JPH0444369A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPH0444369A
JPH0444369A JP2152469A JP15246990A JPH0444369A JP H0444369 A JPH0444369 A JP H0444369A JP 2152469 A JP2152469 A JP 2152469A JP 15246990 A JP15246990 A JP 15246990A JP H0444369 A JPH0444369 A JP H0444369A
Authority
JP
Japan
Prior art keywords
nitrogen
shield
container
liquid helium
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2152469A
Other languages
Japanese (ja)
Inventor
Takeo Nemoto
武夫 根本
Kenichi Kikuchi
賢一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP2152469A priority Critical patent/JPH0444369A/en
Publication of JPH0444369A publication Critical patent/JPH0444369A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to reduce the consumption of refrigerant, especially liquid nitrogen by installing a thermal reflecting material between a hollow cylinder-shaped shield and a nitrogen vessel thermally connected with a liquid helium injection pipeline of a liquid helium vessel which houses a superconducting coil and a vacuum vessel. CONSTITUTION:A laminated insulation material 12 which has laminated a film aluminum-deposited on the surface of a polyester film is adapted to wind up the outer peripheries of a liquid nitrogen vessel 7 and a nitrogen shield 8, and a high temperature shield 9. The application of the insulation material 12 reduces the heating value of radiation. As a result, the temperature of the high temperature shield 9 is turned to about 200K, whose effects produces (200<4>-80<4>)/(300<4>-80<4>)=1/5. It is, therefore, possible to reduce the heating value to 1/5 of the heating value which enters an inner cylinder 8a of the nitrogen shield from a direct vacuum vessel 10. It is also possible to reduce the penetration heating value into the liquid nitrogen to 80% and below the prior art value, thereby extending the period of injection more than 1.2 times the repenetration period of liquid nitrogen.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導コイルをヘリウム寒剤中に侵潰した超電
導磁石に係り、特に窒素寒剤の消費量を低減するに好適
な熱反射材を設けた超電導磁石に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a superconducting magnet in which a superconducting coil is immersed in a helium cryogen, and in particular, a heat reflecting material suitable for reducing the consumption of nitrogen cryogen is provided. Regarding superconducting magnets.

〔従来の技術〕[Conventional technology]

従来の装置は、実開昭59−146971号公報に記載
のように、液体ヘリウム容器の周りに中間シールド(温
度的40K)と、この中間シールドの外周に液体窒素容
器と液体窒素容器に接続した窒素シールドを設け、窒素
シールド外周の真空容器内側表面からの輻射熱を遮遮し
ている。このように従来の装置は、液体ヘリウムを多重
の輻射シールドで囲むことにより輻射入熱を防いでいた
As described in Japanese Utility Model Application Publication No. 59-146971, the conventional device includes an intermediate shield (temperature: 40 K) around a liquid helium container, a liquid nitrogen container connected to the liquid nitrogen container around the outer periphery of this intermediate shield, and a liquid nitrogen container connected to the liquid nitrogen container. A nitrogen shield is installed to block radiant heat from the inner surface of the vacuum container around the nitrogen shield. In this way, conventional devices prevent radiant heat input by surrounding liquid helium with multiple radiation shields.

また、液体ヘリウム容器及び各シールドを真空容器内に
収める構成とすることで真空断熱構造とし、真空容器内
のガス分子による伝導熱をtJsさくしている。さらに
、液体ヘリウムを液体ヘリウム容器に注入するための配
管には、各シールドからサーマルアンカーを接続し、入
熱により蒸発して大気へ放散するヘリウムガスが保有す
る冷熱を各シールドに伝えて冷却する構造となっている
Furthermore, by arranging the liquid helium container and each shield in the vacuum container, a vacuum insulation structure is achieved, and the conduction heat due to gas molecules in the vacuum container is reduced by tJs. Furthermore, thermal anchors are connected from each shield to the piping for injecting liquid helium into the liquid helium container, and the cold heat held by the helium gas, which evaporates due to heat input and dissipates into the atmosphere, is transferred to each shield for cooling. It has a structure.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、液体ヘリウムを多重断熱することによ
り入熱を遮断して液体ヘリウムの蒸発損失を低減してい
るが、窒素シールドの中空円筒部の外周と真空容器との
間には何の断熱手段も無く、真空容器壁面からの輻射入
熱で窒素容器中の液体窒素が蒸発し消費量が多いという
問題があった。
The above conventional technology reduces the evaporation loss of liquid helium by cutting off heat input by insulating the liquid helium multiple times, but there is no insulation between the outer periphery of the hollow cylindrical part of the nitrogen shield and the vacuum vessel. There was no means to do so, and there was a problem in that the liquid nitrogen in the nitrogen container evaporated due to radiant heat input from the wall of the vacuum container, resulting in a large amount of consumption.

本発明の目的は、寒剤特に液体窒素の消費量を低減する
ことにある。
The aim of the invention is to reduce the consumption of cryogens, especially liquid nitrogen.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、液体ヘリウムに浸漬した超電導コイルを収
納し上部に液体ヘリウムを注入する配管を有する中空円
筒状の液体ヘリウム容器と、該液体ヘリウム容器を包囲
し上部を前記液体ヘリウム容器の液体ヘリウム注入配管
に熱的に結合した中空円筒状の中間シールドと、該中間
シールドを包囲し上部を前記液体ヘリウム容器の液体ヘ
リウム注入配管に熱的に結合した中空円筒状の窒素シー
ルドと、液体窒素を保有し上部に液体窒素を注入する配
管を備え前記窒素シールドの外周に配設した窒素容器と
、該窒素シールド及び窒素容器を収納し内部を真空に保
持した中空円筒状の真空容器を有する超電導磁石におい
て、前記窒素シールド及び窒素容器と前記真空容器との
間に熱反射材を設けたことにより達成される。
The above object is to provide a hollow cylindrical liquid helium container that houses a superconducting coil immersed in liquid helium and has a pipe for injecting liquid helium into the upper part, and a liquid helium container that surrounds the liquid helium container and injects liquid helium into the liquid helium container. a hollow cylindrical intermediate shield thermally coupled to the pipe; a hollow cylindrical nitrogen shield surrounding the intermediate shield and having an upper portion thermally coupled to the liquid helium injection pipe of the liquid helium container; and containing liquid nitrogen. In a superconducting magnet, the superconducting magnet has a nitrogen container disposed around the outer periphery of the nitrogen shield, and a hollow cylindrical vacuum container that houses the nitrogen shield and the nitrogen container and maintains a vacuum inside. This is achieved by providing a heat reflecting material between the nitrogen shield and the nitrogen container and the vacuum container.

上記目的は、前記熱反射材を前記液体ヘリウムの注入配
管及び液体窒素の注入配管と熱的に結合したことにより
達成される。
The above object is achieved by thermally coupling the heat reflecting material to the liquid helium injection pipe and the liquid nitrogen injection pipe.

上記目的は、前記熱反射材を内周側の前記窒素シールド
と前記真空容器との間に配設したことにより達成される
6 〔作用〕 上記構成によれば、窒素シールド及び窒素容器と真空容
器との間に設けた熱反射材が、真空容器内壁からの輻射
入熱を反射するので窒素シールド及び窒素容器への入熱
が減少し窒素容器から蒸発して大気に放散する液体窒素
の量を低減することが出来る。
The above object is achieved by disposing the heat reflecting material between the nitrogen shield and the vacuum container on the inner peripheral side.6 [Operation] According to the above structure, the nitrogen shield, the nitrogen container and the vacuum container The heat reflecting material installed between the nitrogen shield and the nitrogen container reflects the radiant heat input from the inner wall of the vacuum container, reducing the heat input to the nitrogen shield and the nitrogen container, and reducing the amount of liquid nitrogen that evaporates from the nitrogen container and dissipates into the atmosphere. can be reduced.

更に熱反射材を液体ヘリウムの注入配管及び液体窒素の
注入配管と熱的に結合したことにより。
Furthermore, the heat reflecting material was thermally coupled to the liquid helium injection pipe and the liquid nitrogen injection pipe.

上記寒剤注入配管は液体ヘリウム容器及び窒素容器から
蒸発して大気に放散する寒剤ガスにより冷却されている
から熱反射材は少なくとも液体窒素の沸点と室温の平均
温度となり、真空容器内壁の温度より大幅に低下し窒素
シールド及び窒素容器への入熱が減少し窒素容器から蒸
発して大気に放散する液体窒素の量を低減することが出
来る。
Since the cryogen injection pipe mentioned above is cooled by the cryogen gas that evaporates from the liquid helium container and nitrogen container and dissipates into the atmosphere, the heat reflecting material has at least the average temperature of the boiling point of liquid nitrogen and room temperature, which is significantly higher than the temperature of the inner wall of the vacuum container. This reduces the heat input to the nitrogen shield and the nitrogen container, thereby reducing the amount of liquid nitrogen that evaporates from the nitrogen container and dissipates into the atmosphere.

また、熱反射材を従来何の熱的シールドも設けられてい
ない内周側の前記窒素シールドと前記真空容器との間に
配設したことにより、真空容器内壁からの入熱を低減す
ることができ窒素容器から蒸発して大気に放散する液体
窒素の量を低減することが8来る。
Furthermore, by disposing a heat reflective material between the vacuum vessel and the nitrogen shield on the inner peripheral side, where no thermal shield has conventionally been provided, it is possible to reduce heat input from the inner wall of the vacuum vessel. It is possible to reduce the amount of liquid nitrogen that evaporates from the nitrogen container and dissipates into the atmosphere.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図から第3図を使って説
明する。
Hereinafter, one embodiment of the present invention will be described using FIGS. 1 to 3.

第1図は、核磁気共鳴分析装置の超電導磁石を示したも
のである。ここに示した超電導磁石は中央部の磁界を利
用するため中空円筒形になっている。1は超電導コイル
、2は超電導コイルを4゜2Kに冷却する液体ヘリウム
、3は超電導コイル1を収納した液体ヘリウム容器であ
る。4は40に輻射シールドで、その一部は液体ヘリウ
ム注入管5に接続されている。また、  40に輻射シ
ールド4は、高温壁から液体ヘリウム容器3に入る輻射
熱を遮蔽する目的で、液体ヘリウム容器3を包み込んで
いる。6は液体窒素で、7は液体窒素を溜める液体窒素
容器である。8は液体窒素容器7と接続している窒素シ
ールドである。この窒素シールド8の一部は、40に輻
射シールド4と同様に液体ヘリウムガス注入管5に接続
されている。その接続している位置は、40に輻射シー
ルド4が液体ヘリウム注入管5と接続している位置より
上部にある。9は高温シールドで10は真空容器である
。この高温シールド9はサーマルアンカ9aを経て液体
ヘリウム注入管5に接続される。
FIG. 1 shows a superconducting magnet of a nuclear magnetic resonance analyzer. The superconducting magnet shown here has a hollow cylindrical shape to utilize the magnetic field in the center. 1 is a superconducting coil, 2 is liquid helium that cools the superconducting coil to 4°2K, and 3 is a liquid helium container that houses the superconducting coil 1. 4 is a radiation shield 40, a part of which is connected to the liquid helium injection pipe 5. Further, at 40, a radiation shield 4 surrounds the liquid helium container 3 for the purpose of shielding radiant heat entering the liquid helium container 3 from the high-temperature wall. 6 is liquid nitrogen, and 7 is a liquid nitrogen container for storing liquid nitrogen. 8 is a nitrogen shield connected to the liquid nitrogen container 7. A portion of this nitrogen shield 8 is connected to the liquid helium gas injection pipe 5 at 40, similarly to the radiation shield 4. The connecting position is above the position 40 where the radiation shield 4 connects to the liquid helium injection pipe 5. 9 is a high temperature shield and 10 is a vacuum container. This high temperature shield 9 is connected to the liquid helium injection pipe 5 via a thermal anchor 9a.

その接続位置は、液体ヘリウム注入管5に接続された真
空容器10と窒素シールド6との中間である。同様に高
温シールド9はサーマルアンカ9aを経て液体窒素注入
管11に接続されている。12はポリエステルフィルム
表面にアルミ蒸着を施した膜を積層した積層断熱材であ
る。この積層断熱材12は、液体窒素容器7と窒素シー
ルド8の外周及び高温シールド9の外周に巻き付けられ
ている。
The connection position is between the vacuum vessel 10 connected to the liquid helium injection pipe 5 and the nitrogen shield 6. Similarly, high temperature shield 9 is connected to liquid nitrogen injection pipe 11 via thermal anchor 9a. Reference numeral 12 is a laminated heat insulating material in which a film formed by vapor deposition of aluminum is laminated on the surface of a polyester film. This laminated heat insulating material 12 is wrapped around the outer periphery of the liquid nitrogen container 7 and the nitrogen shield 8, and around the outer periphery of the high temperature shield 9.

以下、第1図により動作の説明をする0本装置は、核磁
気共鳴分析装置の超電導磁石であるため特に優れた断熱
性能が要求される。これは、真空容器内部の圧力を10
−’ T orr以下の高真空にすることで内部のガス
による熱伝導を極めて/IXさくし、高温側からの輻射
熱を防止するため窒素シールド8と40に輻射シールド
4で液体ヘリウム容器3を多重に包み込む構造をとって
いるので、液体ヘリウム容器3への輻射熱を十分/J%
さくしている。さらに、輻射熱を小さくするため、各シ
ールドの表面は、反射率の高いアルミニウムまたは銅で
形成している。このため、液体ヘリウムを一度満たすと
半年以上補充の必要がなく液体窒素6も再注入期間を長
くするための工夫として窒素シールド8の外周に高温シ
ールド9を設けている。
The operation of this device, whose operation will be explained below with reference to FIG. 1, is a superconducting magnet for a nuclear magnetic resonance analyzer, and therefore requires particularly excellent heat insulation performance. This increases the pressure inside the vacuum container by 10
-' By creating a high vacuum below T orr, the heat conduction by the internal gas is extremely reduced /IX, and in order to prevent radiant heat from the high temperature side, the liquid helium container 3 is multiplexed with the nitrogen shields 8 and 40 and the radiation shield 4. Since it has an enveloping structure, the radiant heat to the liquid helium container 3 is sufficient/J%.
I'm looking forward to it. Furthermore, in order to reduce radiant heat, the surface of each shield is made of highly reflective aluminum or copper. Therefore, once the liquid helium is filled, it does not need to be replenished for more than half a year, and a high temperature shield 9 is provided around the outer periphery of the nitrogen shield 8 as a measure to extend the re-injection period of the liquid nitrogen 6.

本実施例では、超電導磁石の中央部で真空容器10と窒
素シールド8の間に高温シールド9を設けた。この高温
シールド9は液体ヘリウムガス注入管5及び液体窒素注
入管11と熱的に接続されているので蒸発し大気へ放散
する寒剤ガスの冷熱で冷却される。また、高温シールド
9上面の積層断熱材12により真空容器内壁面からの輻
射熱量は小さくなっている。このため、高温シールド9
の温度は約200にとなる。この高温シールドの効果は
(200’−80’)/(300’−80’)−115
となり、積層断熱材12が無い場合に直接真空容器1o
から窒素シールドの内筒8dに入る熱量の175に低減
することができる。また、液体窒素への侵入熱量を従来
の8割以下にすることができ、液体窒素の再注入期間を
従来の1.2倍以上にすることが可能となる。
In this example, a high temperature shield 9 was provided between the vacuum vessel 10 and the nitrogen shield 8 at the center of the superconducting magnet. Since this high temperature shield 9 is thermally connected to the liquid helium gas injection pipe 5 and the liquid nitrogen injection pipe 11, it is cooled by the cold heat of the cryogen gas that evaporates and dissipates into the atmosphere. Furthermore, the amount of heat radiated from the inner wall of the vacuum container is reduced by the laminated heat insulating material 12 on the upper surface of the high temperature shield 9. For this reason, the high temperature shield 9
The temperature will be approximately 200℃. The effect of this high temperature shield is (200'-80')/(300'-80')-115
Therefore, when there is no laminated insulation material 12, the vacuum container 1o
The amount of heat entering the inner cylinder 8d of the nitrogen shield can be reduced from 175 to 175. Furthermore, the amount of heat that enters the liquid nitrogen can be reduced to 80% or less compared to the conventional method, and the re-injection period for liquid nitrogen can be increased by 1.2 times or more compared to the conventional method.

第2図は、本発明の他の実施例である。第1図と同一符
号は、同一物を示している。13は、超電導磁石の中央
部、窒素シールドの内筒8aと高温シールド9との間に
取付けた銅またはアルミニウム製の副シールドである。
FIG. 2 shows another embodiment of the invention. The same reference numerals as in FIG. 1 indicate the same parts. Reference numeral 13 denotes a sub-shield made of copper or aluminum attached to the central part of the superconducting magnet between the inner cylinder 8a of the nitrogen shield and the high-temperature shield 9.

この副シールド13は、上下のリング状のサポート14
で支持されている。このサポート14は、熱伝導率の小
さなガラス繊維強化プラスチック等でできている。さら
に、サポートの表面はアルミ蒸着が施されている。
This sub-shield 13 has upper and lower ring-shaped supports 14.
It is supported by This support 14 is made of glass fiber reinforced plastic or the like having low thermal conductivity. Furthermore, the surface of the support is coated with aluminum vapor deposition.

従って、高温シールド9から窒素シールド8への伝導熱
量は少ない。サポート14からの伝導熱を全く無視でき
るとすると、高温シールド9と副シールド13の相互効
果により副シールド温度は約170K(窒素シールド8
の温度を200にと仮定)となる、窒素シールドの内筒
8aに入る熱量は、副シールド13と高温シールド9が
ないときの(170’ −80’)/(300’ −8
0’)’vl / 10になるので、窒素シールドの内
筒8aに入る輻射熱量を小さくすることができる。
Therefore, the amount of heat transferred from the high temperature shield 9 to the nitrogen shield 8 is small. Assuming that the conductive heat from the support 14 can be completely ignored, the secondary shield temperature will be approximately 170K due to the mutual effect of the high temperature shield 9 and the secondary shield 13 (nitrogen shield 8
The amount of heat entering the inner cylinder 8a of the nitrogen shield is (170' - 80') / (300' - 8
0')'vl/10, so the amount of radiant heat entering the inner cylinder 8a of the nitrogen shield can be reduced.

第3図は、本発明の他の実施例である。第2図同様、第
1図と第2図と同一符号は同一物を表わしている。第3
図と第2図の違いは、高温シールド9と副シールド13
との間に積層断熱材12を充填したものである。この積
層断熱材12は、前に述べたとおり、多数のアルミ蒸着
ポリエステル・フィルムから成っている。このため、輻
射熱は枚数に逆比例するので、枚数が多いほど小さくな
る。
FIG. 3 is another embodiment of the invention. As in FIG. 2, the same reference numerals in FIGS. 1 and 2 represent the same parts. Third
The difference between the figure and Figure 2 is the high temperature shield 9 and the sub-shield 13.
A laminated heat insulating material 12 is filled between the two. The laminated insulation 12, as previously mentioned, is comprised of multiple aluminized polyester films. For this reason, the radiant heat is inversely proportional to the number of sheets, so the larger the number of sheets, the smaller it becomes.

例えば、アルミ蒸着ポリエステル・フィルムの枚数を5
枚にしたときの効果は第2図と同じように仮定すれば、
従来の方法の約3%まで減少することができる。
For example, the number of sheets of aluminized polyester film is 5.
If we assume the same effect as in Figure 2, the effect when
It can be reduced to about 3% of the conventional method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、窒素シールド及び窒素容器と真空容器
との間に熱反射材を設けたことにより、熱反射材が真空
容器内壁からの輻射入熱を反射するので窒素シールド及
び窒素容器への入熱が減少し窒素容器から蒸発して大気
に放散する液体窒素の量を低減する効果が得られる。
According to the present invention, by providing a heat reflecting material between the nitrogen shield and the nitrogen container and the vacuum container, the heat reflecting material reflects radiant heat input from the inner wall of the vacuum container, so that the heat reflecting material is provided between the nitrogen shield and the nitrogen container. This has the effect of reducing heat input and reducing the amount of liquid nitrogen that evaporates from the nitrogen container and dissipates into the atmosphere.

更に、熱反射材を液体ヘリウムの注入配管及び液体窒素
の注入配管と熱的に結合したことにより、熱反射材の温
度は真空容器内壁の温度より大幅に低下し入熱が減少す
るから液体窒素の蒸発量を低減する効果が得られる。
Furthermore, by thermally bonding the heat reflector to the liquid helium injection pipe and the liquid nitrogen injection pipe, the temperature of the heat reflector is significantly lower than the temperature of the inner wall of the vacuum vessel, reducing heat input. The effect of reducing the amount of evaporation can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る超電導磁石の縦断面図、
第2図、第3図は本発明の他の実施例に係る部分縦断面
図である。 1・・・超電導コイル、2・・・液体ヘリウム、3・・
・液体ヘリウム容器、4・・・40に輻射シールド、5
・・・液体ヘリウム注入配管、6・・・液体窒素。 7・・・液体窒素容器、8・・・窒素シールド。 8a・・・窒素シールドの内筒、9・・・高温シールド
、9a・・・サーマルアンカ、10・・・真空容器、1
1・・・液体窒素注入配管、12・・・積層断熱材、1
3・・・副シールド、14・・・サポート。 7−−−−シ兎とイ)lf−21
FIG. 1 is a longitudinal cross-sectional view of a superconducting magnet according to an embodiment of the present invention;
FIGS. 2 and 3 are partial longitudinal cross-sectional views of other embodiments of the present invention. 1...Superconducting coil, 2...Liquid helium, 3...
・Liquid helium container, 4...40 radiation shield, 5
...Liquid helium injection piping, 6...Liquid nitrogen. 7...Liquid nitrogen container, 8...Nitrogen shield. 8a... Inner cylinder of nitrogen shield, 9... High temperature shield, 9a... Thermal anchor, 10... Vacuum container, 1
1...Liquid nitrogen injection pipe, 12...Laminated insulation material, 1
3... Vice shield, 14... Support. 7---Shi Usagi and I) lf-21

Claims (1)

【特許請求の範囲】 1、液体ヘリウムに浸漬した超電導コイルを収納し上部
に液体ヘリウムを注入する配管を有する中空円筒状の液
体ヘリウム容器と、該液体ヘリウム容器を包囲し上部を
前記液体ヘリウム容器の液体ヘリウム注入配管に熱的に
結合した中空円筒状の中間シールドと、該中間シールド
を包囲し上部を前記液体ヘリウム容器の液体ヘリウム注
入配管に熱的に結合した中空円筒状の窒素シールドと、
液体窒素を保有し上部に液体窒素を注入する配管を備え
前記窒素シールドの外周に配設した窒素容器と、該窒素
シールド及び窒素容器を収納し内部を真空に保持した中
空円筒状の真空容器を有する超電導磁石において、前記
窒素シールド及び窒素容器と、前記真空容器との間に熱
反射材を設けたことを特徴とする超電導磁石。 2、前記熱反射材を前記液体ヘリウムの注入配管及び液
体窒素の注入配管と熱的に結合したことを特徴とする請
求項1に記載の超電導磁石。 3、前記熱反射材を内周側の前記窒素シールドと前記真
空容器との間に配設したことを特徴とする請求項2に記
載の超電導磁石。
[Claims] 1. A hollow cylindrical liquid helium container that houses a superconducting coil immersed in liquid helium and has a pipe for injecting liquid helium into the upper part, and a liquid helium container that surrounds the liquid helium container and has an upper part thereof. a hollow cylindrical intermediate shield thermally coupled to the liquid helium injection pipe of the liquid helium container; a hollow cylindrical nitrogen shield surrounding the intermediate shield and having an upper portion thermally coupled to the liquid helium injection pipe of the liquid helium container;
A nitrogen container containing liquid nitrogen and having a pipe for injecting the liquid nitrogen in the upper part and disposed around the outer periphery of the nitrogen shield, and a hollow cylindrical vacuum container that houses the nitrogen shield and the nitrogen container and maintains a vacuum inside. A superconducting magnet comprising: a heat reflecting material provided between the nitrogen shield and the nitrogen container, and the vacuum container. 2. The superconducting magnet according to claim 1, wherein the heat reflecting material is thermally coupled to the liquid helium injection pipe and the liquid nitrogen injection pipe. 3. The superconducting magnet according to claim 2, wherein the heat reflecting material is disposed between the nitrogen shield on the inner peripheral side and the vacuum container.
JP2152469A 1990-06-11 1990-06-11 Superconducting magnet Pending JPH0444369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152469A JPH0444369A (en) 1990-06-11 1990-06-11 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152469A JPH0444369A (en) 1990-06-11 1990-06-11 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPH0444369A true JPH0444369A (en) 1992-02-14

Family

ID=15541196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152469A Pending JPH0444369A (en) 1990-06-11 1990-06-11 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPH0444369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081344A (en) * 2005-09-16 2007-03-29 Central Res Inst Of Electric Power Ind Cryostat for magnetic field generator
CN102931635A (en) * 2012-10-24 2013-02-13 江苏大学 Passive heating quenching protection device and method aiming at superconducting magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081344A (en) * 2005-09-16 2007-03-29 Central Res Inst Of Electric Power Ind Cryostat for magnetic field generator
JP4677313B2 (en) * 2005-09-16 2011-04-27 財団法人電力中央研究所 Cryostat for magnetic field generator
CN102931635A (en) * 2012-10-24 2013-02-13 江苏大学 Passive heating quenching protection device and method aiming at superconducting magnet

Similar Documents

Publication Publication Date Title
US7475552B2 (en) Recondensing service neck for cryostat
GB2451708A (en) Superconducting coil cooling
US9165704B2 (en) Superconducting magnet apparatus with cryogen vessel
GB2454571A (en) A method of constructing a thermal radiation shield in a cryostat
US3122004A (en) Apparatus for cryogenic refrigeration
JPH09232640A (en) Permanent magnet system
JPH0444369A (en) Superconducting magnet
JP2009516381A (en) Superconducting magnet system
JP7375013B2 (en) Freestanding flexible thermal radiation shield for superconducting magnet assembly
GB2436136A (en) Apparatus for cooling utilising the free circulation of a gaseous cryogen
US10185003B2 (en) System and method for enhancing thermal reflectivity of a cryogenic component
JPS63186403A (en) Superconducting magnet
JPS63299180A (en) Superconducting apparatus
US20220068529A1 (en) Apparatus and System to Enhance Thermal Gradients in Cryogenic Devices
GB2463659A (en) Method and Apparatus for Improved Cooling of a Cryostat Thermal Shield
Li et al. Thermal Analysis of a Head-Only 1.5 T Magnetic Resonance Imaging Superconducting Magnet
JPH05110146A (en) Cryostat
JPS61226903A (en) Low temperature container for superconductive electromagnet
JPH06101946A (en) Cryogenic container
JPS6310911B2 (en)
JPH06333735A (en) Superconducting magnet
JPS61159066A (en) Cryostat
JPS62264603A (en) Cryogenic cryostat
JPS6294774A (en) Method of cooling radiation shield by gas circulation
JPH0554976U (en) Low temperature cooling device