JPH0584651B2 - - Google Patents

Info

Publication number
JPH0584651B2
JPH0584651B2 JP14376985A JP14376985A JPH0584651B2 JP H0584651 B2 JPH0584651 B2 JP H0584651B2 JP 14376985 A JP14376985 A JP 14376985A JP 14376985 A JP14376985 A JP 14376985A JP H0584651 B2 JPH0584651 B2 JP H0584651B2
Authority
JP
Japan
Prior art keywords
cooled
refrigerant
cooling
cryogenic
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14376985A
Other languages
Japanese (ja)
Other versions
JPS624309A (en
Inventor
Keiji Ookuma
Satoshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60143769A priority Critical patent/JPS624309A/en
Publication of JPS624309A publication Critical patent/JPS624309A/en
Publication of JPH0584651B2 publication Critical patent/JPH0584651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0687Special properties of materials for vessel walls superconducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、超電導磁石等の極低温装置に係わ
り、特に自然循環冷却法を用いた極低温装置に関
する。 〔発明の技術的背景とその問題点〕 超電導磁石装置では、超電導コイルを例えば
4K程度の極低温に冷却することが必要である。
そこで従来は、超電導コイルそのものを液体ヘリ
ウム溜めに浸漬することによつて超電導コイルを
冷却するようにしていた。しかし、この方法では
ヘリウム溜めに大きなスペースを必要とするこ
と、大量のヘリウムを貯溜しなければならないこ
と、及びヘリウム溜めの製作工程が複雑であるこ
と等の欠点があつた。 これに対し、超電導コイルと熱的に接続された
冷媒循環路に、液体ヘリウム等の冷媒を強制循環
させて超電導コイルを冷却する方法が提案されて
いる。しかし、この方法は、冷媒を強制循環させ
るための設備が不可欠であることから、小形の超
電導コイルに適用することは困難であつた。ま
た、予冷時は勿論のこと、超電導コイルを一旦極
低温下に冷却した後も冷媒を常に強制循環させる
必要があり、このためコンプレツサの如き冷媒の
循環動力源の負担も大きいものであつた。 〔発明の目的〕 本発明はこのような事情に鑑みなされたもので
あり、その目的とするところは、超電導コイル等
の被冷却体の冷却に必要なスペースとヘリウム貯
溜量の減少化をはかることができ、しかも製作が
容易で小形の超電導コイルへの適用も可能な極低
温装置を提供することにある。 〔発明の概要〕 本発明の骨子は、超電導コイル等の被冷却体を
冷却する冷却装置として、所謂自然落下循環方式
の冷却装置を用いると共に、予冷時には予冷専用
の配管に冷媒を強制的に流すことにある。 即ち本発明は、被冷却体と、この被冷却体を極
低温下に冷却する冷却装置とを備えた極低温装置
において、前記冷却装置として、前記被冷却体の
上方に設置された極低温液の液溜め部と、冷却サ
イクルを構成する気化部を有し上記液溜め部を介
して閉ループ状に設置された配管からなり、少な
くとも上記気化部から上記液溜め部に至る冷媒が
重力方向へ上向きに進行するように構成された冷
媒循環路と、前記気化部を前記被冷却体と熱的に
接続する手段と、予冷時に冷媒を強制的に流され
て前記被冷却体を冷却する前記冷媒循環路とは独
立した予冷用配管とを設けるようにしたものであ
る。 〔発明の効果〕 本発明によれば、液化した冷媒と気化した冷媒
との密度差を利用して冷媒の循環動力を得る自然
落下循環方式を採用しているので、予冷時以外は
コンプレツサの如き冷媒の循環動力を得るための
手段を必要としない。つまり、超電導コイル等の
被冷却体が一旦低温下(若しくは中間温度)に冷
却された後は冷媒の循環動力が不要となり、省エ
ネ化をはかり得る。また、予冷時には予冷用ガス
配管に冷媒を流すためのコンプレツサ等の動力源
を取付けるだけでよく、この動力源を外付け構成
とすることも可能である。従つて、全体構成の簡
素化をはかることができ、小形の超電導コイルへ
の適用も可能となる。 また本発明では、冷媒循環路と被冷却体とを熱
的に接続することによつて被冷却体を冷却する方
式を採用しているので、被冷却体を浸漬させるた
めの液化ヘリウム溜めを必要としない。従つて、
被冷却体の冷却に必要なスペースとヘリウム貯溜
量の減少化をはかることができる。 〔発明の実施例〕 以下、図面を参照して本発明の実施例について
説明する。 図は本発明の一実施例に係わる超電導磁石装置
を一部切欠して示す斜視図である。図中1は円環
状に形成された超電導コイル(被冷却体)であ
り、該コイル1はその外周面全体を覆う冷却装置
2によつて極低温に冷却されるものとなつてい
る。 冷却装置は、具体的には次のように構成され
ている。即ち、超電導コイル1の外周面は、均熱
板11によつて全体的に覆われている。均熱板1
1は、例えば銅等の良熱伝導体で形成された半円
環状の2つの分割体11a,11bの各周方向端
部を電気絶縁板12を介して絶縁ボルト13にて
固着して構成されている。このように構成するこ
とによつて、超電導コイル1の励磁に起因した均
熱板11の誘導加熱が抑制される。均熱板11と
超電導コイル1とは、熱的な密着性を向上させる
目的で、銅と同様の熱膨脹率を有し且つ熱伝導性
に優れたエポキシ樹脂14によつて一体化され
る。なお、均熱板11には複数の孔15が穿設さ
れており、これらの孔15を介して均熱板11の
両面のエポキシ樹脂14が一体化される。従つ
て、均熱板11とエポキシ樹脂14とは一体とな
つて熱収縮するようになつている。 しかして、超電導コイル1は、上記均熱板11
を介して自然落下循環方式の冷却装置本体16
よつて冷却される。冷却装置本体16は、超電導
コイル1の上方に設置された液体ヘリウム槽(液
溜め部)17と、この液体ヘリウム槽17の底部
から同側面へと冷媒を通流させる冷媒通流管18
とで構成されている。液体ヘリウム槽17は、液
体ヘリウムPを収容するものである。冷媒通流管
18は、均熱板11の2つの分割体11a,11
bの外面をそれぞれ這うように2系統設けられ、
それぞれの系統は上記液体ヘリウム槽17の底部
から均熱板11の外周面を重力方向下向きに進行
する冷媒汲出し部21と、この冷媒汲出し部21
の最下端部から重力方向へ上向きに液体ヘリウム
槽17の自由液面上に導かれる気化部22とで構
成されている。 冷媒汲出し部21は、熱伝導性の悪い断熱スペ
ーサ23を介して均熱板11に固定され、均熱板
11と熱的に絶縁されている。また、気化部22
は、均熱板11と直接接触するようにエポキシ樹
脂14中に埋設されると共に、所定の部位で或い
は全長に亙つて均熱板11にハンダ付け等の方法
により固定されている。さらに、気化部22は、
均熱板11の周面に密着して設けられ周方向に伸
びる複数の枝配管31と、これら枝配管31の両
端部を共通に接続するヘツダ32,33とで構成
されている。従つて、液体ヘリウム槽17から汲
出された液体ヘリウムPは、冷媒汲出し部21を
通つて下端のヘツダ33に到達し、このヘツダ3
3から各枝配管31を上昇する過程で超電導コイ
ル1と熱交換されて気化する。気化した冷媒は、
上端のヘツダ部32に集められ、戻り配管34を
介して液体ヘリウム槽17に帰還される。 一方、均熱板11の(エポキシ樹脂14)外周
面には、前記冷媒循環路18とは独立した予冷用
配管51が設けられている。この予冷用配管51
には、供給ポート52から冷たいガス或いは液が
送られ、これらのガス或いは液の通流でコイル1
が中間温度まで冷却される。そして、コイル1で
暖められたガス或いは蒸気が排気ポート53から
放出されるものとなつている。 上記の超電導コイル1と冷却装置とは、例え
ば50〜80K程度の輻射シールド24で囲繞される
とともに、全体が真空容器25の内部に収容さ
れ、外部からの熱侵入を遮断するようにしてい
る。 このように構成された本実施例に係わる超電導
磁石装置においては、被冷却体である超電導コイ
ル1は、次のようにして冷却される。 即ち、液体ヘリウム槽17に収容された液体ヘ
リウムPは、液体ヘリウム槽17の底部から重力
によつて冷媒汲出し部21に汲出される。冷媒汲
出し部21は、均熱板11と熱的に絶縁されてい
るので、液体ヘリウムPは、そのままの温度で重
力方向の最下端部に到達する。さらに、気化部2
2に到達した液体ヘリウムPは、均熱板11を介
して超電導コイル1と熱交換され、気化する。気
化した冷媒は、気化部22を蛇行屈曲しながら上
昇し、液体ヘリウム槽17の自由液面上に帰還す
る。自由液面上の冷媒ガスは、図示しない液化装
置によつて液化され再び冷媒汲出し部21から汲
出される。なお、この液化装置はなくてもよく、
この場合は液体ヘリウムを補充することになる。
この冷凍サイクルでは、冷媒汲出し部21の内部
と気化部22の内部とで冷媒の密度差を生じるた
め、この密度差によつて冷媒の循環動力を得るこ
とができる。従つて、この冷却装置において
は、冷媒を循環させるための手段に特を必要とし
ない。 一方、超電導コイル1を常温から中間温度まで
冷却(予冷)する場合、予冷用配管51の供給ポ
ート52にコンプレツサ等を取付け、供給ポート
52から液体窒素等を送り込む。これにより、予
冷用ガス配管51内に液体窒素或いは窒素ガスが
強制的に流され、均熱板11を介しての熱交換に
より超電導コイル1を速やかに冷却することがで
きる。コイル1で暖められた気化した窒素蒸気
は、排気ポート53から放出される。コイル1の
予冷が終了したら、放出ポート53にめくら栓を
し、供給ポート52より真空排気してから封じ切
る。超電導コイル1が一旦中間温度まで冷却され
た後は、予冷用配管51内の冷媒の通流を停止し
ても、冷媒通流路18内を循環する冷媒により超
電導コイル1は極低温まで冷却される。つまり、
中間温度まで冷却した後は、コンプレツサ等の循
環動力源を必要としないのである。 このように本実施例によれば、予冷時以外は冷
媒を強制循環させる装置を用いずに冷媒通流管1
8の内部に冷媒を自然循環させることができるの
で、装置全体の小形化、構成の簡単化をはかるこ
とができ、さらに省エネ化もはかり得る。また、
予冷用配管51が冷媒通流路18とは独立して設
けられているので、予冷時の窒素残留分が液体ヘ
リウム槽17内に入ることもなく、冷凍機のトラ
ブルを未然に防止することができる。また、超電
導コイル1を浸漬する液体ヘリウム溜めを必要と
しないので、超電導コイル1の冷却に必要なスペ
ース及び液体ヘリウム貯溜量の減少化をはかり得
る等の利点がある。 なお、本発明は上述した各実施例に限定される
ものではない。例えば、前記予冷用配管に流す冷
媒は液体窒素に何等限定されるものではなく、被
冷却体を所定の中間温度まで冷却できるものであ
れば、ガスであつてもよい。また、冷媒循環路に
循環させる冷媒は液体ヘリウムに限るものではな
く、被冷却体を冷却する温度に応じて適宜変更可
能である。さらに、被冷却体としては超電導コイ
ルに限らず、極低温化に冷却する必要のあるもの
であれば適用可能である。その他、本発明の要旨
を逸脱しない範囲で、種々変形して実施すること
ができる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cryogenic device such as a superconducting magnet, and particularly to a cryogenic device using a natural circulation cooling method. [Technical background of the invention and its problems] In a superconducting magnet device, a superconducting coil is
It is necessary to cool it to an extremely low temperature of about 4K.
Conventionally, superconducting coils have been cooled by immersing them in a liquid helium reservoir. However, this method has drawbacks such as the helium reservoir requiring a large space, the need to store a large amount of helium, and the helium reservoir manufacturing process being complicated. In contrast, a method has been proposed in which a refrigerant such as liquid helium is forced to circulate in a refrigerant circulation path that is thermally connected to the superconducting coil to cool the superconducting coil. However, since this method requires equipment for forced circulation of the refrigerant, it has been difficult to apply it to small superconducting coils. In addition, it is necessary to constantly force the refrigerant to circulate not only during pre-cooling but also after the superconducting coil has been cooled to an extremely low temperature, which places a heavy burden on the refrigerant circulation power source such as a compressor. [Object of the Invention] The present invention was made in view of the above circumstances, and its purpose is to reduce the space and helium storage amount necessary for cooling objects to be cooled such as superconducting coils. The object of the present invention is to provide a cryogenic device that can be easily manufactured and can be applied to small superconducting coils. [Summary of the Invention] The gist of the present invention is to use a so-called natural fall circulation type cooling device as a cooling device for cooling objects to be cooled such as superconducting coils, and to forcibly flow a refrigerant through a pipe dedicated to precooling during precooling. There is a particular thing. That is, the present invention provides a cryogenic apparatus that includes an object to be cooled and a cooling device that cools the object to an extremely low temperature. It consists of a liquid reservoir and a vaporizer that constitutes a cooling cycle, and the piping is installed in a closed loop via the liquid reservoir, and at least the refrigerant from the vaporizer to the liquid reservoir is directed upward in the direction of gravity. a refrigerant circulation path configured to proceed to the object to be cooled; a means for thermally connecting the vaporizing section to the object to be cooled; and a refrigerant circulation path in which the object to be cooled is cooled by forcing the refrigerant to flow during precooling. A pre-cooling pipe is provided which is independent of the pipe. [Effects of the Invention] According to the present invention, since a natural fall circulation method is adopted that uses the density difference between liquefied refrigerant and vaporized refrigerant to obtain refrigerant circulation power, it is not necessary to use a compressor like a compressor except during pre-cooling. No means for obtaining refrigerant circulation power is required. In other words, once the object to be cooled, such as the superconducting coil, has been cooled to a low temperature (or an intermediate temperature), the circulating power of the refrigerant is no longer necessary, and energy savings can be achieved. Further, during precooling, it is sufficient to simply attach a power source such as a compressor for flowing refrigerant to the precooling gas pipe, and it is also possible to configure this power source to be externally attached. Therefore, the overall configuration can be simplified, and application to small superconducting coils is also possible. Furthermore, since the present invention employs a method of cooling the object to be cooled by thermally connecting the refrigerant circulation path and the object to be cooled, a liquefied helium reservoir for immersing the object to be cooled is not required. I don't. Therefore,
The space required for cooling the object to be cooled and the amount of helium stored can be reduced. [Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the drawings. The figure is a partially cutaway perspective view of a superconducting magnet device according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a superconducting coil (an object to be cooled) formed in an annular shape, and the coil 1 is cooled to an extremely low temperature by a cooling device 2 that covers its entire outer peripheral surface. The cooling device 2 is specifically configured as follows. That is, the outer circumferential surface of the superconducting coil 1 is entirely covered by the heat equalizing plate 11. Soaking plate 1
1 is constructed by fixing each circumferential end of two semicircular divided bodies 11a and 11b made of a good thermal conductor such as copper with insulating bolts 13 through an electrically insulating plate 12. ing. With this configuration, induction heating of the heat equalizing plate 11 due to excitation of the superconducting coil 1 is suppressed. The heat soaking plate 11 and the superconducting coil 1 are integrated using an epoxy resin 14 having a coefficient of thermal expansion similar to that of copper and having excellent thermal conductivity for the purpose of improving thermal adhesion. Note that a plurality of holes 15 are bored in the heat equalizing plate 11, and the epoxy resin 14 on both sides of the heat equalizing plate 11 is integrated through these holes 15. Therefore, the heat soaking plate 11 and the epoxy resin 14 are designed to thermally shrink together. Therefore, the superconducting coil 1 has the above-mentioned heat soaking plate 11
It is cooled by the cooling device main body 16 of a natural fall circulation type. The cooling device main body 16 includes a liquid helium tank (liquid reservoir) 17 installed above the superconducting coil 1, and a refrigerant flow pipe 18 that allows a refrigerant to flow from the bottom of the liquid helium tank 17 to the same side.
It is made up of. The liquid helium tank 17 stores liquid helium P. The refrigerant flow pipe 18 includes two divided bodies 11a and 11 of the heat equalizing plate 11.
Two systems are installed so as to crawl on the outside surface of b,
Each system includes a refrigerant pumping section 21 that advances downward in the direction of gravity from the bottom of the liquid helium tank 17 on the outer circumferential surface of the heat equalizing plate 11, and a refrigerant pumping section 21.
The vaporizer 22 is guided upward in the direction of gravity from the lowest end of the liquid helium tank 17 onto the free liquid surface of the liquid helium tank 17. The refrigerant pumping part 21 is fixed to the heat equalizing plate 11 via a heat insulating spacer 23 having poor thermal conductivity, and is thermally insulated from the heat equalizing plate 11. In addition, the vaporization section 22
is embedded in the epoxy resin 14 so as to be in direct contact with the heat equalizing plate 11, and is fixed to the heat equalizing plate 11 at a predetermined portion or over the entire length by a method such as soldering. Furthermore, the vaporization section 22
It is composed of a plurality of branch pipes 31 that are provided in close contact with the circumferential surface of the heat equalizing plate 11 and extend in the circumferential direction, and headers 32 and 33 that commonly connect both ends of these branch pipes 31. Therefore, the liquid helium P pumped out from the liquid helium tank 17 passes through the refrigerant pumping part 21 and reaches the header 33 at the lower end.
In the process of ascending from 3 to each branch pipe 31, heat is exchanged with the superconducting coil 1 and vaporized. The vaporized refrigerant is
It is collected in the header section 32 at the upper end and returned to the liquid helium tank 17 via the return pipe 34. On the other hand, a pre-cooling pipe 51 that is independent of the refrigerant circulation path 18 is provided on the outer peripheral surface (of the epoxy resin 14) of the heat equalizing plate 11. This pre-cooling pipe 51
A cold gas or liquid is sent from the supply port 52, and the flow of this gas or liquid causes the coil 1 to
is cooled to an intermediate temperature. The gas or steam heated by the coil 1 is then discharged from the exhaust port 53. The above-mentioned superconducting coil 1 and cooling device 2 are surrounded by a radiation shield 24 of about 50 to 80K, for example, and the whole is housed inside a vacuum container 25 to block heat from entering from the outside. . In the superconducting magnet device according to this embodiment configured as described above, the superconducting coil 1, which is the object to be cooled, is cooled in the following manner. That is, the liquid helium P contained in the liquid helium tank 17 is pumped out from the bottom of the liquid helium tank 17 to the refrigerant pumping part 21 by gravity. Since the refrigerant pumping part 21 is thermally insulated from the heat equalizing plate 11, the liquid helium P reaches the lowest end in the gravity direction at the same temperature. Furthermore, the vaporization section 2
The liquid helium P that has reached 2 is heat exchanged with the superconducting coil 1 via the heat equalizing plate 11 and vaporized. The vaporized refrigerant rises in a meandering manner through the vaporization section 22 and returns to the free liquid surface of the liquid helium tank 17 . The refrigerant gas on the free liquid surface is liquefied by a liquefaction device (not shown) and pumped out from the refrigerant pumping section 21 again. Note that this liquefaction device may not be necessary.
In this case, liquid helium must be refilled.
In this refrigeration cycle, a difference in the density of the refrigerant occurs between the inside of the refrigerant pumping section 21 and the inside of the vaporization section 22, so that the circulating power of the refrigerant can be obtained from this density difference. Therefore, this cooling device 2 does not require any special means for circulating the refrigerant. On the other hand, when cooling (precooling) the superconducting coil 1 from room temperature to an intermediate temperature, a compressor or the like is attached to the supply port 52 of the precooling piping 51, and liquid nitrogen or the like is fed from the supply port 52. Thereby, liquid nitrogen or nitrogen gas is forced to flow into the precooling gas pipe 51, and the superconducting coil 1 can be rapidly cooled by heat exchange via the heat equalizing plate 11. The vaporized nitrogen vapor heated by the coil 1 is discharged from the exhaust port 53. When the precooling of the coil 1 is completed, a blind stopper is placed on the discharge port 53, and the supply port 52 is evacuated and then sealed. Once the superconducting coil 1 has been cooled to an intermediate temperature, even if the flow of the refrigerant in the pre-cooling pipe 51 is stopped, the superconducting coil 1 will be cooled to an extremely low temperature by the refrigerant circulating in the refrigerant passage 18. Ru. In other words,
After cooling to an intermediate temperature, a circulating power source such as a compressor is not required. As described above, according to this embodiment, the refrigerant flow pipe 1 is operated without using a device for forcedly circulating the refrigerant except during precooling.
Since the refrigerant can be naturally circulated inside the device 8, the entire device can be downsized and the configuration can be simplified, and furthermore, energy savings can be achieved. Also,
Since the pre-cooling pipe 51 is provided independently of the refrigerant passage 18, residual nitrogen during pre-cooling does not enter the liquid helium tank 17, and troubles with the refrigerator can be prevented. can. Further, since a liquid helium reservoir in which the superconducting coil 1 is immersed is not required, there are advantages such as the space required for cooling the superconducting coil 1 and the amount of liquid helium stored can be reduced. Note that the present invention is not limited to each of the embodiments described above. For example, the refrigerant flowing through the pre-cooling pipe is not limited to liquid nitrogen, but may be gas as long as it can cool the object to be cooled to a predetermined intermediate temperature. Further, the refrigerant to be circulated in the refrigerant circulation path is not limited to liquid helium, and can be changed as appropriate depending on the temperature at which the object to be cooled is cooled. Furthermore, the object to be cooled is not limited to superconducting coils, but can be applied to any object that needs to be cooled to an extremely low temperature. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例に係わる超電導磁石装置
を一部切欠して示す斜視図である。 1……超電導コイル(被冷却体)、……冷却
装置、11……均熱板、12……絶縁板、14…
…エポキシ樹脂、16……冷却装置本体、17…
…液体ヘリウム槽(液溜め部)、18……冷媒通
流管、21……冷媒汲出し部、22……気化部、
24……輻射シールド、25……真空容器、31
……枝配管、32,33……ヘツダ、51……予
冷用配管、52……供給ポート、53……放出ポ
ート、P……液体ヘリウム。
The figure is a partially cutaway perspective view of a superconducting magnet device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Superconducting coil (cooled object), 2 ... Cooling device, 11... Soaking plate, 12... Insulating plate, 14...
...Epoxy resin, 16 ...Cooling device main body, 17...
...liquid helium tank (liquid reservoir), 18...refrigerant flow pipe, 21...refrigerant pumping section, 22...vaporization section,
24... Radiation shield, 25... Vacuum container, 31
... Branch piping, 32, 33 ... Header, 51 ... Precooling pipe, 52 ... Supply port, 53 ... Discharge port, P ... Liquid helium.

Claims (1)

【特許請求の範囲】 1 被冷却体と、この被冷却体を極低温下に冷却
する冷却装置とを備えた極低温装置において、前
記冷却装置は、前記被冷却体の上方に設置された
極低温液の液溜め部と、冷却サイクルを構成する
気化部を有し上記液溜め部を介して閉ループ状に
設置された配管からなり、少なくとも上記気化部
から上記液溜め部に至る冷媒が重力方向へ上向き
に進行するように構成された冷媒循環路と、前記
気化部を前記被冷却体と熱的に接続する手段と、
前記冷媒循環路とは独立して設けられ、予冷時に
冷媒を強制的に流して前記被冷却体を冷却するた
めの予冷用配管とを具備してなることを特徴とす
る極低温装置。 2 前記被冷却体は、超電導コイルであることを
特徴とする特許請求の範囲第1項記載の極低温装
置。 3 前記気化部を前記被冷却体と熱的に接続する
手段として、前記気化部と接触し前記被冷却体を
被覆する均熱板を用いたことを特徴とする特許請
求の範囲第1項記載の極低温装置。 4 前記均熱板は、前記被冷却体の周方向に複数
に分割され、各々が電気的に絶縁されていること
を特徴とする特許請求の範囲第3項記載の極低温
装置。
[Scope of Claims] 1. In a cryogenic apparatus comprising an object to be cooled and a cooling device that cools the object to an extremely low temperature, the cooling device includes a cooling device installed above the object to be cooled. It consists of a liquid reservoir for low-temperature liquid and a vaporizer that constitutes a cooling cycle, and the piping is installed in a closed loop through the liquid reservoir, and at least the refrigerant from the vaporizer to the liquid reservoir flows in the direction of gravity. a refrigerant circulation path configured to advance upward to a refrigerant circuit, and means for thermally connecting the vaporization section to the object to be cooled;
A cryogenic device characterized by comprising a pre-cooling pipe provided independently of the refrigerant circulation path and for cooling the object to be cooled by forcibly flowing a refrigerant during pre-cooling. 2. The cryogenic device according to claim 1, wherein the object to be cooled is a superconducting coil. 3. Claim 1, characterized in that, as a means for thermally connecting the vaporizing section to the object to be cooled, a heat equalizing plate is used which contacts the vaporizing section and covers the object to be cooled. cryogenic equipment. 4. The cryogenic apparatus according to claim 3, wherein the heat soaking plate is divided into a plurality of parts in the circumferential direction of the object to be cooled, and each part is electrically insulated.
JP60143769A 1985-06-29 1985-06-29 Cryogenic apparatus Granted JPS624309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60143769A JPS624309A (en) 1985-06-29 1985-06-29 Cryogenic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60143769A JPS624309A (en) 1985-06-29 1985-06-29 Cryogenic apparatus

Publications (2)

Publication Number Publication Date
JPS624309A JPS624309A (en) 1987-01-10
JPH0584651B2 true JPH0584651B2 (en) 1993-12-02

Family

ID=15346593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60143769A Granted JPS624309A (en) 1985-06-29 1985-06-29 Cryogenic apparatus

Country Status (1)

Country Link
JP (1) JPS624309A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721737U (en) * 1993-10-01 1995-04-21 三菱マテリアル株式会社 Metal powder extraction device in metal powder manufacturing facility
JPH11288809A (en) * 1998-03-31 1999-10-19 Toshiba Corp Superconducting magnet
US8676282B2 (en) * 2010-10-29 2014-03-18 General Electric Company Superconducting magnet coil support with cooling and method for coil-cooling
FR2994731B1 (en) * 2012-08-22 2015-03-20 Snecma COOLING PROCESS
WO2020234178A1 (en) * 2019-05-21 2020-11-26 Koninklijke Philips N.V. Accelerated cooldown of low-cryogen magnetic resonance imaging (mri) magnets

Also Published As

Publication number Publication date
JPS624309A (en) 1987-01-10

Similar Documents

Publication Publication Date Title
JPS6171608A (en) Superconductive device
US6107905A (en) Superconducting magnet apparatus
JP4417247B2 (en) MRI system with superconducting magnet and refrigeration unit
US5586437A (en) MRI cryostat cooled by open and closed cycle refrigeration systems
US5461873A (en) Means and apparatus for convectively cooling a superconducting magnet
JP3996935B2 (en) Cryostat structure
US20070245749A1 (en) Closed-loop precooling of cryogenically cooled equipment
KR102506491B1 (en) Fault-tolerant cryogenic cooling system
GB2361523A (en) Superconducting magnet apparatus
US20090293504A1 (en) Refrigeration installation having a warm and a cold connection element and having a heat pipe which is connected to the connection elements
JP5809391B2 (en) Apparatus and method for cooling a superconducting magnet
US20060218942A1 (en) Cryogen tank for cooling equipment
US20050229609A1 (en) Cooling apparatus
US20060048522A1 (en) Method and device for installing refrigerator
US5113165A (en) Superconductive magnet with thermal diode
US6804968B2 (en) Cryostat configuration with improved properties
US4680936A (en) Cryogenic magnet systems
JPS607396B2 (en) superconducting device
US6640552B1 (en) Cryogenic superconductor cooling system
JP5833284B2 (en) Cooling system
US5979176A (en) Refrigerator
JP2002270913A (en) Superconductive coil unit and mri device
JPH0584651B2 (en)
JP2551067B2 (en) Cooling system
JPH0584650B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees