have the same value ε.
Then, when 30 layers of the mesh material 4 and the metal foil 5 are stacked, the heat radiation is 1/31 =
It is as small as about 3.2%.

【0020】また、金属箔5が繋がっている銅板7の貼
られた位置(高さ)には液体冷媒ではなく蒸発冷媒があ
り、金属箔5からの熱を銅板7を通じてこの蒸発冷媒に
受け取らせて冷媒容器外部へ放出するため、真空断熱層
内の金属箔5を低温に保つことができ、熱輻射による熱
侵入を減らすことができると同時に、銅板7から冷媒容
器の内槽1に侵入してきた熱による液体冷媒の消費量
(蒸発量)の増大は防止される。
At the position (height) where the copper plate 7 to which the metal foil 5 is connected is a liquid refrigerant instead of a liquid refrigerant, there is an evaporative refrigerant. The heat from the metal foil 5 is received by the evaporative refrigerant through the copper plate 7. To release the refrigerant to the outside of the refrigerant container, the metal foil 5 in the vacuum heat insulating layer can be kept at a low temperature, heat intrusion due to heat radiation can be reduced, and at the same time, the metal foil 5 enters the inner tank 1 of the refrigerant container from the copper plate 7. Consumption of liquid refrigerant by heat
(Evaporation) is prevented from increasing.

【0021】次に、液体冷媒容器上面側からの侵入熱に
ついて説明する。冷媒容器上面側からの侵入熱は主に断
熱材14を熱伝導によって侵入してくるが、侵入熱は真
空容器13の側壁を熱伝導によって下方へと侵入する。
上述の通り、真空容器13の内部にはメッシュ材4と金
属箔5とが何層にも交互に重ねて入っているので、冷媒
容器内部を熱輻射で下方へと侵入する熱量は、後述する
真空容器13の側壁を熱伝導によって下方へと侵入する
熱量に比して無視し得るほどに小さいからである。
Next, the heat entering from the upper surface side of the liquid refrigerant container will be described. The heat of penetration from the upper surface side of the refrigerant container mainly enters the heat insulating material 14 by heat conduction, but the heat of penetration enters the side wall of the vacuum container 13 downward by heat conduction.
As described above, since the mesh members 4 and the metal foils 5 are alternately layered in several layers inside the vacuum container 13, the amount of heat that enters the inside of the refrigerant container downward by heat radiation will be described later. This is because it is negligible compared to the amount of heat that penetrates the side wall of the vacuum vessel 13 downward by heat conduction.

【0022】一方、真空容器13の側壁を熱伝導によっ
て下方に侵入する熱量の多寡は、その側壁の断面積に支
配される(比例する)。従って、侵入熱量を減らすには、
その側壁の壁厚を薄くすればよいが、側壁には内部が真
空で、外部からの圧力に抗し得るだけの強度と真空の維
持を確保するに足りるだけの強度を有する必要があるの
で、壁厚は、例えばGFRPで冷媒容器を製作した場合は3m
m程度必要であり、ステンレスで製作した場合は0.2mm程
度必要である。
On the other hand, the amount of heat that penetrates the side wall of the vacuum vessel 13 downward by heat conduction is controlled (proportional) by the cross-sectional area of the side wall. Therefore, to reduce the amount of heat
It is only necessary to reduce the wall thickness of the side wall, but since the inside of the side wall is vacuum, it is necessary to have strength enough to withstand pressure from the outside and strength enough to ensure maintenance of vacuum, The wall thickness is 3m if the refrigerant container is made of GFRP, for example.
about 0.2 m, and about 0.2 mm when made of stainless steel.

【0023】GFRPを採用する理由は、低温領域では熱伝
導率がステンレスに比して極端に小さくなるためである
(例えば、「超伝導・低温工学ハンドブック」第1版第1
刷(1993)(株)オーム社のp.1090の図3.28によると、高強
度のCFRPは20Kで0.09W/(m・K)、10Kで0.07W/(m・K)以下、
GFRPは20〜10Kで0.18W/(m・K)であるのに対して、ステン
レスは同p.1091図3.28によると2〜1W/(m・K))。
The reason for using GFRP is that the thermal conductivity is extremely small in the low temperature region as compared with stainless steel.
(For example, "Superconductivity and Low Temperature Engineering Handbook" 1st edition 1st edition
According to Figure 3.28 on p.1090 of Ohm Co., Ltd. (1993), high-strength CFRP is 0.09W / (mK) at 20K, 0.07W / (mK) or less at 10K,
GFRP is 0.18 W / (m · K) at 20-10 K, whereas stainless steel is 2-1 W / (m · K) according to Figure 3.28 on p.

【0024】また、磁気計測部から離れているため磁気
ノイズの点ではステンレスも使用することが可能である
が、この部分は液体ヘリウムに浸らないことから比較的
温度が高い(例えば、30〜90K)ので、より熱伝導率の低
いGFRPが、真空容器の材質には適している。
In addition, stainless steel can be used in terms of magnetic noise because it is far from the magnetic measurement unit, but since this part is not immersed in liquid helium, the temperature is relatively high (for example, 30 to 90K). ), GFRP having lower thermal conductivity is suitable for the material of the vacuum vessel.

【0025】例えば、外径200mm、高さ100mmの円筒形状
の真空容器を考えたとき、GFRPでは強度の関係で肉厚を
3mmとすると、(200-3)×π(円周率:3.14)×3(肉厚)=約
1855.74mm2の断面積を有し、熱伝導率は0.4〜0.8W/(m・
K)(100〜130K)であるから、侵入熱量は、0.6W/(m・K)×1
855.74×10-6/(100×10-3)×(130-100)=0.334Wとなるの
に対して、ステンレスで肉厚を0.2mmとしたときは、熱
伝導率15W/(m・K)(100〜130K)であるから、侵入熱量は、 10W/(m・K)×((200-0.2)×π×0.2)×10-6/(100×10-3)
×(130-100)=0.3764W となる。従って、ステンレスに比してGFRPの板厚を大き
くしても(例えば、3mm)、侵入熱量との関係から大差は
ない。
For example, when a cylindrical vacuum container having an outer diameter of 200 mm and a height of 100 mm is considered, the thickness of the GFRP is reduced due to strength.
Assuming 3 mm, (200-3) x π (pi: 3.14) x 3 (thickness) = approx.
It has a cross-sectional area of 1855.74 mm 2 and a thermal conductivity of 0.4 to 0.8 W / (m
K) (100-130K), the invading heat is 0.6W / (mK) x 1
855.74 × 10 −6 / (100 × 10 −3 ) × (130-100) = 0.334 W, whereas when the thickness is 0.2 mm with stainless steel, the thermal conductivity is 15 W / (mK ) (100-130K), the amount of invading heat is 10W / (mK) x ((200-0.2) x π x 0.2) x 10-6 / (100 x 10-3 )
× (130-100) = 0.3764W. Therefore, even if the plate thickness of GFRP is made larger than that of stainless steel (for example, 3 mm), there is no significant difference from the relation with the amount of heat that enters.

【0026】また、真空容器13を断熱材の下に配置し
たのは、GFRPの熱伝導率は低温でのみ低いからであり、
高温では高いので(前出の資料によると、GFRPの熱伝導
率は20〜10Kで0.18W/(m・K)、200〜250Kでは0.7〜0.8W/
(m・K))、インサートの上部(即ち、高温の領域)にGFRP製
の真空容器13を配置すると侵入熱量が多くなるからで
ある。
The reason why the vacuum vessel 13 is arranged under the heat insulating material is that the thermal conductivity of GFRP is low only at a low temperature.
At high temperatures, it is high (according to the above data, the thermal conductivity of GFRP is 0.18 W / (m ・ K) at 20 ~ 10K, 0.7 ~ 0.8W /
(m · K)), because if the vacuum container 13 made of GFRP is arranged above the insert (that is, in a high-temperature region), the amount of invading heat increases.

【0027】ちなみに、 0.75W/(m・K)×1855.74×10-6/(100×10-3)×(250-200)=
0.6959W 程度の熱侵入も許容できるのであれば、真空容器13を
インサート上部に配置することも可能ではある(図示省
略)。
By the way, 0.75 W / (m · K) × 1855.74 × 10 −6 / (100 × 10 −3 ) × (250-200) =
If heat intrusion of about 0.6959W can be tolerated, the vacuum vessel 13 can be arranged above the insert (not shown).

【0028】図2は本発明にもとづく低温恒温装置のも
う一つの実施例を示す。同図においては特徴的な部分だ
けが示され、その他(図1にあるような、シ−ルや断熱
材、インサ−ト等)は簡略化のため省略されている。
FIG. 2 shows another embodiment of the low-temperature constant temperature apparatus according to the present invention. In this figure, only the characteristic portions are shown, and other components (such as a seal, a heat insulating material, and an insert as shown in FIG. 1) are omitted for simplification.

【0029】真空断熱層内には気体滞留部18が設けら
れている。気体滞留部18の少なくとも一部は真空断熱
層内において液体冷媒17の液面よりも下方に設けられ
ている。これは、冷媒容器の下方に液体冷媒があり、こ
の液体冷媒に侵入する熱量を減少させるためである。冷
媒容器の内槽1から気体滞留部18に蒸発冷媒を導く導
管19は、冷媒容器の上部にあるのではなく、液体冷媒
の液面よりも僅かに高い位置(冷媒容器の中程の高さ)に
ある。これは、冷媒容器の上部の蒸発冷媒は高温(200〜
250K程度)であり、気体滞留部18に導いても外部から
の熱輻射による熱を吸収する効果が期待できないのに対
して、液面付近の蒸発冷媒は低温(冷媒が液体ヘリウム
のときは20〜70K)だからである。そして、気体滞留部1
8から冷媒容器外部に蒸発冷媒を放出する排気ポート2
0が設けられている。導管19が気体滞留部18の底面
付近にまで延びているのは、導管19から出る低温の蒸
発冷媒は熱を受け取って膨張し上昇するが、気体滞留部
18において熱交換を効率良く行い、気体滞留部18を
低温に保つことができるからである。これに対して、排
気ポート20が気体滞留部18の上部から出ているの
は、熱を受け取って高温となった蒸発冷媒は上部に溜ま
るからである。
A gas retaining section 18 is provided in the vacuum heat insulating layer. At least a part of the gas retaining portion 18 is provided below the liquid surface of the liquid refrigerant 17 in the vacuum heat insulating layer. This is because there is a liquid refrigerant below the refrigerant container and the amount of heat entering the liquid refrigerant is reduced. The conduit 19 for guiding the evaporated refrigerant from the inner tank 1 of the refrigerant container to the gas retaining portion 18 is not located at the upper part of the refrigerant container but at a position slightly higher than the liquid level of the liquid refrigerant (the height of the middle of the refrigerant container). )It is in. This is because the evaporated refrigerant at the top of the refrigerant container has a high temperature (200 to
250K), and the effect of absorbing heat from external heat radiation cannot be expected even when the refrigerant is led to the gas retaining portion 18, whereas the evaporated refrigerant near the liquid surface has a low temperature (20% when the refrigerant is liquid helium). ~ 70K). And the gas retaining section 1
Exhaust port 2 for discharging evaporative refrigerant from the refrigerant container 8 to the outside of the refrigerant container
0 is provided. The reason why the conduit 19 extends to the vicinity of the bottom surface of the gas retaining portion 18 is that the low-temperature evaporating refrigerant flowing out of the conduit 19 receives heat and expands and rises. This is because the staying portion 18 can be kept at a low temperature. On the other hand, the reason why the exhaust port 20 emerges from the upper portion of the gas retaining portion 18 is that the evaporative refrigerant that has received heat and has become high temperature accumulates in the upper portion.

【0030】以上の構成を有する低温恒温装置におい
て、蒸発冷媒の流れと熱の侵入を以下に説明する。
The flow of the evaporating refrigerant and the intrusion of heat in the low-temperature constant-temperature apparatus having the above configuration will be described below.

【0031】蒸発冷媒は導管19を通って真空断熱層内
に設けられた気体滞留部18へと移動する。上述のよう
に、導管19は気体滞留部18の底面付近にまで延びて
いるので、低温の蒸発冷媒は底面付近に溜まる。そし
て、気体滞留部18において冷媒容器外槽から熱輻射に
よって真空断熱層を通過して侵入してきた熱を受け取る
ことで膨張し、気体滞留部18内を対流によって上昇す
る。気体滞留部18内で十分に熱を受け取り高温になっ
た蒸発冷媒は、上部にある排気ポート20から外部へと
排出される。
The evaporating refrigerant moves through the conduit 19 to the gas retaining section 18 provided in the vacuum heat insulating layer. As described above, since the conduit 19 extends to near the bottom surface of the gas retaining portion 18, the low-temperature evaporated refrigerant accumulates near the bottom surface. Then, the heat accumulates in the gas accumulating portion 18 and expands by receiving heat that has entered through the vacuum heat insulating layer by heat radiation from the outer tank of the refrigerant container, and rises in the gas accumulating portion 18 by convection. The evaporated refrigerant that has received sufficient heat in the gas retaining portion 18 and has become high temperature is discharged to the outside from the exhaust port 20 provided at the upper portion.

【0032】今仮に、冷媒がヘリウムであり、冷媒容器
が室温(300K)下に置かれているとする。冷媒容器の真空
断熱層内に遮蔽板がないとき、冷媒容器の外槽壁から内
槽壁への熱輻射による熱流束q0は、ステファン・ボルツ
マンの式から、 q0=σ×(Th 4-Tc 4)/[(1/εh)+(1/εc)-1] σ:ステファン・ボルツマン定数(5.67×10-8[J/K4m2
s]) εhc:各々外槽壁、内槽壁の射出率 Th,Tc:各々外槽壁、内槽壁の壁温 で与えられるから、気体滞留部に蒸発気体を導くように
して、冷媒容器内槽の側面及び底面に面している気体滞
留部の壁温を150Kに保つときの熱流束は気体滞留部を設
けないときと比べて、 (3004-4.24)/(1504-4.24)=6.25×10-2=6.25% に減じることができる。
Now, suppose that the refrigerant is helium and the refrigerant container is placed at room temperature (300 K). When there is no shielding plate in the vacuum heat insulating layer of the refrigerant container, the heat flux q 0 due to heat radiation to the inner tank wall from the outer tub wall of the coolant container, from the expression of Stefan-Boltzmann, q 0 = σ × (T h 4 -T c 4 ) / [(1 / ε h ) + (1 / ε c ) -1] σ: Stefan-Boltzmann constant (5.67 × 10-8 [J / K4m2
s]) ε h , ε c : Injection rate of outer and inner tank walls, respectively, Th , T c : Evaporated gas is guided to the gas stagnation part because given by wall temperature of outer and inner tank walls, respectively In this way, the heat flux when keeping the wall temperature of the gas retaining portion facing the side and bottom surfaces of the refrigerant container inner tank at 150 K, as compared with the case where the gas retaining portion is not provided, is (300 4 -4.2 4 ) / (150 4 -4.2 4 ) = 6.25 × 10 -2 = 6.25%.

【0033】ヘリウムの沸点(4.22K)における蒸発潜熱
は20.8J/gであり、窒素の沸点(77.41K)における蒸発潜
熱は199J/gよりも小さい。このことは、僅かな熱でも液
体ヘリウムは蒸発し易いことを示している。一方、蒸発
した気体の定圧比熱は1atm,0℃で、ヘリウムガスでは5.
193J/g・K、窒素ガスでは1.040J/g・Kである。沸点ガスに
蒸発潜熱を与えたときの温度上昇は、ヘリウムガスでは
3.2Kであるのに対して、窒素ガスでは190Kである。この
ことは、ヘリウムガスを温度上昇させるのに要する熱量
は、同質量の窒素ガスを同じ温度だけ上昇させる熱量よ
りも大きい(ヘリウムガスは温度上昇しにくい)ことを示
している。従って、熱浸入を減らすために真空断熱層内
の気体滞留部18を設けることは冷媒がヘリウムのとき
に特に有効である。
The latent heat of vaporization at the boiling point of helium (4.22 K) is 20.8 J / g, and the latent heat of vaporization at the boiling point of nitrogen (77.41 K) is less than 199 J / g. This indicates that the liquid helium easily evaporates even with a small amount of heat. On the other hand, the constant pressure specific heat of the evaporated gas is 1 atm, 0 ° C, and that of helium gas is 5.
It is 193 J / gK and that of nitrogen gas is 1.040 J / gK. The temperature rise when latent heat of vaporization is given to a boiling gas
In contrast to 3.2K, it is 190K with nitrogen gas. This indicates that the amount of heat required to raise the temperature of the helium gas is larger than the amount of heat required to raise the nitrogen gas of the same mass by the same temperature (the temperature of the helium gas hardly increases). Therefore, providing the gas retaining portion 18 in the vacuum heat insulating layer in order to reduce heat penetration is particularly effective when the refrigerant is helium.

【0034】図3は図2に示される気体滞留部18の展
開断面図である。気体滞留部18にラビリンス21を設
けて、蒸発冷媒の上昇速度を押さえて、熱交換を促進す
るものである。
FIG. 3 is a developed sectional view of the gas retaining section 18 shown in FIG. A labyrinth 21 is provided in the gas retaining section 18 to suppress the rising speed of the evaporative refrigerant and promote heat exchange.

【0035】図4は本発明にもとづく低温恒温装置の更
にもう一つの実施例を示す。同図においては特徴的な部
分だけが示され、その他(シ−ル材やインサ−ト等)は
簡略化のため省略されている。この実施例の特徴は、二
重構造の冷媒容器の内槽中の液体冷媒の液面の高さから
下の部分にその内槽を覆うようにして更なる真空断熱槽
が形成されるようにした真空隔離壁22を設け、この真
空断熱層内にもメッシュ材と金属箔とを何層にも交互に
重ねた断熱材(図示省略)を挿入する構成とすることで、
真空断熱層を二つに隔絶し、液体冷媒の入っている内槽
下部は二重の真空断熱層に囲われる構造としている点に
ある。
FIG. 4 shows still another embodiment of the low temperature constant temperature apparatus according to the present invention. In the figure, only characteristic portions are shown, and others (such as seal materials and inserts) are omitted for simplification. The feature of this embodiment is that a further vacuum insulated tank is formed so as to cover the inner tank in a portion below the liquid level of the liquid refrigerant in the inner tank of the dual structure refrigerant container so as to cover the inner tank. A vacuum insulation wall 22 is provided, and a heat insulating material (not shown) in which a mesh material and a metal foil are alternately stacked in multiple layers is inserted into the vacuum heat insulating layer.
The vacuum insulation layer is separated into two parts, and the lower part of the inner tank containing the liquid refrigerant has a structure surrounded by a double vacuum insulation layer.

【0036】この実施例の効果を説明するに、冷媒にヘ
リウムを採用しているとき、長い使用期間中に真空断熱
層内の真空度が低下するのは、冷媒容器内の蒸発冷媒
(ヘリウムガス)が内槽壁を通過して真空断熱層内に侵入
するからである。これは、仮に外部から真空断熱層内に
空気が侵入してきたとしても、その量は微小であり、し
かも、その空気分子は液体冷媒(液体ヘリウム、4.2K)1
7の入った内槽1の壁(真空断熱層側の壁温は10K前後)
で捕捉され、凝結してしまうからである。即ち、侵入す
る空気の量が微小である理由は、空気(主成分は、窒
素、酸素、二酸化炭素、アルゴン)は分子量が大きいの
で、外槽2壁を通過して侵入することはないからであ
り、従って、内外槽の接触シール面からリークによって
のみ侵入するからである。これに対して、内槽1の壁を
通過する蒸発冷媒(ヘリウムガス)は10K前後では凝結す
ることは無いので、いったん、蒸発冷媒が真空断熱層内
に侵入すると、真空度低下の原因となるからである。
To explain the effect of this embodiment, when helium is used as the refrigerant, the degree of vacuum in the vacuum heat insulating layer decreases during a long use period because the evaporating refrigerant in the refrigerant container
This is because (helium gas) passes through the inner tank wall and enters the vacuum heat insulating layer. This is because even if air enters the vacuum insulation layer from the outside, the amount is very small, and the air molecules are liquid refrigerant (liquid helium, 4.2K) 1.
Wall of inner tank 1 containing 7 (wall temperature on the vacuum insulation layer side is around 10K)
This is because they are caught and condensed. That is, the amount of air that enters is very small because air (main components are nitrogen, oxygen, carbon dioxide, and argon) has a large molecular weight and does not enter through the outer tank 2 wall. Yes, and therefore only enters from the contact sealing surfaces of the inner and outer tanks by leak. On the other hand, the evaporative refrigerant (helium gas) passing through the wall of the inner tank 1 does not condense at around 10K, and once the evaporative refrigerant enters the vacuum heat insulating layer, it causes a decrease in the degree of vacuum. Because.

【0037】ところで、蒸発冷媒(ヘリウムガス)は低温
(液面付近)では内槽1の壁を通過せず、内槽1の上部の
高温部(150K以上)で壁を通過する性質を有する。そこ
で、真空隔離壁22は、冷媒容器内槽1の上部で通過し
真空断熱層に侵入してきた蒸発冷媒(ヘリウムガス)が真
空断熱層下部まで拡散するのを防ぐ働きをする。また、
真空隔離壁22は内槽1の液面付近に繋がっているの
で、真空隔離壁22全体が低温(100K以下)に維持され、
真空隔離壁22を通過するヘリウムガスはほとんどな
い。これによって、液体冷媒(液体ヘリウム)17が入っ
ている容器内槽1下部の真空断熱層内の真空度を維持し
気体の対流熱伝達による熱侵入を防ぎ液体冷媒(液体ヘ
リウム)17の蒸発量を少なく維持することができる。
The evaporative refrigerant (helium gas) has a low temperature.
(Near the liquid surface), it does not pass through the wall of the inner tank 1, but has a property of passing through the wall in a high temperature portion (150K or more) above the inner tank 1. Therefore, the vacuum isolation wall 22 functions to prevent the evaporated refrigerant (helium gas) that has passed through the upper part of the refrigerant container inner tank 1 and entered the vacuum heat insulating layer from diffusing to the lower part of the vacuum heat insulating layer. Also,
Since the vacuum isolation wall 22 is connected near the liquid surface of the inner tank 1, the entire vacuum isolation wall 22 is maintained at a low temperature (100K or less),
Little helium gas passes through the vacuum isolation wall 22. As a result, the degree of vacuum in the vacuum heat-insulating layer at the lower part of the vessel inner tank 1 containing the liquid refrigerant (liquid helium) 17 is maintained, heat intrusion due to convective heat transfer of gas is prevented, and the amount of evaporation of the liquid refrigerant (liquid helium) 17 Can be kept low.

【0038】以上に説明したように、外部からの侵入空
気を液体ヘリウム付近で捕捉するという性質から、本発
明の実施例は冷媒としてヘリウムを使用しているときに
特に有効であるが、冷媒として窒素を使用したときには
その分子量の大きさゆえに壁を通過することはないが、
外部から侵入する空気によって真空度が低下することも
あるので、その場合にも本発明の実施例は有効である。
As described above, the embodiment of the present invention is particularly effective when helium is used as a refrigerant because of the property that air entering from outside is trapped in the vicinity of liquid helium. When nitrogen is used, it does not pass through the wall due to its molecular weight,
Since the degree of vacuum may be reduced by air entering from the outside, the embodiment of the present invention is effective in such a case.

【0039】図5にあるように、内槽1を覆うようにし
て更なる真空断熱槽が形成されるようにするのではな
く、真空断熱層を上部と下部とに分ける構成とすること
は妥当ではない。それは、真空断熱層を分ける壁23を
伝って熱伝導による侵入熱が大きいからである。
As shown in FIG. 5, it is appropriate to adopt a configuration in which the vacuum heat insulating layer is divided into an upper part and a lower part, instead of forming a further vacuum heat insulating tank so as to cover the inner tank 1. is not. This is because a large amount of heat penetrates through the wall 23 that separates the vacuum heat insulating layer due to heat conduction.

【0040】以上から理解されるように、図1の実施例
では、真空容器側面の壁の断面積に相当する部分からの
熱伝導による熱侵入となり、侵入熱量を格段に低下させ
ることができる。加えて、この熱侵入の経路が専ら真空
容器側面に限定されるため、すぐ横を下(液面)から上
(排気ポート)へと通過する蒸発冷媒(カウンターフロー)
によって側面が冷やされるため、更に侵入熱量の低下を
図ることができる。
As can be understood from the above description, in the embodiment of FIG. 1, heat enters due to heat conduction from the portion corresponding to the cross-sectional area of the side wall of the vacuum vessel, and the amount of heat entering can be significantly reduced. In addition, since the path of this heat intrusion is exclusively limited to the side of the vacuum vessel,
Evaporative refrigerant passing through (exhaust port) (counter flow)
As a result, the side surface is cooled, so that the amount of penetrated heat can be further reduced.

【0041】図2や図3の実施例においては、外部へ放
出されるときの蒸発冷媒の温度を高くすることができ、
排気ポート付近の結露、凍結の状態は緩和される。ま
た、外部から液体冷媒への侵入熱も減少するので、液体
冷媒の蒸発量も抑えられる。
In the embodiment shown in FIGS. 2 and 3, the temperature of the evaporated refrigerant when discharged to the outside can be increased,
Condensation and freezing near the exhaust port are alleviated. In addition, since heat entering the liquid refrigerant from the outside is reduced, the amount of evaporation of the liquid refrigerant is also suppressed.

【0042】図4の実施例においては、真空断熱層内の
真空度は維持され、侵入熱を抑えることができるので、
液体冷媒の蒸発量を少なく抑えることができる。
In the embodiment shown in FIG. 4, the degree of vacuum in the vacuum heat-insulating layer is maintained and the amount of heat that enters can be suppressed.
The amount of evaporation of the liquid refrigerant can be reduced.

【0043】[0043]

【発明の効果】本発明によれば、浸入熱量の低減化を図
るのに適した低温恒温装置が提供される。
According to the present invention, there is provided a low-temperature constant-temperature apparatus suitable for reducing the amount of infiltration heat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にもとづく低温恒温装置の一実施例の縦
断面図。
FIG. 1 is a longitudinal sectional view of an embodiment of a low-temperature constant temperature apparatus according to the present invention.

【図2】本発明にもとづく低温恒温装置のもう一つの実
施例の縦断面図。
FIG. 2 is a longitudinal sectional view of another embodiment of the low-temperature constant temperature apparatus according to the present invention.

【図3】図2に示される気体滞留部の一部の展開断面
図。
FIG. 3 is a developed cross-sectional view of a part of a gas retaining section shown in FIG. 2;

【図4】本発明にもとづく低温恒温装置の更にもう一つ
の実施例の縦断面図。
FIG. 4 is a longitudinal sectional view of still another embodiment of the low temperature constant temperature apparatus according to the present invention.

【図5】図4に示される実施例の効果を説明するための
低温恒温装置の参考縦断面図。
FIG. 5 is a reference longitudinal sectional view of a low-temperature constant-temperature apparatus for explaining the effect of the embodiment shown in FIG. 4;

【符号の説明】[Explanation of symbols]

1:内槽、2:外槽、3:シール材、4:メッシュ材、
5:金属箔、6:断熱材、7:銅板、8:コイルフォイ
ル、9:インサート、10:センサ部、11:ベース
板、12:支持棒、13:真空容器、14:断熱材、1
5:排気ポート、16:蓋、17:液体冷媒、18:気
体滞留部、19:導管、20:排気ポート、21:ラビ
リンス、22:真空隔離壁、23:壁。
1: inner tank, 2: outer tank, 3: seal material, 4: mesh material,
5: metal foil, 6: heat insulating material, 7: copper plate, 8: coil foil, 9: insert, 10: sensor part, 11: base plate, 12: support bar, 13: vacuum vessel, 14: heat insulating material, 1
5: exhaust port, 16: lid, 17: liquid refrigerant, 18: gas retaining part, 19: conduit, 20: exhaust port, 21: labyrinth, 22: vacuum isolation wall, 23: wall.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚田 啓二 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 神鳥 明彦 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keiji Tsukada 1-280 Higashi Koigakubo, Kokubunji City, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd. Central Research Laboratory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】第1の槽及び第2の槽を有し、その間に真
空断熱層が形成された、液体冷媒を収容する液体冷媒容
器と、インサ−トとを備え、前記液体冷媒容器はその上
部に設けられた開口部を有し、前記インサ−トは前記液
体冷媒に浸すように保持されている被低温恒温維持体
と、前記開口部を開閉し得るように前記液体冷媒容器に
結合された蓋と、該蓋と前記被低温恒温維持体との間に
設けられた断熱材製の断熱体及び真空容器とを備え、前
記蓋は前記液体冷媒から蒸発する気体を前記液体容器外
に放出する排気ポートを有する低温恒温装置。
1. A liquid refrigerant container having a first tank and a second tank, between which a vacuum heat insulating layer is formed and containing a liquid refrigerant, and an insert, wherein the liquid refrigerant container is The insert has an opening provided at an upper portion thereof, and the insert is connected to the low-temperature constant-temperature maintaining body held so as to be immersed in the liquid refrigerant, and to the liquid refrigerant container so as to open and close the opening. Provided, a heat insulator made of a heat insulating material and a vacuum container provided between the lid and the low-temperature constant temperature maintaining body, wherein the lid removes gas evaporating from the liquid refrigerant to the outside of the liquid container. A low temperature constant temperature device having an exhaust port for discharging.
【請求項2】前記真空容器は前記断熱体よりも前記液体
冷媒側にあることを特徴とする請求項1に記載された低
温恒温装置。
2. The low-temperature constant temperature apparatus according to claim 1, wherein the vacuum vessel is closer to the liquid refrigerant than the heat insulator.
【請求項3】第1の槽及び第2の槽を有し、その間に真
空断熱層が形成された、液体冷媒を収容する液体冷媒容
器と、前記真空断熱層内に設けられた気体滞留部と、前
記液体冷媒容器から前記気体滞留部に前記液体冷媒から
蒸発する気体を導く導管と、インサ−トとを備え、前記
液体冷媒容器はその上部に設けられた開口部を有し、前
記インサ−トは前記液体冷媒に浸すように保持されてい
る被低温恒温維持体と、前記開口部を開閉し得るように
前記液体冷媒容器に結合された蓋と、該蓋と前記被低温
恒温維持体との間に介在された断熱材製の断熱体とを備
え、前記蓋は前記滞留部から前記液体冷媒容器外に前記
気体を放出する排気ポートを有する低温恒温装置。
3. A liquid refrigerant container having a first tank and a second tank and having a vacuum heat insulating layer formed therebetween and containing a liquid refrigerant, and a gas retaining section provided in the vacuum heat insulating layer. A conduit for guiding gas evaporating from the liquid refrigerant from the liquid refrigerant container to the gas retaining portion; and an insert, wherein the liquid refrigerant container has an opening provided at an upper portion thereof, and -A low-temperature constant-temperature maintaining body held so as to be immersed in the liquid refrigerant; a lid coupled to the liquid refrigerant container so as to open and close the opening; and the lid and the low-temperature constant-temperature maintaining body. And a heat insulator made of a heat insulating material interposed between the liquid refrigerant container and the lid, the lid having an exhaust port for discharging the gas from the stagnation portion to the outside of the liquid refrigerant container.
【請求項4】前記気体滞留部は少なくともその一部が前
記真空断熱層内において前記液体冷媒の液面よりも下方
に設けられていることを特徴とする請求項3に記載され
た低温恒温装置。
4. The low-temperature constant temperature apparatus according to claim 3, wherein at least a part of the gas stagnation portion is provided below the liquid surface of the liquid refrigerant in the vacuum heat insulating layer. .
【請求項5】前記導管は前記気体滞留部の底面付近まで
伸びていることを特徴とする請求項4に記載された低温
恒温装置。
5. The low-temperature constant-temperature apparatus according to claim 4, wherein the conduit extends to near the bottom of the gas retaining section.
【請求項6】前記導管は前記気体を前記液体冷媒の液面
よりは上であってかつその液面付近から取り入れるよう
に位置づけられていることを特徴とする請求項3、4又
は5に記載された低温恒温装置。
6. The method of claim 3, wherein the conduit is positioned to draw the gas above and near the level of the liquid refrigerant. Low temperature constant temperature equipment.
【請求項7】第1の槽及びその外側に配置された第2の
槽を有し、その間に真空断熱層が形成された、液体冷媒
を収容する液体冷媒容器と、インサ−トと、前記真空断
熱層内において前記第1の槽の、前記液体冷媒に対応す
る部分を覆ように更なる真空断熱層を形成する真空隔離
壁とを備え、前記液体冷媒容器はその上部に設けられた
開口部を有し、前記インサ−トは前記液体冷媒に浸すよ
うに保持されている被低温恒温維持体と、前記開口部を
開閉し得るように前記液体冷媒容器に結合された蓋と、
該蓋と前記被低温恒温維持体との間に介在された断熱材
製の断熱体とを備え、前記蓋は前記液体冷媒から蒸発す
る気体を前記液体冷媒容器外に放出する排気ポートを有
する低温恒温装置。
7. A liquid refrigerant container for holding a liquid refrigerant, comprising a first tank and a second tank disposed outside the first tank and having a vacuum heat insulating layer formed therebetween, an insert, A vacuum isolation wall forming a further vacuum heat insulating layer so as to cover a portion of the first tank corresponding to the liquid refrigerant in the vacuum heat insulating layer, wherein the liquid refrigerant container has an opening provided at an upper portion thereof. A low temperature constant temperature maintaining body which is held so as to be immersed in the liquid refrigerant, and a lid coupled to the liquid refrigerant container so as to open and close the opening.
A heat insulator made of a heat insulating material interposed between the lid and the low-temperature constant temperature maintaining body, wherein the lid has an exhaust port for discharging gas evaporating from the liquid refrigerant to the outside of the liquid refrigerant container. Constant temperature equipment.
【請求項8】第1の槽及びその外側に配置された第2の
槽を有し、その間に真空断熱層が形成された、液体冷媒
を収容する液体冷媒容器と、前記真空断熱層内に設けら
れた気体滞留部と、前記液体冷媒容器から前記気体滞留
部に前記液体冷媒から蒸発する気体を導く導管と、イン
サ−トと、前記真空断熱層内において前記第1の槽の、
前記液体冷媒に対応する部分を覆ように更なる真空断熱
層を形成する真空隔離壁とを備え、前記液体冷媒容器は
その上部に設けられた開口部を有し、前記インサ−トは
前記液体冷媒に浸すように保持されている被低温恒温維
持体と、前記開口部を開閉し得るように前記液体冷媒容
器に結合された蓋と、該蓋と前記被低温恒温維持体との
間に介在された断熱材製の断熱体及び真空容器とを備
え、前記蓋は前記液体冷媒容器に収容された液体冷媒か
ら蒸発する気体を前記液体容器外に放出する排気ポート
と前記滞留部からの気体を前記液体冷媒容器外に放出す
る排気ポートとを有する低温恒温装置。
8. A liquid refrigerant container for storing a liquid refrigerant, comprising a first tank and a second tank disposed outside the first tank, and a vacuum heat insulating layer formed between the first tank and the second tank. A gas reservoir provided, a conduit for guiding gas evaporating from the liquid refrigerant from the liquid refrigerant container to the gas reservoir, an insert, and a first tank in the vacuum heat insulating layer.
A vacuum isolation wall forming a further vacuum insulation layer so as to cover a portion corresponding to the liquid refrigerant, wherein the liquid refrigerant container has an opening provided at an upper portion thereof, and the insert is provided with the liquid. A low-temperature constant-temperature maintaining body held so as to be immersed in a refrigerant; a lid coupled to the liquid refrigerant container so as to open and close the opening; and a lid interposed between the lid and the low-temperature constant-temperature maintaining body. And a vacuum container, wherein the lid discharges gas from the liquid refrigerant contained in the liquid refrigerant container to the outside of the liquid container and an exhaust port for discharging gas from the retaining portion. A low-temperature constant temperature apparatus having an exhaust port for discharging the liquid refrigerant outside the container.
【請求項9】前記真空容器は前記断熱体よりも前記液体
冷媒側にあることを特徴とする請求項8に記載された低
温恒温装置。
9. The low-temperature constant temperature apparatus according to claim 8, wherein the vacuum vessel is closer to the liquid refrigerant than the heat insulator.
【請求項10】前記気体滞留部は少なくともその一部が
前記真空断熱層内において前記液体冷媒の液面よりも下
方に設けられていることを特徴とする請求項8又は9に
記載された低温恒温装置。
10. The low-temperature low-temperature apparatus according to claim 8, wherein at least a part of the gas retaining section is provided below the liquid surface of the liquid refrigerant in the vacuum heat insulating layer. Constant temperature equipment.
【請求項11】前記導管は前記気体滞留部の底面付近ま
で伸びていることを特徴とする請求項10に記載された
低温恒温装置。
11. The low-temperature constant-temperature apparatus according to claim 10, wherein the conduit extends to near the bottom of the gas retaining section.
【請求項12】前記導管は前記気体を前記液体冷媒の液
面よりは上であってかつその液面付近から取り入れるよ
うに位置づけられていることを特徴とする請求項8、
9、10又は11に記載された低温恒温装置。
12. The system according to claim 8, wherein said conduit is positioned to draw said gas above and near the level of said liquid refrigerant.
A low-temperature constant-temperature apparatus described in 9, 10 or 11.
JP10032880A 1998-02-16 1998-02-16 Low-temperature thermostat Pending JPH11233839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10032880A JPH11233839A (en) 1998-02-16 1998-02-16 Low-temperature thermostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10032880A JPH11233839A (en) 1998-02-16 1998-02-16 Low-temperature thermostat

Publications (1)

Publication Number Publication Date
JPH11233839A true JPH11233839A (en) 1999-08-27

Family

ID=12371200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10032880A Pending JPH11233839A (en) 1998-02-16 1998-02-16 Low-temperature thermostat

Country Status (1)

Country Link
JP (1) JPH11233839A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512368B2 (en) 2000-02-03 2003-01-28 Hitachi, Ltd. Dewar and biological magnetism measurement apparatus using the dewar
JP2008261575A (en) * 2007-04-12 2008-10-30 Sumitomo Electric Ind Ltd Vacuum insulating container
JP2009076682A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Cooling container for superconducting apparatus
WO2010001910A1 (en) * 2008-07-02 2010-01-07 株式会社日立製作所 Ultra-low temperature storage container and ultra-low temperature device
JP2015046558A (en) * 2013-08-29 2015-03-12 住友電気工業株式会社 Superconducting apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512368B2 (en) 2000-02-03 2003-01-28 Hitachi, Ltd. Dewar and biological magnetism measurement apparatus using the dewar
JP2008261575A (en) * 2007-04-12 2008-10-30 Sumitomo Electric Ind Ltd Vacuum insulating container
JP2009076682A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Cooling container for superconducting apparatus
WO2010001910A1 (en) * 2008-07-02 2010-01-07 株式会社日立製作所 Ultra-low temperature storage container and ultra-low temperature device
JP2010016081A (en) * 2008-07-02 2010-01-21 Hitachi Ltd Cryogenic storage container and cryogenic apparatus
JP2015046558A (en) * 2013-08-29 2015-03-12 住友電気工業株式会社 Superconducting apparatus

Similar Documents

Publication Publication Date Title
US3626706A (en) Cryostat
KR20060022282A (en) Method and apparatus of cryogenic cooling for high temperature superconductor devices
WO2010001910A1 (en) Ultra-low temperature storage container and ultra-low temperature device
JPH11233839A (en) Low-temperature thermostat
US5991647A (en) Thermally shielded superconductor current lead
JP2008306060A (en) Extremely low temperature containment cooling system and its operating method
JP5138494B2 (en) Biomagnetic field measurement device
JP2005344991A (en) Cryogenic cryostat
US20230263445A1 (en) Magnetocardiography measuring apparatus
Edelman A dilution microcryostat-insert
JP3208069B2 (en) Superconducting member cooling device
JP2844433B2 (en) Reliquefaction equipment for liquefied gas for cooling of physics and chemistry equipment
JPH06163251A (en) Cryogenic vessel
JP7131147B2 (en) Cooling device and sensor device
US5347818A (en) Dewar with improved efficiency
JPH0622169B2 (en) Superconducting magnet device
JPH01205576A (en) Cryostat
JP4360037B2 (en) Cryostat
JPH068782B2 (en) Cryogenic material testing equipment
JP2002344037A (en) Cryogenic housing vessel and biomagnetism measuring apparatus using the same
JPS6161713B2 (en)
Pandharpatte et al. Review and Development of Thermal Design of a Cryogenic Dewar
JPS62220Y2 (en)
JPS63299180A (en) Superconducting apparatus
JPH064565U (en) Cryogenic container