JPS63299180A - Superconducting apparatus - Google Patents

Superconducting apparatus

Info

Publication number
JPS63299180A
JPS63299180A JP62131217A JP13121787A JPS63299180A JP S63299180 A JPS63299180 A JP S63299180A JP 62131217 A JP62131217 A JP 62131217A JP 13121787 A JP13121787 A JP 13121787A JP S63299180 A JPS63299180 A JP S63299180A
Authority
JP
Japan
Prior art keywords
superconducting
heat
heat insulating
powder
superconducting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62131217A
Other languages
Japanese (ja)
Inventor
Hisanao Ogata
久直 尾形
Takeo Nemoto
武夫 根本
Yoshinori Shiraku
善則 白楽
Hideaki Mori
英明 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62131217A priority Critical patent/JPS63299180A/en
Publication of JPS63299180A publication Critical patent/JPS63299180A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inexpensive superconducting device having high reliability by using a superconducting material operated at a relatively high temperature, and employing an adiabatic technique which does not need a high vacuum. CONSTITUTION:The superconducting material of a superconducting coil 1 is, for example, ternary system oxide (ceramics) of yttrium-barium-copper, and liquid refrigerant 2 can use liquid nitrogen (63-126K). An inner vessel 3 uses stainless steel or fiber-reinforced plastic. The refrigerant 2 is supplied through a supply tube 5 from an external storage tank or a refrigerator. Powder heat insulating material 12 is poured below by a boat 13 to the inner and outer vessels 3, 4, sealed by a valve 18, and evacuated to a pressure of approx. 10<-2> Torr or by a vacuum pump 15. If a fine leakage occurs due to a certain cause in an adiabatic space, a valve 19 is opened to continuously exhaust it by an oil rotary pump 15. The material 12 uses a mixture of a fine piece of polyester foil deposited with aluminum with pearlite powder.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は、磁界発生などを行わせるための超電導装置に
係り、特に、液体窒素温度レベル以上の温度で動作させ
るのに好適な超電導装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superconducting device for generating a magnetic field, etc., and particularly relates to a superconducting device suitable for operating at a temperature higher than the liquid nitrogen temperature level. .

〔従来の技術〕[Conventional technology]

従来のこの種装置は、機械の研究、第31巻。 Conventional devices of this type are described in Mechanical Research, Vol. 31.

第1号(1979年)第129頁から第135頁におい
て論じられているように、超電導材料を用いた部材は、
必ず、圧力10”−8トール以下の高真空環境を利用し
た断熱方法がとられていた。
As discussed in No. 1 (1979), pages 129 to 135, members using superconducting materials:
Invariably, insulation methods using a high vacuum environment with a pressure of 10''-8 Torr or less were used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、信頼性の高い安価な超電導装置を得
るのが難しかった。すなわち、超電導部材を高真空環境
空間で囲う必要があるため、超電導装置製造の過程で多
数の真空リーク試験を行わねばならなかった。また、冷
却に伴う熱ひずみや電磁力による歪みで、微小なリーク
が発生し、超電導装置の正常な動作を阻害するなどの問
題があった。
With the above conventional technology, it is difficult to obtain a highly reliable and inexpensive superconducting device. That is, since it is necessary to surround the superconducting member in a high vacuum environment space, many vacuum leak tests have to be performed during the process of manufacturing the superconducting device. In addition, thermal strain caused by cooling and strain caused by electromagnetic force cause minute leaks, which impede the normal operation of the superconducting device.

本発明の目的は、上記間電点を克服し、信頼性の高い安
価な超電導装置を提供することにある。
An object of the present invention is to overcome the above-mentioned voltage point and provide a highly reliable and inexpensive superconducting device.

〔問題点を解決するための□手段〕[□Means to solve the problem]

上記目的は、比較的高温(例えば液体窒素温度)で動作
する超電導材料を使用し、高度の真空を必要としない断
熱技術を採用することにより、達成される。即ち1本発
明は超電導材料を用いた部材とこれを冷却する手段(例
えば、液体窒素あるいは冷凍機)と、この部材を支承す
る第一の断熱体と、この部材を包囲する第二の断熱体と
して、真空環境下に置かれた粉末断熱材を用いたことを
特徴とする。ここで、粉末断熱材としてパーライト粉末
とアルミニウムを蒸着したポリエステル箔の細片を混合
したものが望ましい、また、第二の断熱体としては、真
空環境下に置かれた断熱材を内蔵する複数個の断熱箱か
ら構成してもよい、さらに、第二の断熱材として、複数
個の多孔質断熱材を用い、外側を熱伝導性の金属体で覆
ってもよい。
The above objectives are achieved by using superconducting materials that operate at relatively high temperatures (e.g. liquid nitrogen temperatures) and by employing adiabatic techniques that do not require a high degree of vacuum. Namely, the present invention provides a member using a superconducting material, a means for cooling the member (for example, liquid nitrogen or a refrigerator), a first heat insulator supporting the member, and a second heat insulator surrounding the member. It is characterized by the use of powder insulation material placed in a vacuum environment. Here, it is preferable to use a mixture of pearlite powder and strips of aluminum-deposited polyester foil as the powder insulation material, and as the second insulation material, a plurality of insulating materials with built-in insulation material placed in a vacuum environment are preferable. Furthermore, a plurality of porous heat insulating materials may be used as the second heat insulating material, and the outside may be covered with a thermally conductive metal body.

望ましくは、この金属体に放熱フィンやヒートバイブを
付ける。
Desirably, a radiation fin or a heat vibrator is attached to this metal body.

〔作用〕[Effect]

第一の断熱体が超電導材料からなる部材の荷電や電磁力
を支承する。
The first heat insulator supports the charge and electromagnetic force of the member made of superconducting material.

第二の断熱体としての粉末断熱材は空隙部の真空部が1
0”)−−ル程度あれば十分な断熱性能を有する。アル
ミニウムを蒸着したポリエステル箔は、熱反射材として
寄与し、粉末断熱材の性能を高める。
The powder insulation material as the second insulation has a vacuum area of 1
0") has sufficient heat insulation performance. Polyester foil deposited with aluminum serves as a heat reflector and improves the performance of the powder heat insulation material.

第二の断熱体として、複数個の断熱箱を使用するときは
、組立して易いようにあらかじめ断熱箱を作っておけば
よい、多孔質断熱材は大気圧下で使用するので、やや熱
伝導率が高く、外表面に露が付着する恐れがある。放熱
フィンやヒートパイプの付いた金属体で外側を覆うこと
により結露を防ぐ。
When using multiple insulation boxes as the second insulation, it is best to make the insulation boxes in advance to make it easier to assemble. Porous insulation materials are used at atmospheric pressure, so they are somewhat thermally conductive. There is a risk that dew may adhere to the outer surface. Condensation is prevented by covering the outside with a metal body equipped with radiation fins and heat pipes.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。1は
超電導コイルで、2はこれを冷却する液体冷媒、3は内
側容器、4は外側容器である。超電導コイル1の超電導
材料としては1例えば、イツトリウム・バリウム・銅の
三元系酸化物(セラミクス)であり、臨界温度が約90
Kにある材料である(昭和62年3月3日付日刊工業新
聞参照)、シたがって、液体冷媒2としては液体窒素(
63〜126K)を使うことができる。内側容器3はス
テンレス鋼や繊維強化プラスチックを使う、液体冷媒3
は、供給管5を経て外部の貯槽又は冷凍機(図示せず)
から供給される。6a。
An embodiment of the present invention will be described below with reference to FIG. 1 is a superconducting coil, 2 is a liquid refrigerant that cools it, 3 is an inner container, and 4 is an outer container. The superconducting material of the superconducting coil 1 is, for example, a ternary oxide (ceramics) of yttrium, barium, and copper, which has a critical temperature of about 90°C.
(Refer to the Nikkan Kogyo Shimbun dated March 3, 1986). Therefore, the liquid refrigerant 2 is liquid nitrogen (
63-126K) can be used. Inner container 3 uses stainless steel or fiber reinforced plastic, liquid refrigerant 3
is connected to an external storage tank or refrigerator (not shown) via the supply pipe 5.
Supplied from. 6a.

6bは超電導コイル1に電流を供給するリードで。6b is a lead that supplies current to the superconducting coil 1.

液体冷媒3の気化したガスで冷却するため1回収管7よ
り外部に引き出し、絶縁体8で電気絶縁している。9は
ガス放出口で、このまま大気中に放出するか、あるいは
計測系を経て排気ダクト(図示せず)に導く、あるいは
冷凍機(図示せず)に戻す、10は超電導コイル1を内
側容器3に固定する部材、11は、内側容器3と外側容
器4間に挿入された断熱支持体で、繊維強化樹脂やステ
ンレス鋼でできた筒状、棒状又は円柱状である。
In order to cool the liquid refrigerant 3 with vaporized gas, it is drawn out from the first recovery pipe 7 and electrically insulated with an insulator 8. Reference numeral 9 denotes a gas discharge port, which can be released into the atmosphere as it is, or guided through a measurement system to an exhaust duct (not shown), or returned to a refrigerator (not shown). A member 11 for fixing is a heat insulating support inserted between the inner container 3 and the outer container 4, and is made of fiber-reinforced resin or stainless steel and has a cylindrical, rod-like, or cylindrical shape.

12は内側容器3と外側容器4に封入された粉末断熱材
で、ボート13より注入して弁18により封じである。
Reference numeral 12 denotes a powder heat insulating material sealed in the inner container 3 and outer container 4, which is injected from a boat 13 and sealed by a valve 18.

14は排出口、15は真空ポンプ、16は吸着剤である
。粉末断熱材12としてはパーライトなどを用い、真空
ポンプ15でおよそ10””トール以下の圧力までひく
、真空ポンプ15としては油回転ポンプなどを使う。
14 is a discharge port, 15 is a vacuum pump, and 16 is an adsorbent. Perlite or the like is used as the powder heat insulating material 12, and the pressure is reduced to approximately 10" Torr or less with a vacuum pump 15. As the vacuum pump 15, an oil rotary pump or the like is used.

このような粉末断熱材12を用いると、厚み51で、室
温部から液体窒素温度部への熱侵入量が約4W/rrr
どなる。液体窒素の蒸発潜熱が大気圧下でIWの入熱対
し毎時0.022 ml  だけ蒸発するので、粉末断
熱材は十分実用に耐える。排出口14は粉末熱材を抜き
とる時弊17を開けて使う。
When such a powder heat insulating material 12 is used, the amount of heat intrusion from the room temperature part to the liquid nitrogen temperature part is approximately 4 W/rrr at a thickness of 51.
bawl. Since the latent heat of vaporization of liquid nitrogen evaporates by 0.022 ml per hour under atmospheric pressure relative to the heat input of IW, the powder insulation material is sufficiently durable for practical use. The discharge port 14 is used by opening the hole 17 when extracting the powder heat material.

通常は弁17.弁18.弁19は閉じて使う。Normally valve 17. Valve 18. Valve 19 is used with it closed.

粉末断熱材12が内側容器3と外側容器4の間にくまな
く充填する方法としては、装置を振動台の上に載せると
か、外側容器4に外部から微小振動を加えるなどの方法
がある。粉末断熱材12は複雑な形状の空間にも容易に
侵入するので均質な断熱性が得られる。粉末断熱材12
からの放出ガスは吸着剤16で吸着する。断熱空間に何
らかの原因で微小なリークが生じた場合は、弁19を開
けて油回転ポンプで連続的に排気し続ければよい。
Methods for filling the space between the inner container 3 and the outer container 4 with the powder heat insulating material 12 include methods such as placing the device on a vibration table or applying minute vibrations to the outer container 4 from the outside. Since the powder heat insulating material 12 easily penetrates into spaces with complicated shapes, homogeneous heat insulating properties can be obtained. Powder insulation material 12
The released gas is adsorbed by the adsorbent 16. If a small leak occurs in the heat insulating space for some reason, the valve 19 may be opened and the oil rotary pump may be used to continuously exhaust the air.

粉末断熱材12としては、アルミニウムを蒸着したポリ
エステル箔の細片をパーライト粉末と混ぜ合せたものを
使うとよい、アルミニウムが反射材として働き、ポリエ
ステルはあ乗り熱を伝えないので、すぐれた断熱性能を
示す。
As the powder insulation material 12, it is recommended to use strips of polyester foil deposited with aluminum mixed with perlite powder.Aluminum acts as a reflective material, and polyester does not transmit heat, so it has excellent insulation performance. shows.

第2図に本発明の他の実施例を示す、内側容器3の外側
に複数個の断熱箱20at 20b、2Oct20dが
付けである。これらの断熱箱の中身は。
FIG. 2 shows another embodiment of the present invention, in which a plurality of insulation boxes 20at 20b, 2Oct 20d are attached to the outside of the inner container 3. What's inside these insulated boxes?

いずれも断熱材20(例えばグラスウールなど)が充填
されており、真空排気後、封じである。このようにする
と、規格化された断熱箱を量産化して生産し、これらを
現地で貼り付けるようにして組立てることができ、製造
コストが下げられる。
Both are filled with a heat insulating material 20 (for example, glass wool), and sealed after being evacuated. In this way, standardized insulation boxes can be mass-produced and assembled by pasting them on-site, thereby reducing manufacturing costs.

このような断熱箱は特開昭61−235671号や実開
昭61−169389号などに示されている。各断熱箱
の間には、隙間が形成されないように施行し、隙間での
水分の凍結を防ぐ。
Such a heat insulating box is shown in Japanese Patent Application Laid-Open No. 61-235671 and Japanese Utility Model Application No. 61-169389. Ensure that no gaps are formed between each insulation box to prevent moisture from freezing in the gaps.

第3図に本発明の更に他の実施例を示す、内側容器3の
外側に分割された複数個の多孔質断熱材22a、22b
、22c、22dを貼り付け、更にその外側を熱伝導性
の金属体23で包囲する。
FIG. 3 shows still another embodiment of the present invention, in which a plurality of porous heat insulating materials 22a, 22b are divided on the outside of the inner container 3.
, 22c, and 22d, and the outside thereof is further surrounded by a thermally conductive metal body 23.

金属体23には放熱フィン24やヒートバイブ25が付
けである。多孔質断熱材22a〜22dとしては1発泡
ポリスチロールや硬質ボレウレタンフォームが適当であ
る。各断熱材の隙間には詰め物をしておく、この種の多
孔質断熱材は大気圧下で使用されるので、熱伝導量は比
較的大きく。
A heat radiation fin 24 and a heat vibrator 25 are attached to the metal body 23. As the porous heat insulating materials 22a to 22d, polystyrene foam or rigid polyurethane foam is suitable. The gaps between each insulation material are filled with material.Since this type of porous insulation material is used under atmospheric pressure, the amount of heat conduction is relatively large.

厚み103で室温部から液体窒素温度部までの熱流束と
しておよそ40W/rfrとなる。これは、自然に大気
中へ放熱する量としては大きく、放熱面での結露あるい
は霜の形成が懸念される。そこで。
At a thickness of 103, the heat flux from the room temperature part to the liquid nitrogen temperature part is approximately 40 W/rfr. This is a large amount of heat that is naturally radiated into the atmosphere, and there is concern that dew condensation or frost may form on the heat radiating surface. Therefore.

金属体28で包囲し、これに放熱フィン24を付 −け
て放熱面積を増し、大気への熱流束を下げる。
It is surrounded by a metal body 28, and heat radiation fins 24 are attached thereto to increase the heat radiation area and reduce the heat flux to the atmosphere.

放熱フィンの代りに金属体23を波板状として放熱面積
を増やしてもよい、大地又は架台26と接している面は
放熱条件が悪く、大地又は架台26を冷却する恐れがあ
る。ヒートバイブ25は、この部分での冷え過ぎを防止
するために挿入したものである。
Instead of the radiation fins, the metal body 23 may be made into a corrugated plate shape to increase the heat radiation area.The surface in contact with the ground or the pedestal 26 has poor heat radiation conditions and may cool the ground or the pedestal 26. The heat vibrator 25 is inserted to prevent this portion from becoming too cold.

第2図及び第3図に示した実施例では、内側容器の外側
に、これを完全に包囲する真空容器がないので、装置の
製造工程が著しく簡略化され、かつ、真空もれがないの
で信頼性が極めて高い。
In the embodiment shown in FIGS. 2 and 3, there is no vacuum container outside the inner container that completely surrounds it, so the manufacturing process of the device is significantly simplified, and there is no vacuum leakage. Extremely reliable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高度の真空を必要としない断熱体を採
用し、装置製造工程での繁雑な真空リーク試験を省くこ
とができるので安価になり、また真空環境が不要かある
いは必要であってもわずかなリークに対しては、小形ポ
ンプの付設により十分保全できるので、信頼性が高いと
いう効果がある。
According to the present invention, a heat insulator that does not require a high degree of vacuum is used, and a complicated vacuum leak test in the device manufacturing process can be omitted, resulting in lower costs, and a vacuum environment is not required or required. Even a small leak can be sufficiently protected by installing a small pump, which has the effect of high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面図、第2図は本
発明の他の実施例を示す縦断面図、第3図は本発明の更
に他の実施例を示す縦断面図である。 1・・・超電導コイル(超電導材料を用いた部材)。 2・・・液体窒素(冷却する手段)、11・・・第一の
断熱体、12・・・粉末断熱材(第二の断熱体)、20
a。 20b、20c、20d・・・断熱箱(第二の断熱箱)
 、22a、22b、22c、22d−多孔質断熱材(
第二の断熱体)、23・・・金属体、24・・・放第5
図 25−・・ヒートヤイτ
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing another embodiment of the invention, and FIG. 3 is a longitudinal sectional view showing still another embodiment of the invention. It is. 1...Superconducting coil (member using superconducting material). 2... Liquid nitrogen (cooling means), 11... First heat insulating body, 12... Powder heat insulating material (second heat insulating body), 20
a. 20b, 20c, 20d...insulation box (second insulation box)
, 22a, 22b, 22c, 22d - porous insulation (
second heat insulating body), 23... metal body, 24... fifth radiation
Figure 25 - Heat Yai τ

Claims (1)

【特許請求の範囲】 1、超電導材料を用いた部材と、前記部材を冷却する手
段と、前記部材を支承する第一の断熱体と、前記部材を
包囲する第二の断熱体とからなる超電導装置において、
前記第二の断熱体が、真空環境下に置かれた粉末断熱材
であることを特徴とする超電導装置。 2、前記粉末断熱材がパーライト粉末と、アルミニウム
を蒸着したポリエステル箔の細片とを混合した粉末であ
ることを特徴とする特許請求の範囲第1項記載の超電導
装置。 3、前記第二の断熱体が、真空環境下に置かれた断熱材
を内蔵する複数個の断熱箱よりなることを特徴とする特
許請求の範囲第1項記載の超電導装置。 4、超電導材料を用いた部材と、前記部材を冷却する手
段と、前記部材を支承する第一の断熱体と、前記部材を
包囲する第二の断熱体とからなる超電導装置において、
前記第二の断熱体が、複数個の多孔質断熱材と、これら
の最外層を包囲する熱伝導性の金属体とよりなることを
特徴とする超電導装置。 5、前記金属体に放熱フインが付いていることを特徴と
する特許請求の範囲第4項記載の超電導装置。 6、前記金属体にヒートパイプが付いていることを特徴
とする特許請求の範囲第4項記載の超電導装置。
[Claims] 1. A superconductor comprising a member using a superconducting material, a means for cooling the member, a first heat insulator supporting the member, and a second heat insulator surrounding the member. In the device,
A superconducting device characterized in that the second heat insulator is a powder heat insulating material placed in a vacuum environment. 2. The superconducting device according to claim 1, wherein the powder heat insulating material is a powder mixture of pearlite powder and strips of polyester foil deposited with aluminum. 3. The superconducting device according to claim 1, wherein the second heat insulating body is comprised of a plurality of heat insulating boxes containing a heat insulating material placed in a vacuum environment. 4. A superconducting device comprising a member using a superconducting material, a means for cooling the member, a first heat insulator supporting the member, and a second heat insulator surrounding the member,
A superconducting device characterized in that the second heat insulator includes a plurality of porous heat insulating materials and a thermally conductive metal body surrounding the outermost layer of the porous heat insulating materials. 5. The superconducting device according to claim 4, wherein the metal body is provided with heat dissipation fins. 6. The superconducting device according to claim 4, wherein a heat pipe is attached to the metal body.
JP62131217A 1987-05-29 1987-05-29 Superconducting apparatus Pending JPS63299180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62131217A JPS63299180A (en) 1987-05-29 1987-05-29 Superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62131217A JPS63299180A (en) 1987-05-29 1987-05-29 Superconducting apparatus

Publications (1)

Publication Number Publication Date
JPS63299180A true JPS63299180A (en) 1988-12-06

Family

ID=15052773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62131217A Pending JPS63299180A (en) 1987-05-29 1987-05-29 Superconducting apparatus

Country Status (1)

Country Link
JP (1) JPS63299180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261338A (en) * 2001-03-05 2002-09-13 Yokogawa Electric Corp Dew drop preventive device for cryostat
JP2011138904A (en) * 2009-12-28 2011-07-14 Sumitomo Electric Ind Ltd Container for superconducting coil, and superconducting device
JP2017506427A (en) * 2013-12-18 2017-03-02 ビクトリア リンク リミテッド Cryostat for superconducting equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261338A (en) * 2001-03-05 2002-09-13 Yokogawa Electric Corp Dew drop preventive device for cryostat
JP2011138904A (en) * 2009-12-28 2011-07-14 Sumitomo Electric Ind Ltd Container for superconducting coil, and superconducting device
JP2017506427A (en) * 2013-12-18 2017-03-02 ビクトリア リンク リミテッド Cryostat for superconducting equipment

Similar Documents

Publication Publication Date Title
US3066222A (en) Infra-red detection apparatus
JP3867158B2 (en) Cryogenic container and magnetometer using the same
JPH08128742A (en) Extremely low temperature device
EP0188389B1 (en) Cryogenic vessel for a superconducting apparatus
US3122004A (en) Apparatus for cryogenic refrigeration
US3253423A (en) Cryogenic cooling arrangement for space vehicles
JP3401727B2 (en) Liquid gas storage device and its carrier
EP2085720B1 (en) Cryogenic container with built-in refrigerator
JPS63299180A (en) Superconducting apparatus
JPS6195585A (en) Cryostat with refrigerator
JP3285751B2 (en) Magnetic refrigerator
CA1103143A (en) Cryostat with refrigerator for superconduction nmr spectrometer
JPH08283009A (en) Helium 3 cryostat
JPH04116907A (en) Superconductive cooling device
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
JPH07190297A (en) Heat insulating device for double-shell storage tank
JPH0155720B2 (en)
US3436926A (en) Refrigerating structure for cryostats
JPH0633855B2 (en) Liquid helium storage equipment
JP3310872B2 (en) Magnetic refrigerator
JP4385394B2 (en) Cryostat
JP3281740B2 (en) Refrigeration equipment
JPH06163251A (en) Cryogenic vessel
JPS6254982A (en) Cryostat
JPH0444369A (en) Superconducting magnet