JPH01205576A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPH01205576A
JPH01205576A JP63028780A JP2878088A JPH01205576A JP H01205576 A JPH01205576 A JP H01205576A JP 63028780 A JP63028780 A JP 63028780A JP 2878088 A JP2878088 A JP 2878088A JP H01205576 A JPH01205576 A JP H01205576A
Authority
JP
Japan
Prior art keywords
shield
tank
helium
evaporation
liquid helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63028780A
Other languages
Japanese (ja)
Inventor
Yoshinao Sanada
真田 芳直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63028780A priority Critical patent/JPH01205576A/en
Publication of JPH01205576A publication Critical patent/JPH01205576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To reduce an evaporation amount of liquid helium and to extend a usable term by arranging two or three sheets of 20K shields being provided with a multilayer heat insulator to be cooled by evaporation helium gas between an 80K shield and a liquid helium tank. CONSTITUTION:An 80K shield 2a to be cooled by liquid nitrogen and a liquid helium tank 1 are provided inside a vacuum heat-insulating tank 5 so as to form a cryostat. At this time, two to three sheets of 20K shields 2b, 2c and 2d provided with a multilayer heat-insulating material to be cooled by evaporation helium gas are inserted between 80K shield 2a and the liquid helium tank 1. Invasion heat entering the shields 2b, 2c and 2d due to radiant heat and conductive heat are removed by cooling capacity of evaporation helium gas. The temperature of the shield 2d nearest the helium tank 1 influencing an evaporation amount is suppressed low for reducing the evaporation amount of liquid helium. Thereby, a usable term is extended.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業−1−の利用分野) 本発明は、超電導コイルを内蔵する低熱侵入型のフライ
オスタラhに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Application in Industry-1-) The present invention relates to a low-heat-intrusion type fly Ostara h having a built-in superconducting coil.

(従来の技術) 従来のクライオスタy1〜を第5図を用いて説明する。(Conventional technology) Conventional cryostars y1~ will be explained using FIG. 5.

従来の核磁気共鳴画像診断装置等のフライオスタラ1−
は、超電導コイル(10)を内蔵する液体ヘリウム槽(
1)と、これを囲むように配置されたふく射シールド■
と、真空空間(4)に断熱的に液体ヘリウム槽O)とふ
く射シール1く(2)を支持する断熱支持装置■および
真空空間O)を形成すると共に液体ヘリウム槽(1)、
ふく射シールド■を支え、かつ装置コiの外殻を成す真
空断熱槽0からなる。真空断熱槽(ハ)は、室温に保た
れ、ふく射シールド■は、液体窒素(12)で冷却され
た80K(絶対温度)の80にシールドともう一層のガ
スヘリウ11で冷却された20にシールドと組合された
ものである。液体ヘリウム槽■は液体ヘリウム(11)
が充填され、内蔵されたコイルを超電導状態に保つよう
に、1気圧で約4.2にの温度に保たれる。装置の中央
には室温空間(6)が円筒状に形成されており、この空
間に発生した磁場を各種用途に利用する。■は液体ヘリ
ウム槽に連がる煙突部で、液体ヘリウム注入「」、ヘリ
ウ11ガス排出1」、電流供給り−I〜、xi a+す
線などを外部に導く。この煙突部ωは室温部と4.2に
間の熱流入路となるため、熱伝導断面積を小さく、断熱
距離を長くとれるように構成される。断熱支持装置■は
、やはり熱侵入路となるため、熱伝導率の小さい、強度
の高い金属か、樹脂の棒を用いる。
Fly Ostara 1- of conventional nuclear magnetic resonance imaging diagnostic equipment, etc.
is a liquid helium tank (10) containing a superconducting coil (10).
1) and a radiation shield placed around it■
and a heat insulating support device (2) that adiabatically supports the liquid helium tank O) and the radiation seal 1 (2) in the vacuum space (4), and a vacuum space O) are formed, and the liquid helium tank (1),
It consists of a vacuum insulation tank 0 that supports the radiation shield (2) and forms the outer shell of the device (i). The vacuum insulation tank (c) is kept at room temperature, and the radiation shield ■ is a shield at 80 K (absolute temperature) cooled with liquid nitrogen (12) and a shield at 20 cooled by another layer of gas helium 11. It is a combination. Liquid helium tank ■ is liquid helium (11)
is filled and maintained at a temperature of approximately 4.2°C at 1 atm to keep the coils contained therein in a superconducting state. A cylindrical room temperature space (6) is formed in the center of the device, and the magnetic field generated in this space is used for various purposes. 2 is a chimney connected to the liquid helium tank, which leads liquid helium injection, helium 11 gas discharge 1, current supply -I~, xi a+ wires, etc. to the outside. Since this chimney part ω becomes a heat inflow path between the room temperature part and 4.2, it is configured to have a small heat conduction cross section and a long insulation distance. The heat insulating support device ① also serves as a heat infiltration path, so use a strong metal or resin rod with low thermal conductivity.

このように構成することにより、高価な液体ヘリウム等
の寒剤の消費量を少なくすることにより、メインテナン
スを容易にしている。
With this configuration, maintenance is facilitated by reducing the consumption of expensive cryogen such as liquid helium.

一方、液体ヘリウムや、液体窒素の消費量をさらに少な
くするため、図示されない小形冷凍機を用いてふく射シ
ール1−やヘリウム槽を冷却する手段がある。この場合
、冷凍機の取り付けは真空断熱槽(ハ)の壁面を貫通し
、ふく射シールド等に熱的に接触させて取り付ける。
On the other hand, in order to further reduce the consumption of liquid helium and liquid nitrogen, there is a means for cooling the radiation seal 1- and the helium tank using a small refrigerator (not shown). In this case, the refrigerator is installed by penetrating the wall of the vacuum insulation tank (c) and making thermal contact with a radiation shield or the like.

(発明が解決しようとする課題) −1−記の従来のフライオスタラ1へにおいては、液体
ヘリウムガスと80にのふく射シールドの間に、ガスヘ
リウム冷却のシール1へが挿入されているが、ガスヘリ
ウムの冷媒の能力の一部を利用するだけで、大半の冷媒
の能力は常温空間に放出している。
(Problems to be Solved by the Invention) In the conventional fly Ostara 1 described in -1-, a gas helium cooling seal 1 is inserted between the liquid helium gas and the radiation shield 80. Only a portion of the helium refrigerant's capacity is used; most of the refrigerant's capacity is released into the room-temperature space.

小型冷凍機で20にシールl’を冷却した場合は、蒸発
量は低減するが、冷媒の冷却能力はすべて常温空間に放
出するたけてなく小型冷凍機の電力を必要とするため、
全体としての熱量の効率的な利用がなされていない欠点
を有している。
If the seal l' is cooled to 20°C with a small refrigerator, the amount of evaporation will be reduced, but the cooling capacity of the refrigerant is not enough to release all of it into the room temperature space, and the electric power of the small refrigerator is required.
It has the disadvantage that the overall amount of heat is not efficiently utilized.

本発明は、上記の8題を解決し、冷媒の冷却能力を1−
分に使用し、低蒸発量のフライオスタラ1〜を提供する
ことを目的とする。
The present invention solves the above eight problems and increases the cooling capacity of the refrigerant by 1-
The purpose of the present invention is to provide fried cod 1~ with low evaporation amount.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、真空断熱槽(ハ)内に液体窒素で冷却される
80にシールド(2a)及び液体ヘリウム槽(1)を有
するフライオスタラ1へにおいて、80にシールド(2
a)と液体ヘリウム槽(1)の間に蒸発ヘリウムガスで
冷却される多層断熱材を施行した2枚又は3枚の20に
シールドを挿入して構成されたフライオスタラ1−とす
る。
(Means for Solving the Problems) The present invention provides a fly ostar 1 having a shield (2a) and a liquid helium tank (1) at 80 which are cooled with liquid nitrogen in a vacuum insulation tank (c). (2
The fly Ostara 1- is constructed by inserting a shield into two or three sheets 20 having a multilayer insulation material cooled by evaporated helium gas between a) and a liquid helium tank (1).

(作用) 本発明の構成のシールドを有するフライオスタラ1〜に
おいては、ふく射熱及び伝導熱で20にシール1〜に入
る侵入熱を蒸発ヘリウムガスの冷却能力で取り去り、シ
ールド温度を分散させ直接、蒸発量に影響を与える液体
ヘリウム槽に最も近いシールドの温度を低くおさえるた
め、液体ヘリウムの蒸発量が少なくなる。また、第4図
に示す様に2枚及び3枚の20にシールドで1枚の20
にシールドの場合と比較し、各々1/2及び1/3に低
減し、3枚以」二の20にシールドを挿入しても、挿入
のためのスペースが大きくなる割合に比較して蒸発量の
低減割合は小さくなる。
(Function) In the Fly Ostara 1~ having the shield configured according to the present invention, the intrusion heat entering the seal 1~ into the seal 20 through radiant heat and conduction heat is removed by the cooling ability of the evaporated helium gas, the shield temperature is dispersed, and the evaporation amount is directly reduced. Since the temperature of the shield closest to the liquid helium tank, which affects the temperature of the liquid helium, is kept low, the amount of evaporation of liquid helium is reduced. Also, as shown in Figure 4, one 20 with a shield on two and three 20's.
The amount of evaporation is reduced to 1/2 and 1/3 compared to the case of a shield, respectively, and even if more than 3 shields are inserted, the amount of evaporation is reduced compared to the proportion that the space for insertion increases. The reduction rate becomes smaller.

(実施例) (実施例の構成) 本発明の実施例の3枚のシールドの場合の構成を第1図
に示す。さらに、第2図に第1図の■の部分の拡大詳細
を示す。
(Example) (Configuration of Example) FIG. 1 shows the configuration of an example of the present invention in which three shields are used. Furthermore, FIG. 2 shows an enlarged detail of the part marked ``■'' in FIG. 1.

第1−図において、クライオスタットは真空断熱槽0と
、その内側の液体窒素で冷却される多層断熱+4を施行
した80にシールド(2a)と、その内側の蒸発ヘリウ
ムガスにて冷却される多層断熱材を施行した3枚20に
のシールド(2b)、(2C)、(2b)及び最内部の
超電導コイルを内蔵するヘリウム槽(1つで構成される
。蒸発ヘリウムガスの流れ(13)が、第3図に示す様
に、最内層のシールド(2d)より順次冷却して流出す
る様に各シールドをパイプ等で接続する。
In Figure 1, the cryostat consists of a vacuum insulation tank 0, a shield (2a) 80 with multi-layer insulation +4 cooled by liquid nitrogen inside the tank 0, and a multi-layer insulation cooled with evaporated helium gas inside the tank 80. It consists of three shields 20 (2b), (2C), (2b) and a helium tank (13) containing the innermost superconducting coil.The flow of evaporated helium gas (13) As shown in FIG. 3, the shields are connected by pipes or the like so that the cooling is sequentially carried out starting from the innermost shield (2d).

(実施例の作用) 本実施例の構成のフライオスタラ1−は、ふく射熱及び
伝導熱によりシールドに侵入する熱量を蒸発ヘリウムガ
スの冷却能力で取り去り、シールド温度を分散させ、液
体ヘリウム槽と相対する最内層のシールドの温度を低く
おさえるため、第4図に示す様に液体ヘリウ11の蒸発
散を減少させる。
(Function of the embodiment) The Fly Ostara 1- configured in this embodiment uses the cooling ability of the evaporated helium gas to remove the amount of heat that enters the shield due to radiant heat and conduction heat, disperses the shield temperature, In order to keep the temperature of the inner layer of the shield low, the evaporation of the liquid helium 11 is reduced as shown in FIG.

また、第4図に示す様に3枚の201<シールドを挿入
すると1枚の20にシールドの場合の173まで低下す
る。しかし3枚以上のシール1くを挿入しても、挿入す
るための必要スペースの増加の割合に比較し、蒸発量の
低減の割合は小さく、3枚のシールドがほぼ最適である
Further, as shown in FIG. 4, when three 201<shields are inserted, the value decreases to one 20 and 173 in the case of a shield. However, even if three or more shields are inserted, the rate of reduction in evaporation is small compared to the rate of increase in the space required for insertion, and three shields is almost optimal.

(実施例の効果) 上記の作用より、液体ヘリウムの蒸発量が低減され、液
体ヘリウムが高価であるため、大幅な費用の低減が可能
である。又、小型冷凍機を必要としないため、クライオ
スタットとしての信頼性が向上する。
(Effects of Example) Due to the above effects, the amount of evaporation of liquid helium is reduced, and since liquid helium is expensive, it is possible to significantly reduce costs. Furthermore, since a small refrigerator is not required, reliability as a cryostat is improved.

さらに、蒸発量の低減のため、同一量の液体ヘリウムの
貯液量であれば、使用可能な期間が延び、再汁液等の保
守間隔が長くなり、保守が容易になる。
Furthermore, since the amount of evaporation is reduced, if the same amount of liquid helium is stored, the usable period is extended, the maintenance interval for re-souring etc. becomes longer, and maintenance becomes easier.

〔発明の効果〕〔Effect of the invention〕

本発明のフライオスタラ1〜は、蒸発ヘリウムガスで冷
却される2枚ないし3枚の20にシールドを挿入すめた
め、液体ヘリウ11の蒸発量が低減される。また、ノ」
1型冷凍機を必要としないため、電源を必要とせず信頼
性が向」ニする。
In the fly Ostara 1 to 1 of the present invention, the amount of evaporation of the liquid helium 11 is reduced because shields are inserted into two or three sheets 20 that are cooled with evaporated helium gas. Also, no.”
Since it does not require a type 1 refrigerator, it does not require a power source, improving reliability.

さらに、蒸発量の低減のため、同一量の液体ヘリウムの
1佇液景であれば、使用可能な期間が延び、再汁液等の
保守間隔が長くなり、保守が容易になる。
Furthermore, since the amount of evaporation is reduced, if the same amount of liquid helium is contained in one container, the usable period is extended, and maintenance intervals such as re-salting become longer, making maintenance easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフライオスタラ1−の一実施例を示す
断面図、第2図は第1図の■部分の詳細図、第3図は上
記実施例における輻射シールドの冷却フロー図、第4図
はシールド効果を表わすグラフ、第5図は従来のフライ
オスタラl−を示す図である。 1 ・液体ヘリウム槽 2−ふく射シールド2a −8
0Kシールド  2b、2c、2d−20にシールド3
・断熱支持装置  4−真空空間 5−真空断熱槽   6 室温空間 7・坪突部     10  超電導コイル11・液体
ヘリウ1112・液体窒素 13・蒸発ヘリウムガスの流れ 代理人 弁理士 則 近 憲 佑 同  第子丸 健 −8〜 第2図 挿入するンール12の徹(文 第4図 自17
Fig. 1 is a sectional view showing an embodiment of the Fly Ostara 1- of the present invention, Fig. 2 is a detailed view of the part ■ in Fig. 1, Fig. 3 is a cooling flow diagram of the radiation shield in the above embodiment, Fig. 4 The figure is a graph showing the shielding effect, and FIG. 5 is a diagram showing the conventional fly Ostara l-. 1 ・Liquid helium tank 2-Radiation shield 2a -8
0K Shield Shield 3 on 2b, 2c, 2d-20
・Heat insulation support device 4-Vacuum space 5-Vacuum insulation tank 6 Room temperature space 7・Tsubo protrusion 10 Superconducting coil 11・Liquid helium 1112・Liquid nitrogen 13・Flow agent of evaporated helium gas Patent attorney Nori Chika Ken Yudo Daiko Ken Maru - 8 ~ Toru No. 12 inserted in Figure 2 (Text Figure 4 Self-17)

Claims (1)

【特許請求の範囲】[Claims]  真空断熱槽内に液体窒素で冷却される80Kシールド
と液体ヘリウム槽を有するクライオスタットにおいて、
80Kシールドと液体ヘリウム槽の間に蒸発ヘリウムガ
スで冷却される多層断熱材を施行した2〜3枚の20K
シールドを配置したことを特徴とするクライオスタット
In a cryostat that has an 80K shield cooled with liquid nitrogen and a liquid helium tank inside a vacuum insulation tank,
2 to 3 sheets of 20K with multilayer insulation cooled by evaporated helium gas between the 80K shield and the liquid helium tank
A cryostat characterized by a shield.
JP63028780A 1988-02-12 1988-02-12 Cryostat Pending JPH01205576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63028780A JPH01205576A (en) 1988-02-12 1988-02-12 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028780A JPH01205576A (en) 1988-02-12 1988-02-12 Cryostat

Publications (1)

Publication Number Publication Date
JPH01205576A true JPH01205576A (en) 1989-08-17

Family

ID=12257921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028780A Pending JPH01205576A (en) 1988-02-12 1988-02-12 Cryostat

Country Status (1)

Country Link
JP (1) JPH01205576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001910A1 (en) * 2008-07-02 2010-01-07 株式会社日立製作所 Ultra-low temperature storage container and ultra-low temperature device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001910A1 (en) * 2008-07-02 2010-01-07 株式会社日立製作所 Ultra-low temperature storage container and ultra-low temperature device
JP2010016081A (en) * 2008-07-02 2010-01-21 Hitachi Ltd Cryogenic storage container and cryogenic apparatus

Similar Documents

Publication Publication Date Title
JP3663266B2 (en) Open magnetic resonance imaging magnet
JPS60243544A (en) Plug for horizontal type cryostat penetrating hole
WO2010001910A1 (en) Ultra-low temperature storage container and ultra-low temperature device
US5991647A (en) Thermally shielded superconductor current lead
EP1519390A2 (en) Cryogen-free high temperature superconducting magnet with thermal reservoir
JPH01205576A (en) Cryostat
JPH11233839A (en) Low-temperature thermostat
JP2515813B2 (en) Current lead for superconducting equipment
CN111587464A (en) Superconducting magnet with thermal battery
KR20190088018A (en) Passive magnetic shielding of structures immersed in plasma using superconductors
JPH0511647B2 (en)
JPH10247532A (en) Current lead for superconductive device
JP7131147B2 (en) Cooling device and sensor device
JPS6161713B2 (en)
JPS63117409A (en) Cryogenic container with freezer
JPH10172796A (en) Superconducting wiggler having dually structured beam chamber
JPS62262408A (en) Superconducting device
JPH11237456A (en) Heat shield body
JPH054264Y2 (en)
JPH0548156A (en) Current lead for superconducting magnet device
JPS58184775A (en) Heat insulating container for superconductive magnet
JP2821549B2 (en) Superconducting magnet system
JP4360037B2 (en) Cryostat
JPH0622169B2 (en) Superconducting magnet device
JPS6229113A (en) Superconducting device