JPS624309A - Cryogenic apparatus - Google Patents

Cryogenic apparatus

Info

Publication number
JPS624309A
JPS624309A JP60143769A JP14376985A JPS624309A JP S624309 A JPS624309 A JP S624309A JP 60143769 A JP60143769 A JP 60143769A JP 14376985 A JP14376985 A JP 14376985A JP S624309 A JPS624309 A JP S624309A
Authority
JP
Japan
Prior art keywords
cooled
refrigerant
cooling
cryogenic
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60143769A
Other languages
Japanese (ja)
Other versions
JPH0584651B2 (en
Inventor
Keiji Okuma
啓嗣 大熊
Satoshi Yasuda
聡 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60143769A priority Critical patent/JPS624309A/en
Publication of JPS624309A publication Critical patent/JPS624309A/en
Publication of JPH0584651B2 publication Critical patent/JPH0584651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0687Special properties of materials for vessel walls superconducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors

Abstract

PURPOSE:To save energy by a method wherein a gravitational circulation type cooling apparatus is employed as a cooling apparatus for an object to be cooled such as a superconducting coil and a coolant is forcibly make to flow through an exclusive pre-cooling pipe at the time of pre-cooling only. CONSTITUTION:Liquid helium P, contained in a liquid helium container 17, is pumped out from the bottom of the container 17 into a coolant outlet part 21 by gravity. The helium P reaches the lowest end part of the direction of the gravity while being kept at that temperature. The helium P, which reaches a vaporizing part 22, exchanges heat with a superconducting coil 1 through a heat equalizing plate 11 and is vaporized. The vaporized coolant ascends meandering through the vaporizing part 22 and is fed back above the free liquid surface in the container 17. On the other hand, when the coil 1 is pre- cooled from a normal temperature to an intermediate temperature, a compressor is attached to a supply port 52 of a pre-cooling pipe 51 and liquid helium is supplied from the port 52. Then the coil 1 is cooled rapidly. With this constitution, energy can be saved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、超電導磁石等の極低温装置に係わり、特に自
然循環冷却法を用いた極低温装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cryogenic device such as a superconducting magnet, and particularly to a cryogenic device using a natural circulation cooling method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超電導磁石装置では、超電導コイルを例えば4に程度の
極低温に冷却することが必要である。そこで従来は、超
電導コイルそのものを液体ヘリウム溜めに浸漬すること
によって超電導コイルを冷却するようにしていた。しか
し、この方法ではヘリウム溜めに大きなスペースを必要
とすること、大量のヘリウムを貯溜しなければならない
こと、及びヘリウム溜めの製作工程が複雑であること等
の欠点があった。
In a superconducting magnet device, it is necessary to cool the superconducting coil to an extremely low temperature of, for example, about 4 ℃. Conventionally, superconducting coils have been cooled by immersing them in a liquid helium reservoir. However, this method has drawbacks such as requiring a large space for the helium reservoir, requiring a large amount of helium to be stored, and requiring a complicated manufacturing process for the helium reservoir.

これに対し、超電導コイルと熱的に接続された冷媒循環
路に、液体ヘリウム等の冷媒を強制循環させて超電導コ
イルを冷却する方法が提案されている。しかし、この方
法は、冷媒を強制循環させるための設備が不可欠である
ことから、小形の超電導コイルに適用することは困難で
あった。また、予冷時は勿論のこと、超電導コイルを一
旦極低温下に冷却した後も冷媒を常に強制循環させる必
要があり、このためコンプレッサの如き冷媒の循環動力
源の負担も大きいものであった。
In contrast, a method has been proposed in which a refrigerant such as liquid helium is forced to circulate in a refrigerant circulation path that is thermally connected to the superconducting coil to cool the superconducting coil. However, since this method requires equipment for forced circulation of the refrigerant, it has been difficult to apply it to small superconducting coils. In addition, it is necessary to constantly force the refrigerant to circulate not only during pre-cooling but also after the superconducting coil has been cooled to an extremely low temperature, which places a heavy burden on the refrigerant circulation power source such as a compressor.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みなされたものであり、そ
の目的とするところは、超電導コイル等の被冷却体の冷
却に必要なスペースとヘリウム貯溜量の減少化をはかる
ことができ、しかも製作が容易で小形の超電導コイルへ
の適用も可能な極低温装置を提供することにある。
The present invention was developed in view of the above circumstances, and its purpose is to reduce the space and helium storage required for cooling objects such as superconducting coils, and to reduce manufacturing costs. The object of the present invention is to provide a cryogenic device that can be easily applied to small superconducting coils.

〔発明の概要〕 本発明の骨子は、超電導コイル等の被冷却体を冷却する
冷却装置として、所謂自然落下循環方式の冷却装置を用
いると共に、予冷時には予冷専用の配管に冷媒を強制的
に流すことにある。
[Summary of the Invention] The gist of the present invention is to use a so-called natural fall circulation type cooling device as a cooling device for cooling objects to be cooled such as superconducting coils, and to forcibly flow a refrigerant through a pipe dedicated to precooling during precooling. There is a particular thing.

即ち本発明は、被冷却体と、この被冷却体を極低温下に
冷却する冷却装置とを備えた極低温装置において、前記
冷却装置として、前記被冷却体の上方に設置された極低
温液の液溜め部と、冷却サイクルを構成する気化部を有
し上記液溜め部を介して閉ループ状に設置された配管か
らなり、少なくとも上記気化部から上記液溜め部に至る
冷媒が重力方向へ上向きに進行するように構成された冷
媒循環路と、前記気化部を前記被冷却体と熱的に接続す
る手段と、予冷時に冷媒を強制的に流されて前記被冷却
体を冷却する前記冷媒循環路とは独立した予冷用配管と
を設けるようにしたものである。
That is, the present invention provides a cryogenic apparatus that includes an object to be cooled and a cooling device that cools the object to an extremely low temperature. It consists of a liquid reservoir and a vaporizer that constitutes a cooling cycle, and the piping is installed in a closed loop via the liquid reservoir, and at least the refrigerant from the vaporizer to the liquid reservoir is directed upward in the direction of gravity. a refrigerant circulation path configured to proceed to the object to be cooled; a means for thermally connecting the vaporizing section to the object to be cooled; and a refrigerant circulation path in which the object to be cooled is cooled by forcing the refrigerant to flow during precooling. A pre-cooling pipe is provided which is independent of the pipe.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液化した冷媒と気化した冷媒との密度
差を利用して冷媒の循環動力を得る自然落下循環方式を
採用しているので、予冷時以外はコンプレッサの如き冷
媒の循環動力を得るための手段を必要としない。つまり
、超電導コイル等の被冷却体が一旦極低温下(若しくは
中間温度)に冷却された後は冷媒の循環動力が不要とな
り、省エネ化をはかり得る。また、予冷時には予冷用ガ
ス配管に冷媒を流すためのコンプレッサ等の動力源を取
付けるだけでよく、この動力源を外付は構成とすること
も可能である。従って、全体構成の簡素化をはかること
ができ、小形の超電導コイルへの適用も可能となる。
According to the present invention, since a natural fall circulation method is adopted in which the circulating power of the refrigerant is obtained by utilizing the density difference between the liquefied refrigerant and the vaporized refrigerant, the circulating power of the refrigerant such as a compressor is used except during pre-cooling. You don't need the means to get it. In other words, once the object to be cooled, such as the superconducting coil, is cooled to an extremely low temperature (or an intermediate temperature), there is no need for refrigerant circulation power, resulting in energy savings. Further, during pre-cooling, it is sufficient to simply attach a power source such as a compressor for flowing refrigerant to the pre-cooling gas piping, and it is also possible to configure this power source to be externally attached. Therefore, the overall configuration can be simplified, and application to small superconducting coils is also possible.

また本発明では、冷媒循環路と被冷却体とを熱的に接続
することによって被冷却体を冷却する方式を採用してい
るので、被冷却体を浸漬させるための液化ヘリウム溜め
を必要としない。従って、被冷却体の冷却に必要なスペ
ースとヘリウム貯溜量の減少化をはかることができる。
Furthermore, since the present invention employs a method of cooling the object to be cooled by thermally connecting the refrigerant circulation path and the object to be cooled, there is no need for a liquefied helium reservoir for immersing the object to be cooled. . Therefore, the space required for cooling the object to be cooled and the amount of helium stored can be reduced.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to the drawings.

図は本発明の一実施例に係わる超電導磁石装置を一部切
欠して示す斜視図である。図中1は円環状に形成された
超電導コイル(被冷却体)であり、該コイル1はその外
周面全体を覆う冷却装置、2−によって極低温に冷却さ
れるものとなっている。
The figure is a partially cutaway perspective view of a superconducting magnet device according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a superconducting coil (object to be cooled) formed in an annular shape, and the coil 1 is cooled to an extremely low temperature by a cooling device 2- that covers the entire outer peripheral surface of the coil.

冷却装置、2−は、具体的には次のように構成されてい
る。即ち、超電導コイル1の外周面は、均熱板11によ
って全体的に覆われてσ)る。均熱板11は、例えば銅
等の良熱伝導体で形成された半円環状の2つの分割体1
1a、11bの各周方向端部を電気絶縁板12を介して
絶縁ボルト13にて固着して構成されている。このよう
に構成することによって、超電導コイル1の励磁に起因
した均熱板11の誘導加熱が抑制される。均熱板11と
超電導コイル1とは、熱的な密着性を向上させる目的で
、銅と同様の熱膨張率を有し且つ熱伝導性に優れたエポ
キシ樹脂14によって一体化される。なお、均熱板11
には複数の孔15が穿設されており、これらの孔15を
介して均熱板11の両面のエポキシ樹脂14が一体化さ
れる。従って、均熱板11とエポキシ樹脂14とは一体
となって熱収縮するようになっている。
The cooling device 2- is specifically configured as follows. That is, the outer circumferential surface of the superconducting coil 1 is completely covered by the heat soaking plate 11. The heat equalizing plate 11 has two semi-circular divided bodies 1 made of a good heat conductor such as copper.
Each circumferential end of 1a and 11b is fixed with an insulating bolt 13 via an electrically insulating plate 12. With this configuration, induction heating of the heat equalizing plate 11 due to excitation of the superconducting coil 1 is suppressed. The heat soaking plate 11 and the superconducting coil 1 are integrated using an epoxy resin 14 having a coefficient of thermal expansion similar to that of copper and having excellent thermal conductivity for the purpose of improving thermal adhesion. In addition, the soaking plate 11
A plurality of holes 15 are bored through the epoxy resin 14 on both sides of the heat equalizing plate 11. Therefore, the heat soaking plate 11 and the epoxy resin 14 are designed to thermally shrink together.

しかして、超電導コイル1は、上記均熱板11を介して
自然落下循環方式の冷却装置本体1団によって冷却され
る。冷却装置本体16は、超電導コイル1の上方に設置
された液体ヘリウム槽(液溜め部)17と、この液体ヘ
リウム槽17の底部から同側面へと冷媒を通流させる冷
媒通流管18とで構成されている。液体ヘリウム槽17
は、液体ヘリウムPを収容するものである。冷媒通流管
18は、均熱板11の2つの分割体11a、、11bの
外面をそれぞれ這うように2系統設けられ、それぞれの
系統は上記液体ヘリウム槽17の底部から均熱板11の
外周面を重力方向下向きに進行する冷媒汲出し部21と
、この冷媒汲出し部21の最下端部から重力方向へ上向
きに液体ヘリウム槽17の自由液面上に導かれる気化部
22とで構成されている。
Thus, the superconducting coil 1 is cooled via the heat soaking plate 11 by a group of main bodies of the cooling device of the natural fall circulation type. The cooling device main body 16 includes a liquid helium tank (liquid reservoir) 17 installed above the superconducting coil 1 and a refrigerant flow pipe 18 that allows a refrigerant to flow from the bottom of the liquid helium tank 17 to the same side. It is configured. Liquid helium tank 17
contains liquid helium P. Two lines of refrigerant flow pipes 18 are provided so as to extend along the outer surfaces of the two divided bodies 11a, 11b of the heat equalizing plate 11, and each line runs from the bottom of the liquid helium tank 17 to the outer periphery of the heat equalizing plate 11. It is composed of a refrigerant pumping part 21 that advances downward in the direction of gravity, and a vaporizing part 22 that is guided upward in the direction of gravity from the lowest end of the refrigerant pumping part 21 onto the free liquid surface of the liquid helium tank 17. ing.

冷媒汲出し部21は、熱伝導性の悪い断熱スペーサ23
を介して均熱板11に固定され、均熱板11と熱的に絶
縁されている。また、気化部22は、均熱板11と直接
接触するようにエポキシ樹脂14中に埋設されると共に
、所定の部位で或いは全長に亙っで均熱板11にハンダ
付は等の方法により固定されている。さらに、気化部2
2は、均熱板11の周面に密着して設けられ周方向に伸
びる複数の枝配管31と、これら枝配管31の両端部を
共通に接続するヘッダ32.33とで構成されている。
The refrigerant pumping part 21 is a heat insulating spacer 23 with poor thermal conductivity.
It is fixed to the heat equalizing plate 11 via the heat equalizing plate 11 and is thermally insulated from the heat equalizing plate 11. Further, the vaporizing section 22 is embedded in the epoxy resin 14 so as to be in direct contact with the heat equalizing plate 11, and is fixed to the heat equalizing plate 11 at a predetermined portion or over the entire length by a method such as soldering. has been done. Furthermore, the vaporization section 2
2 is composed of a plurality of branch pipes 31 that are provided in close contact with the circumferential surface of the heat equalizing plate 11 and extend in the circumferential direction, and headers 32 and 33 that commonly connect both ends of these branch pipes 31.

従って、液体ヘリウム槽17から汲出された液体ヘリウ
ムPは、冷媒汲出し部21を通って下端のヘッダ33に
到達し、このヘッダ33から各枝配管31を上昇する過
程で超電導コイル1と熱交換されて気化する。気化した
冷媒は、上端のヘッダ部32に集められ、戻り配管34
を介して液体ヘリウム槽17に帰還される。
Therefore, the liquid helium P pumped out from the liquid helium tank 17 passes through the refrigerant pumping part 21 and reaches the header 33 at the lower end, and in the process of ascending from the header 33 through each branch pipe 31, it exchanges heat with the superconducting coil 1. vaporized. The vaporized refrigerant is collected in the header section 32 at the upper end and is passed through the return pipe 34.
The liquid helium is returned to the liquid helium tank 17 via.

一方、均熱板11の(エポキシ樹脂14)外周面には、
前記冷媒循環路18とは独立した予冷用配管51が設け
られている。この予冷用配管51には、供給ボート52
から冷たいガス或いは液が送られ、これらのガス或いは
液の通流でコイル1が中間温度まで冷却される。そして
、コイル1で暖められたガス或いは蒸気が排気ボート5
3から放出されるものとなっている。
On the other hand, on the outer peripheral surface (epoxy resin 14) of the heat soaking plate 11,
A precooling pipe 51 independent of the refrigerant circulation path 18 is provided. This pre-cooling pipe 51 includes a supply boat 52
Cold gas or liquid is sent from the coil 1, and the coil 1 is cooled to an intermediate temperature by the flow of the gas or liquid. Then, the gas or steam heated by the coil 1 is transferred to the exhaust boat 5.
It is supposed to be released from 3.

上記の超電導コイル1と冷却装置、2−とは、例えば5
0〜80に程度の輻射シールド24で囲繞されるととも
に、全体が真空容器25の内部に収容され、外部からの
熱侵入を遮断するようにしている。
The above superconducting coil 1 and cooling device 2- are, for example, 5
It is surrounded by a radiation shield 24 of about 0 to 80 degrees, and the whole is housed inside a vacuum container 25 to block heat from entering from the outside.

このように構成された本実施例に係わる超電導磁石装置
においては、被冷却体である超電導コイル1は、次のよ
うにして冷却される。
In the superconducting magnet device according to this embodiment configured as described above, the superconducting coil 1, which is the object to be cooled, is cooled in the following manner.

即ち、液体ヘリウム槽17に収容された液体ヘリウムP
は、液体ヘリウム槽17の底部から重力によって冷媒汲
出し部21に汲出される。冷媒汲出し部21は、均熱板
11と熱的に絶縁されているので、液体ヘリウムPは、
そのままの温度で重力方向の最下端部に到達する。さら
に、気化部22に到達した液体ヘリウムPは、均熱板1
1を介して超電導コイル1と熱交換され、気化する。
That is, the liquid helium P contained in the liquid helium tank 17
is pumped out from the bottom of the liquid helium tank 17 to the refrigerant pumping section 21 by gravity. Since the refrigerant pumping part 21 is thermally insulated from the heat equalizing plate 11, the liquid helium P is
It reaches the lowest end in the gravity direction at the same temperature. Furthermore, the liquid helium P that has reached the vaporization section 22 is
The superconducting coil 1 exchanges heat with the superconducting coil 1 through the superconducting coil 1, and is vaporized.

気化した冷媒は、気化部22を蛇行屈曲しながら上昇し
、液体ヘリウム槽17の自由液面上に帰還する。自由液
面上の冷媒ガスは、図示しない液化装置によって液化さ
れ再び冷媒汲出し部21から汲出される。なお、この液
化装置はなくてもよく、この場合は液体ヘリウムを補充
することになる。
The vaporized refrigerant rises in a meandering manner through the vaporization section 22 and returns to the free liquid surface of the liquid helium tank 17 . The refrigerant gas on the free liquid surface is liquefied by a liquefaction device (not shown) and pumped out from the refrigerant pumping section 21 again. Note that this liquefaction device may not be provided, and in this case, liquid helium will be replenished.

この冷凍サイクルでは、冷媒汲出し部21の内部と気化
部22の内部とで冷媒の密度差を生じるため、この密度
差によって冷媒の循環動力を得ることができる。従って
、この冷却装置12においては、冷媒を循環させるため
の手段を特に必要としない。
In this refrigeration cycle, a difference in the density of the refrigerant occurs between the inside of the refrigerant pumping section 21 and the inside of the vaporization section 22, so that the circulating power of the refrigerant can be obtained from this density difference. Therefore, this cooling device 12 does not require any particular means for circulating the refrigerant.

一方、超電導コイル1を常温から中間温度まで冷却(予
冷)する場合、予冷用配管51の供給ボート52にコン
プレッサ等を取付け、供給ボート52から液体窒素等を
送り込む。これにより、予冷用ガス配管51内に液体窒
素或いは窒素ガスが強制的に流され、均熱板11を介し
ての熱交換により超電導コイル1を速やかに冷却するこ
とができる。コイル1で暖められた気化した窒素蒸気は
、排気ボート53から放出される。コイル1の予冷が終
了したら、放出ボート53にめくら栓をし、供給ボート
52より真空排気してから封じ切る。
On the other hand, when cooling (precooling) the superconducting coil 1 from room temperature to an intermediate temperature, a compressor or the like is attached to the supply boat 52 of the precooling piping 51, and liquid nitrogen or the like is fed from the supply boat 52. Thereby, liquid nitrogen or nitrogen gas is forced to flow into the precooling gas pipe 51, and the superconducting coil 1 can be rapidly cooled by heat exchange via the heat equalizing plate 11. The vaporized nitrogen vapor heated by the coil 1 is discharged from the exhaust boat 53. After the precooling of the coil 1 is completed, the discharge boat 53 is blind-corked, the supply boat 52 is evacuated, and then sealed.

超電導コイル1が一旦中間温度まで冷却された後は、予
冷用配管51内の冷媒の通流を停止しても、冷媒通流路
18内を循環する冷媒により超電導コイル1は極低温ま
で冷却される。つまり、中間温度まで冷却した後は、コ
ンプレッサ等の循環動力源を必要としないのである。
Once the superconducting coil 1 has been cooled to an intermediate temperature, even if the flow of the refrigerant in the pre-cooling pipe 51 is stopped, the superconducting coil 1 will be cooled to an extremely low temperature by the refrigerant circulating in the refrigerant passage 18. Ru. In other words, after cooling to an intermediate temperature, a circulating power source such as a compressor is not required.

このように本実施例によれば、予冷時以外は冷媒を強制
循環させる装置を用いずに冷媒通流管18の内部に冷媒
を自然循環させることができるので、装置全体の小形化
、構成の簡単化をはかることができ、さらに省エネ化も
はかり得る。また、予冷用配管51が冷媒通流路18と
は独立して設けられているので、予冷時の窒素残留分が
液体ヘリウム槽17内に入ることもなく、冷凍機のトラ
ブルを未然に防止することができる。また、超電導コイ
ル1を浸漬する液体ヘリウム溜めを必要としないので、
超電導コイル1の冷却に必要なスペース及び液体ヘリウ
ム貯溜量の減少化をはかり得る等の利点がある。
In this way, according to this embodiment, the refrigerant can be naturally circulated inside the refrigerant flow pipe 18 without using a device for forced refrigerant circulation except during precooling, so that the overall size of the device can be reduced and the structure can be reduced. It is possible to achieve simplification and also to save energy. Furthermore, since the pre-cooling pipe 51 is provided independently of the refrigerant passage 18, residual nitrogen during pre-cooling does not enter the liquid helium tank 17, thereby preventing trouble with the refrigerator. be able to. In addition, since there is no need for a liquid helium reservoir in which the superconducting coil 1 is immersed,
This has the advantage that the space required for cooling the superconducting coil 1 and the amount of liquid helium stored can be reduced.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記予冷用配管に流す冷媒は液体窒素に
何等限定されるものではなく、被冷却体を所定の中間温
度まで冷却できるものであれば、ガスであってもよい。
Note that the present invention is not limited to the embodiments described above. For example, the refrigerant flowing through the pre-cooling pipe is not limited to liquid nitrogen, but may be a gas as long as it can cool the object to be cooled to a predetermined intermediate temperature.

また、冷媒循環路に循環させる冷媒は液体ヘリウムに限
るものではなく、被冷却体を冷却する温度に応じて適宜
変更可能である。さらに、被冷却体としては超電導コイ
ルに限らず、極低温化に冷却する必要のあるものであれ
ば適用可能である。その他、本発明の要旨を逸脱しない
範囲で、種々変形して実施することができる。
Further, the refrigerant to be circulated in the refrigerant circulation path is not limited to liquid helium, and can be changed as appropriate depending on the temperature at which the object to be cooled is cooled. Furthermore, the object to be cooled is not limited to superconducting coils, but can be applied to any object that needs to be cooled to an extremely low temperature. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例に係わる超電導磁石装置を一部切
欠して示す斜視図である。 1・・・超電導コイル(被冷却体)、2−・・冷却装置
、11・・・均熱板、12・・・絶縁板、14・・・エ
ポキシ樹脂、ie−・・冷却装置本体、17・・・液体
ヘリウム槽(液溜め部)、18・・・冷媒通流管、21
・・・冷媒汲出し部、22・・・気化部、24・・・輻
射シールド、25・・・真空容器、31・・・枝配管、
32.33・・・ヘッダ、51・・・予冷用配管、52
・・・供給ボート、53・・・放出ボート、P・・・液
体ヘリウム。
The figure is a partially cutaway perspective view of a superconducting magnet device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Superconducting coil (cooled body), 2-... Cooling device, 11... Soaking plate, 12... Insulating plate, 14... Epoxy resin, ie-... Cooling device main body, 17 ...Liquid helium tank (liquid reservoir), 18...Refrigerant flow pipe, 21
...Refrigerant pumping part, 22... Vaporization part, 24... Radiation shield, 25... Vacuum container, 31... Branch piping,
32.33...Header, 51...Pre-cooling piping, 52
...Supply boat, 53...Discharge boat, P...Liquid helium.

Claims (4)

【特許請求の範囲】[Claims] (1)被冷却体と、この被冷却体を極低温下に冷却する
冷却装置とを備えた極低温装置において、前記冷却装置
は、前記被冷却体の上方に設置された極低温液の液溜め
部と、冷却サイクルを構成する気化部を有し上記液溜め
部を介して閉ループ状に設置された配管からなり、少な
くとも上記気化部から上記液溜め部に至る冷媒が重力方
向へ上向きに進行するように構成された冷媒循環路と、
前記気化部を前記被冷却体と熱的に接続する手段と、前
記冷媒循環路とは独立して設けられ、予冷時に冷媒を強
制的に流して前記被冷却体を冷却するための予冷用配管
とを具備してなることを特徴とする極低温装置。
(1) In a cryogenic apparatus comprising an object to be cooled and a cooling device that cools the object to a cryogenic temperature, the cooling device is a cryogenic liquid installed above the object to be cooled. The refrigerant is composed of a reservoir and a vaporizer that constitutes a cooling cycle, and is installed in a closed loop through the liquid reservoir, and at least the refrigerant from the vaporizer to the liquid reservoir moves upward in the direction of gravity. a refrigerant circuit configured to;
means for thermally connecting the vaporization section to the object to be cooled; and precooling piping that is provided independently of the refrigerant circulation path and forcibly flows a refrigerant during precooling to cool the object to be cooled. A cryogenic device characterized by comprising:
(2)前記被冷却体は、超電導コイルであることを特徴
とする特許請求の範囲第1項記載の極低温装置。
(2) The cryogenic device according to claim 1, wherein the object to be cooled is a superconducting coil.
(3)前記気化部を前記被冷却体と熱的に接続する手段
として、前記気化部と接触し前記被冷却体を被覆する均
熱板を用いたことを特徴とする特許請求の範囲第1項記
載の極低温装置。
(3) As a means for thermally connecting the vaporizing section to the object to be cooled, a heat equalizing plate that contacts the vaporizing section and covers the object to be cooled is used. Cryogenic equipment as described in section.
(4)前記均熱板は、前記被冷却体の周方向に複数に分
割され、各々が電気的に絶縁されていることを特徴とす
る特許請求の範囲第3項記載の極低温装置。
(4) The cryogenic apparatus according to claim 3, wherein the heat equalizing plate is divided into a plurality of parts in the circumferential direction of the object to be cooled, and each part is electrically insulated.
JP60143769A 1985-06-29 1985-06-29 Cryogenic apparatus Granted JPS624309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60143769A JPS624309A (en) 1985-06-29 1985-06-29 Cryogenic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60143769A JPS624309A (en) 1985-06-29 1985-06-29 Cryogenic apparatus

Publications (2)

Publication Number Publication Date
JPS624309A true JPS624309A (en) 1987-01-10
JPH0584651B2 JPH0584651B2 (en) 1993-12-02

Family

ID=15346593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60143769A Granted JPS624309A (en) 1985-06-29 1985-06-29 Cryogenic apparatus

Country Status (1)

Country Link
JP (1) JPS624309A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721737U (en) * 1993-10-01 1995-04-21 三菱マテリアル株式会社 Metal powder extraction device in metal powder manufacturing facility
JPH11288809A (en) * 1998-03-31 1999-10-19 Toshiba Corp Superconducting magnet
CN102456461A (en) * 2010-10-29 2012-05-16 通用电气公司 Superconducting magnet coil support with cooling and method for coil-cooling
JP2015526640A (en) * 2012-08-22 2015-09-10 スネクマ Cooling method
WO2020234178A1 (en) * 2019-05-21 2020-11-26 Koninklijke Philips N.V. Accelerated cooldown of low-cryogen magnetic resonance imaging (mri) magnets

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721737U (en) * 1993-10-01 1995-04-21 三菱マテリアル株式会社 Metal powder extraction device in metal powder manufacturing facility
JPH11288809A (en) * 1998-03-31 1999-10-19 Toshiba Corp Superconducting magnet
CN102456461A (en) * 2010-10-29 2012-05-16 通用电气公司 Superconducting magnet coil support with cooling and method for coil-cooling
JP2012099811A (en) * 2010-10-29 2012-05-24 General Electric Co <Ge> Superconducting magnet coil support with cooling and method for coil cooling
JP2015526640A (en) * 2012-08-22 2015-09-10 スネクマ Cooling method
WO2020234178A1 (en) * 2019-05-21 2020-11-26 Koninklijke Philips N.V. Accelerated cooldown of low-cryogen magnetic resonance imaging (mri) magnets

Also Published As

Publication number Publication date
JPH0584651B2 (en) 1993-12-02

Similar Documents

Publication Publication Date Title
JPS6171608A (en) Superconductive device
US6107905A (en) Superconducting magnet apparatus
US5461873A (en) Means and apparatus for convectively cooling a superconducting magnet
JP4417247B2 (en) MRI system with superconducting magnet and refrigeration unit
KR102506491B1 (en) Fault-tolerant cryogenic cooling system
US20070245749A1 (en) Closed-loop precooling of cryogenically cooled equipment
US20080115510A1 (en) Cryostats including current leads for electronically powered equipment
GB2361523A (en) Superconducting magnet apparatus
WO2000039513A1 (en) Liquid helium recondensation device and transfer line used therefor
US5113165A (en) Superconductive magnet with thermal diode
JPS607396B2 (en) superconducting device
US6640552B1 (en) Cryogenic superconductor cooling system
US4680936A (en) Cryogenic magnet systems
JPS624309A (en) Cryogenic apparatus
US5979176A (en) Refrigerator
CN112271051A (en) Superconducting magnet low-temperature heat exchange device
JPS624308A (en) Cryogenic apparatus
CN101105358B (en) Cooling apparatus
JP2003086418A (en) Cryogenic device
JPH0713923B2 (en) Superconducting magnet
JPH053120A (en) Superconducting device
CN214377847U (en) Superconducting magnet low-temperature heat exchange device
JPH064567Y2 (en) Cryogenic container
Green Methods of speeding up the cool-down of superconducting magnets that are cooled using Small coolers at temperatures below 30 K
JPH07176424A (en) Superconducting coil apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees