JPH06161581A - 定電圧発生回路 - Google Patents
定電圧発生回路Info
- Publication number
- JPH06161581A JPH06161581A JP5028807A JP2880793A JPH06161581A JP H06161581 A JPH06161581 A JP H06161581A JP 5028807 A JP5028807 A JP 5028807A JP 2880793 A JP2880793 A JP 2880793A JP H06161581 A JPH06161581 A JP H06161581A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- voltage
- gate
- mos transistor
- type mos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Electrical Variables (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】
【目的】 MOSトランジスタの直列接続による定電圧
発生回路において、動作電源電圧範囲を小さくして、例
えば0.9Vの電圧を印加することにより動作させるこ
とができるようにする。 【構成】 定電流を発生するトランジスタと出力電圧を
発生するトランジスタを並列に接続し、各トランジスタ
のドレインとソ−ス間に発生する電圧を分離するよう
に、カレントミラ−回路を構成する。また、このカレン
トミラ−回路をカスコ−ド接続することにより、電源電
圧変動に対して出力電圧の変化を極小にする。
発生回路において、動作電源電圧範囲を小さくして、例
えば0.9Vの電圧を印加することにより動作させるこ
とができるようにする。 【構成】 定電流を発生するトランジスタと出力電圧を
発生するトランジスタを並列に接続し、各トランジスタ
のドレインとソ−ス間に発生する電圧を分離するよう
に、カレントミラ−回路を構成する。また、このカレン
トミラ−回路をカスコ−ド接続することにより、電源電
圧変動に対して出力電圧の変化を極小にする。
Description
【0001】
【産業上の利用分野】本発明は、MOS型半導体装置に
おける定電圧発生回路に関するものである。
おける定電圧発生回路に関するものである。
【0002】
【従来の技術】従来、定電圧発生回路の1つとして、図
3に示すような回路がある。図3において、1は+側電
源電圧、2,4はnチャネルMOS型トランジスタ、3
は定電圧を取り出すための接続点、5は−側電源電圧で
ある。この回路では、同一導電型で異なるスレッショ−
ルド電圧を持つMOS型トランジスタを2個以上直列に
接続し、その接続点より定電圧を取り出している。すな
わち、この回路では、1つのトランジスタ2または4を
ディプレッション型MOSトランジスタとし、ゲ−トと
ソ−スを接続することにより、定電流回路として動作す
るので、この定電流をゲ−トとドレインを接続したエン
ハンスメント型MOSトランジスタ4または2に流すこ
とにより、一定の定電圧を取り出すことが可能である。
このような回路に関する文献としては、例えば、特開昭
56−108258号公報がある。
3に示すような回路がある。図3において、1は+側電
源電圧、2,4はnチャネルMOS型トランジスタ、3
は定電圧を取り出すための接続点、5は−側電源電圧で
ある。この回路では、同一導電型で異なるスレッショ−
ルド電圧を持つMOS型トランジスタを2個以上直列に
接続し、その接続点より定電圧を取り出している。すな
わち、この回路では、1つのトランジスタ2または4を
ディプレッション型MOSトランジスタとし、ゲ−トと
ソ−スを接続することにより、定電流回路として動作す
るので、この定電流をゲ−トとドレインを接続したエン
ハンスメント型MOSトランジスタ4または2に流すこ
とにより、一定の定電圧を取り出すことが可能である。
このような回路に関する文献としては、例えば、特開昭
56−108258号公報がある。
【0003】
【発明が解決しようとする課題】しかしながら、前述の
ような従来の基準電圧発生回路では、MOS型トランジ
スタ2,4の直列接続による接続端子3から出力電圧を
取り出しているため、出力電圧と定電流を流すためのト
ランジスタ2,4のドレインとソ−ス間の電圧を加算し
た電圧を印加することにより動作させている。従って、
0.9Vの低電圧で動作させることは困難であって、高
電圧を必要としていた。本発明の目的は、このような従
来の課題を解決し、従来の直列接続の定電圧発生回路に
比較して低い電源電圧で動作させることができ、かつ電
源電圧の変動に対しても定電圧出力電圧の変化を安定化
させることができる定電圧発生回路を提供することにあ
る。
ような従来の基準電圧発生回路では、MOS型トランジ
スタ2,4の直列接続による接続端子3から出力電圧を
取り出しているため、出力電圧と定電流を流すためのト
ランジスタ2,4のドレインとソ−ス間の電圧を加算し
た電圧を印加することにより動作させている。従って、
0.9Vの低電圧で動作させることは困難であって、高
電圧を必要としていた。本発明の目的は、このような従
来の課題を解決し、従来の直列接続の定電圧発生回路に
比較して低い電源電圧で動作させることができ、かつ電
源電圧の変動に対しても定電圧出力電圧の変化を安定化
させることができる定電圧発生回路を提供することにあ
る。
【0004】
【課題を解決するための手段】上記目的を達成するた
め、本発明の定電圧発生回路は、(イ)ゲ−トとソ−ス
を接続したディプレッション型MOSトランジスタ(図
1の6)と、ディプレッション型MOSトランジスタ
(6)と直列に接続され、かつゲ−トとドレインを接続
した第1のエンハンスメント型MOSトランジスタ
(7)と、第1のエンハンスメント型MOSトランジス
タ(7)のゲ−トに接続されたゲ−トを持つ第2のエン
ハンスメント型MOSトランジスタ(9)と、第2のエ
ンハンスメント型MOSトランジスタ(9)のドレイン
に直列に接続され、かつゲ−トとソ−スを接続した第3
のエンハンスメント型MOSトランジスタ(8)とを具
備し、第2のエンハンスメント型MOSトランジスタ
(9)と第3のエンハンスメント型MOSトランジスタ
(8)の接続点を電圧出力端子としたことを特徴として
いる。また、(ロ)第1のエンハンスメント型MOSト
ランジスタ(図2の14)と第1のエンハンスメント型
MOSトランジスタのゲ−トに接続されたゲ−トを持つ
第2のエンハンスメント型MOSトランジスタ(図2の
18)は、それぞれゲ−トを共通に接続された2つ以上
のエンハンスメント型MOSトランジスタ(図2の1
5,19)を直列に接続していることを特徴としてい
る。
め、本発明の定電圧発生回路は、(イ)ゲ−トとソ−ス
を接続したディプレッション型MOSトランジスタ(図
1の6)と、ディプレッション型MOSトランジスタ
(6)と直列に接続され、かつゲ−トとドレインを接続
した第1のエンハンスメント型MOSトランジスタ
(7)と、第1のエンハンスメント型MOSトランジス
タ(7)のゲ−トに接続されたゲ−トを持つ第2のエン
ハンスメント型MOSトランジスタ(9)と、第2のエ
ンハンスメント型MOSトランジスタ(9)のドレイン
に直列に接続され、かつゲ−トとソ−スを接続した第3
のエンハンスメント型MOSトランジスタ(8)とを具
備し、第2のエンハンスメント型MOSトランジスタ
(9)と第3のエンハンスメント型MOSトランジスタ
(8)の接続点を電圧出力端子としたことを特徴として
いる。また、(ロ)第1のエンハンスメント型MOSト
ランジスタ(図2の14)と第1のエンハンスメント型
MOSトランジスタのゲ−トに接続されたゲ−トを持つ
第2のエンハンスメント型MOSトランジスタ(図2の
18)は、それぞれゲ−トを共通に接続された2つ以上
のエンハンスメント型MOSトランジスタ(図2の1
5,19)を直列に接続していることを特徴としてい
る。
【0005】
【作用】本発明においては、図1に示すように、定電流
を発生するトランジスタ6とトランジスタ7,9にて構
成されるカレントミラ−回路により、トランジスタ8に
トランジスタ6で発生した定電流を供給し、トランジス
タ8のドレインとソ−ス間に定電圧を発生させる。すな
わち、定電流を発生する回路と、定電圧を発生する回路
を分離することにより、従来の直列接続の回路に比べて
低い電源電圧により回路を動作させることができる。ま
た、他の実施例として、図1のカレントミラ−回路を、
図2に示すようにカスコ−ド接続することにより、電源
電圧の変動に対して出力電圧の変化を極小に保持するこ
とができる。すなわち、従来の定電圧発生回路では、そ
の動作電源電圧範囲はエンハンスメント型のスレッショ
−ルド電圧とディプレッション型のスレッショ−ルド電
圧の2倍の差電圧で決定し、1.0V以下の電圧範囲を
実現することが困難であったが、本発明では、エンハン
スメント型のスレッショ−ルド電圧とディプレッション
型のスレッショ−ルド電圧の差電圧で実現でき、動作電
源電圧を例えば0.9Vとすることが可能である。
を発生するトランジスタ6とトランジスタ7,9にて構
成されるカレントミラ−回路により、トランジスタ8に
トランジスタ6で発生した定電流を供給し、トランジス
タ8のドレインとソ−ス間に定電圧を発生させる。すな
わち、定電流を発生する回路と、定電圧を発生する回路
を分離することにより、従来の直列接続の回路に比べて
低い電源電圧により回路を動作させることができる。ま
た、他の実施例として、図1のカレントミラ−回路を、
図2に示すようにカスコ−ド接続することにより、電源
電圧の変動に対して出力電圧の変化を極小に保持するこ
とができる。すなわち、従来の定電圧発生回路では、そ
の動作電源電圧範囲はエンハンスメント型のスレッショ
−ルド電圧とディプレッション型のスレッショ−ルド電
圧の2倍の差電圧で決定し、1.0V以下の電圧範囲を
実現することが困難であったが、本発明では、エンハン
スメント型のスレッショ−ルド電圧とディプレッション
型のスレッショ−ルド電圧の差電圧で実現でき、動作電
源電圧を例えば0.9Vとすることが可能である。
【0006】
【実施例】以下、本発明の実施例を、図面により詳細に
説明する。図1は、本発明の一実施例を示す半導体装置
の回路構成図である。図1に示すMOS定電圧回路にお
いて、6はnチャネルディプレッション型MOSトラン
ジスタ、7はnチャネルエンハンスメント型MOSトラ
ンジスタ、8はnチャネルエンハンスメント型MOSト
ランジスタ、9はnチャネルエンハンスメント型MOS
トランジスタ、10は定電圧出力端子、11は+側電源
電圧、12は−側電源電圧である。MOSトランジスタ
6のドレインは+電源側に、ゲ−トとソ−スと基板はそ
れぞれ接続されて、MOSトランジスタ9のゲ−トに接
続されている。また、MOSトランジスタ7のゲ−トと
ドレインは接続され、MOSトランジスタ6のソ−スに
接続されて、MOSトランジスタ9のゲ−トに接続され
ている。そして、MOSトランジスタ7のソ−スと基板
は、−側電源電圧12に接続されている。また、MOS
トランジスタ8のドレインとゲ−トは+側電源電圧11
に接続され、かつソ−スと基板は接続されて定電圧出力
端子10に接続されている。また、MOSトランジスタ
9のドレインは定電圧出力端子10に接続され、かつソ
−スと基板は−側電源電圧12に接続されている。
説明する。図1は、本発明の一実施例を示す半導体装置
の回路構成図である。図1に示すMOS定電圧回路にお
いて、6はnチャネルディプレッション型MOSトラン
ジスタ、7はnチャネルエンハンスメント型MOSトラ
ンジスタ、8はnチャネルエンハンスメント型MOSト
ランジスタ、9はnチャネルエンハンスメント型MOS
トランジスタ、10は定電圧出力端子、11は+側電源
電圧、12は−側電源電圧である。MOSトランジスタ
6のドレインは+電源側に、ゲ−トとソ−スと基板はそ
れぞれ接続されて、MOSトランジスタ9のゲ−トに接
続されている。また、MOSトランジスタ7のゲ−トと
ドレインは接続され、MOSトランジスタ6のソ−スに
接続されて、MOSトランジスタ9のゲ−トに接続され
ている。そして、MOSトランジスタ7のソ−スと基板
は、−側電源電圧12に接続されている。また、MOS
トランジスタ8のドレインとゲ−トは+側電源電圧11
に接続され、かつソ−スと基板は接続されて定電圧出力
端子10に接続されている。また、MOSトランジスタ
9のドレインは定電圧出力端子10に接続され、かつソ
−スと基板は−側電源電圧12に接続されている。
【0007】図1においては、MOSトランジスタ6の
みがディプレッション型であるため、ゲ−トとソ−スを
接続することにより飽和領域で動作する。また、MOS
トランジスタ7はエンハンスメント型であるため、ゲ−
トとドレインを接続することにより、飽和領域で動作す
る。MOSトランジスタ6に流れる電流をI6、トラン
ジスタ7に流れる電流をI7とすると、次の式(1)
(2)が成立する。 I6=K6(Vg6−Vt6)2 ・・・・・・・・・・・・・・・・・(1) ここで、K6とVt6はトランジスタ6の導電係数とスレ
ッショ−ルド電圧であり、Vg6はゲ−トとソ−ス間の
電圧である。 I7=K7(Vg7−Vt7)2 ・・・・・・・・・・・・・・・・・(2) ここで、K7とVt7はトランジスタ7の導電係数とスレ
ッショ−ルド電圧であり、Vg7はゲ−トとソ−ス間の
電圧である。
みがディプレッション型であるため、ゲ−トとソ−スを
接続することにより飽和領域で動作する。また、MOS
トランジスタ7はエンハンスメント型であるため、ゲ−
トとドレインを接続することにより、飽和領域で動作す
る。MOSトランジスタ6に流れる電流をI6、トラン
ジスタ7に流れる電流をI7とすると、次の式(1)
(2)が成立する。 I6=K6(Vg6−Vt6)2 ・・・・・・・・・・・・・・・・・(1) ここで、K6とVt6はトランジスタ6の導電係数とスレ
ッショ−ルド電圧であり、Vg6はゲ−トとソ−ス間の
電圧である。 I7=K7(Vg7−Vt7)2 ・・・・・・・・・・・・・・・・・(2) ここで、K7とVt7はトランジスタ7の導電係数とスレ
ッショ−ルド電圧であり、Vg7はゲ−トとソ−ス間の
電圧である。
【0008】I6=I7,Vg6=0であるから、トラン
ジスタ6とトランジスタ7の接続端子に出力される電圧
は次式(3)となる。 Vg7=−(√K6/K7)Vt6+Vt7 ・・・・・・・・・・・・・(3) 上式(3)において、K6<<K7であるとすると、次式
(4)のようになる。 Vg7≒Vt7 ・・・・・・・・・・・・・・・・・・・・・・・・(4) 上式(4)が成立するための電源電圧範囲は、トランジ
スタ6が飽和電圧で動作する必要があり、そのための条
件は次式(5)である。 VDD−Vss≧Vt7−Vt6 ・・・・・・・・・・・・・・・・・・・(5) なお、VDDは+側電源電圧、Vssは−側電源電圧であ
る。
ジスタ6とトランジスタ7の接続端子に出力される電圧
は次式(3)となる。 Vg7=−(√K6/K7)Vt6+Vt7 ・・・・・・・・・・・・・(3) 上式(3)において、K6<<K7であるとすると、次式
(4)のようになる。 Vg7≒Vt7 ・・・・・・・・・・・・・・・・・・・・・・・・(4) 上式(4)が成立するための電源電圧範囲は、トランジ
スタ6が飽和電圧で動作する必要があり、そのための条
件は次式(5)である。 VDD−Vss≧Vt7−Vt6 ・・・・・・・・・・・・・・・・・・・(5) なお、VDDは+側電源電圧、Vssは−側電源電圧であ
る。
【0009】次に、トランジスタ9のゲ−トとソ−ス間
の電圧Vg9は、トランジスタ7のゲ−トとソ−ス間の
電圧Vg7と等しく、トランジスタ9の導電係数K9とト
ランジスタ7の導電係数K7を等しくし、トランジスタ
9のチャネル長変調率を0とすると、トランジスタ9に
流れる電流I9は次式(6)となる。 I9=I7 ・・・・・・・・・・・・・・・・・・・・・・・・・・・(6) また、トランジスタ8に流れる電流I8は、トランジス
タ9に流れる電流I9に等しく、かつ次式(7)の関係
が成立する。 I8=I6 ・・・・・・・・・・・・・・・・・・・・・・・・・・・(7) トランジスタ8に流れる電流I8は、次式(8)で表わ
される。 I8=K8(Vg8−Vt8)2 ・・・・・・・・・・・・・・・・・・(8)
の電圧Vg9は、トランジスタ7のゲ−トとソ−ス間の
電圧Vg7と等しく、トランジスタ9の導電係数K9とト
ランジスタ7の導電係数K7を等しくし、トランジスタ
9のチャネル長変調率を0とすると、トランジスタ9に
流れる電流I9は次式(6)となる。 I9=I7 ・・・・・・・・・・・・・・・・・・・・・・・・・・・(6) また、トランジスタ8に流れる電流I8は、トランジス
タ9に流れる電流I9に等しく、かつ次式(7)の関係
が成立する。 I8=I6 ・・・・・・・・・・・・・・・・・・・・・・・・・・・(7) トランジスタ8に流れる電流I8は、次式(8)で表わ
される。 I8=K8(Vg8−Vt8)2 ・・・・・・・・・・・・・・・・・・(8)
【0010】ここで、K8とVt8は、トランジスタ8の
導電係数とスレッショ−ルド電圧、Vg8はゲ−トとソ
−ス間電圧である。(1)式と(8)式より、トランジ
スタ8のゲ−トとソ−ス間の電圧Vg8は、次式(9)
で表わされる。 Vg8=−(√K6/K8)Vt6+Vt8 ・・・・・・・・・・・・・(9) ここで、K6=K8であれば、次式(10)が成立する。 Vg8=−Vt6+Vt8 ・・・・・・・・・・・・・・・・・・・・(10) このように、Vg8は、トランジスタ8とトランジスタ
6のスレッショ−ルド電圧の差電圧となる。前式(1
0)より得られるVg8は、トランジスタ8のゲ−ト電
圧が電源のVDDに接続されているため、端子10にVDD
を基準にした一定の電圧が出力されることになる。前式
(10)が成立するためには、下式(11)による電源
電圧範囲で動作させる必要がある。 VDD−Vss≧−Vt6+Vt8+VD9 ・・・・・・・・・・・・・・(11) ここで、VD9はトランジスタ9のドレインとソ−ス間の
電圧である。
導電係数とスレッショ−ルド電圧、Vg8はゲ−トとソ
−ス間電圧である。(1)式と(8)式より、トランジ
スタ8のゲ−トとソ−ス間の電圧Vg8は、次式(9)
で表わされる。 Vg8=−(√K6/K8)Vt6+Vt8 ・・・・・・・・・・・・・(9) ここで、K6=K8であれば、次式(10)が成立する。 Vg8=−Vt6+Vt8 ・・・・・・・・・・・・・・・・・・・・(10) このように、Vg8は、トランジスタ8とトランジスタ
6のスレッショ−ルド電圧の差電圧となる。前式(1
0)より得られるVg8は、トランジスタ8のゲ−ト電
圧が電源のVDDに接続されているため、端子10にVDD
を基準にした一定の電圧が出力されることになる。前式
(10)が成立するためには、下式(11)による電源
電圧範囲で動作させる必要がある。 VDD−Vss≧−Vt6+Vt8+VD9 ・・・・・・・・・・・・・・(11) ここで、VD9はトランジスタ9のドレインとソ−ス間の
電圧である。
【0011】トランジスタ9のゲ−トとソ−ス間には、
前式(4)の関係から次の電圧がかかっている。 Vg9≒Vt9 ・・・・・・・・・・・・・・・・・・・・・・・・・(12) 下記に示す飽和動作の条件式(13)と前式(12)と
の関係から、下式(14)が成立する。 VD9≧Vg9−Vt9 ・・・・・・・・・・・・・・・・・・・・・・(13) VD9≧0 ・・・・・・・・・・・・・・・・・・・・・・・・・・・(14) 従って、トランジスタ9はVD9=0以上で飽和動作する
ために、前式(11)は下式(15)となる。 VDD−Vss≧−Vt6+Vt8 ・・・・・・・・・・・・・・・・・・(15)
前式(4)の関係から次の電圧がかかっている。 Vg9≒Vt9 ・・・・・・・・・・・・・・・・・・・・・・・・・(12) 下記に示す飽和動作の条件式(13)と前式(12)と
の関係から、下式(14)が成立する。 VD9≧Vg9−Vt9 ・・・・・・・・・・・・・・・・・・・・・・(13) VD9≧0 ・・・・・・・・・・・・・・・・・・・・・・・・・・・(14) 従って、トランジスタ9はVD9=0以上で飽和動作する
ために、前式(11)は下式(15)となる。 VDD−Vss≧−Vt6+Vt8 ・・・・・・・・・・・・・・・・・・(15)
【0012】前式(5)および上式(15)から、本実
施例の回路の動作電源電圧範囲は、Vt7とVt6の差電
圧あるいはVt8とVt6の差電圧よりも大きな電圧をか
ける必要がある。一方、図3に示す従来の定電圧発生回
路の動作電源電圧範囲は、下式(16)である。 VDD−Vss≧Vt2−2×Vt4 ・・・・・・・・・・・・・・・・・(16) ここで、MOSトランジスタ2はエンハンスメント型M
OSトランジスタであり、Vt2はMOSトランジスタ
2のスレッショ−ルド電圧であり、MOSト酒ンジスタ
4はディプレッション型MOSトランジスタであり、V
t4はMOSトランジスタ4のスレッショ−ルド電圧で
ある。前式(16)より、従来の回路の動作電源電圧範
囲は、Vt2とVt4の2倍の差電圧であり、これは本発
明の動作電源電圧範囲よりも大きい。ところで、nチャ
ネルエンハンスメント型MOSトランジスタの最低スレ
ッショ−ルド電圧は、製造上のバラツキ、温度特性を考
慮すると、0.5V程度であり、nチャネルディプレッ
ション型MOSトランジスタの最低スレッショ−ルド電
圧は−0.3V程度である。従って、従来の定電圧発生
回路の動作電源電圧範囲は1.1V以上であったのに対
して、本実施例の動作電源電圧範囲は、0.8V以上と
なり、例えば0.9V動作が可能となる。
施例の回路の動作電源電圧範囲は、Vt7とVt6の差電
圧あるいはVt8とVt6の差電圧よりも大きな電圧をか
ける必要がある。一方、図3に示す従来の定電圧発生回
路の動作電源電圧範囲は、下式(16)である。 VDD−Vss≧Vt2−2×Vt4 ・・・・・・・・・・・・・・・・・(16) ここで、MOSトランジスタ2はエンハンスメント型M
OSトランジスタであり、Vt2はMOSトランジスタ
2のスレッショ−ルド電圧であり、MOSト酒ンジスタ
4はディプレッション型MOSトランジスタであり、V
t4はMOSトランジスタ4のスレッショ−ルド電圧で
ある。前式(16)より、従来の回路の動作電源電圧範
囲は、Vt2とVt4の2倍の差電圧であり、これは本発
明の動作電源電圧範囲よりも大きい。ところで、nチャ
ネルエンハンスメント型MOSトランジスタの最低スレ
ッショ−ルド電圧は、製造上のバラツキ、温度特性を考
慮すると、0.5V程度であり、nチャネルディプレッ
ション型MOSトランジスタの最低スレッショ−ルド電
圧は−0.3V程度である。従って、従来の定電圧発生
回路の動作電源電圧範囲は1.1V以上であったのに対
して、本実施例の動作電源電圧範囲は、0.8V以上と
なり、例えば0.9V動作が可能となる。
【0013】図2は、本発明の他の実施例を示す半導体
装置の回路構成図である。図2の回路では、トランジス
タ14のゲ−トとトランジスタ15のゲ−トが接続され
て、トランジスタ14のソ−スと基板とトランジスタ1
5のドレインを接続するとともに、トランジスタ15の
ソ−スと基板を−側電源電圧21に接続している。一
方、トランジスタ18のゲ−トとトランジスタ19のゲ
−トが接続されて、トランジスタ14およびトランジス
タ15のゲ−トに接続している。また、トランジスタ1
8のソ−スと基板は接続され、トランジスタ19のドレ
インと接続され、かつトランジスタ19のソ−スと基板
を−側電源電圧21に接続する。トランジスタ18のソ
−スと基板は接続され、トランジスタ19のドレインと
接続され、かつトランジスタ19のソ−スと基板を−側
電源電圧21に接続する。すなわち、トランジスタ13
により定電流を作成し、その定電流をトランジスタ1
4,15とトランジスタ18,19のカレントミラ−回
路により、トランジスタ16に流れる電流を定電流化す
る。ここで、トランジスタ13をトランジスタ16のサ
イズ比を調整することにより、出力電圧端子17はVDD
に対して一定の電圧を出力し、温度変化に対しても一定
の電圧を出力する。トランジスタ14,15およびトラ
ンジスタ18,19は、カスコ−ド接続することによ
り、電源電圧変動による出力電圧の変動を小さくするよ
うに動作する。トランジスタ14とトランジスタ15と
トランジスタ18とトランジスタ19とは、カレントミ
ラ−回路を形成しており、図1のトランジスタ9におけ
るチャネル長変調率λの影響を小さくする。このよう
に、図1の定電圧回路では、定電流を発生する回路と定
電圧を発生する回路を分離することにより、従来の直列
接続に比べて低い電源電圧で動作させることができる。
また、図2の定電圧回路では、図1に示すカレントミラ
−回路をカスコ−ド接続することにより、電源電圧の変
動に対して出力電圧の変化を極めて安定化させることが
できる。
装置の回路構成図である。図2の回路では、トランジス
タ14のゲ−トとトランジスタ15のゲ−トが接続され
て、トランジスタ14のソ−スと基板とトランジスタ1
5のドレインを接続するとともに、トランジスタ15の
ソ−スと基板を−側電源電圧21に接続している。一
方、トランジスタ18のゲ−トとトランジスタ19のゲ
−トが接続されて、トランジスタ14およびトランジス
タ15のゲ−トに接続している。また、トランジスタ1
8のソ−スと基板は接続され、トランジスタ19のドレ
インと接続され、かつトランジスタ19のソ−スと基板
を−側電源電圧21に接続する。トランジスタ18のソ
−スと基板は接続され、トランジスタ19のドレインと
接続され、かつトランジスタ19のソ−スと基板を−側
電源電圧21に接続する。すなわち、トランジスタ13
により定電流を作成し、その定電流をトランジスタ1
4,15とトランジスタ18,19のカレントミラ−回
路により、トランジスタ16に流れる電流を定電流化す
る。ここで、トランジスタ13をトランジスタ16のサ
イズ比を調整することにより、出力電圧端子17はVDD
に対して一定の電圧を出力し、温度変化に対しても一定
の電圧を出力する。トランジスタ14,15およびトラ
ンジスタ18,19は、カスコ−ド接続することによ
り、電源電圧変動による出力電圧の変動を小さくするよ
うに動作する。トランジスタ14とトランジスタ15と
トランジスタ18とトランジスタ19とは、カレントミ
ラ−回路を形成しており、図1のトランジスタ9におけ
るチャネル長変調率λの影響を小さくする。このよう
に、図1の定電圧回路では、定電流を発生する回路と定
電圧を発生する回路を分離することにより、従来の直列
接続に比べて低い電源電圧で動作させることができる。
また、図2の定電圧回路では、図1に示すカレントミラ
−回路をカスコ−ド接続することにより、電源電圧の変
動に対して出力電圧の変化を極めて安定化させることが
できる。
【0014】
【発明の効果】以上説明したように、本発明によれば、
定電流を発生するトランジスタと出力電圧を発生するト
ランジスタを並列接続することにより、各トランジスタ
のドレインとソ−ス間に発生する電圧を分離することが
できるので、0.9V程度の低い電圧で定電圧発生回路
を動作させることができる。
定電流を発生するトランジスタと出力電圧を発生するト
ランジスタを並列接続することにより、各トランジスタ
のドレインとソ−ス間に発生する電圧を分離することが
できるので、0.9V程度の低い電圧で定電圧発生回路
を動作させることができる。
【図1】本発明の一実施例を示す半導体装置の回路構成
図である。
図である。
【図2】本発明の他の実施例を示す半導体装置の回路構
成図である。
成図である。
【図3】従来の半導体装置の定電圧発生回路の構成図で
ある。
ある。
6,13 デプレッション型nチャネルMOSトランジ
スタ 7〜9,14〜19 エンハンスメント型nチャネルM
OSトランジスタ 10,17 出力電圧取り出し端子 11,20 +側電源電圧 12,21 −側電源電圧
スタ 7〜9,14〜19 エンハンスメント型nチャネルM
OSトランジスタ 10,17 出力電圧取り出し端子 11,20 +側電源電圧 12,21 −側電源電圧
Claims (2)
- 【請求項1】 ゲ−トとソ−スを接続したディプレッシ
ョン型MOSトランジスタと、該ディプレッション型M
OSトランジスタと直列に接続され、かつゲ−トとドレ
インを接続した第1のエンハンスメント型MOSトラン
ジスタと、該第1のエンハンスメント型MOSトランジ
スタのゲ−トに接続されたゲ−トを持つ第2のエンハン
スメント型MOSトランジスタと、該第2のエンハンス
メント型MOSトランジスタのドレインに直列に接続さ
れ、かつゲ−トとソ−スを接続した第3のエンハンスメ
ント型MOSトランジスタと第3のエンハンスメント型
MOSトランジスタの接続点を電圧出力端子としたこと
を特徴とする定電圧発生回路。 - 【請求項2】 上記第1のエンハンスメント型MOSト
ランジスタと該第1のエンハンスメント型MOSトラン
ジスタのゲ−トに接続されたゲ−トを持つ第2のエンハ
ンスメント型MOSトランジスタは、それぞれゲ−トを
共通に接続された2つ以上のエンハンスメント型MOS
トランジスタを直列に接続していることを特徴とする請
求項1に記載の定電圧発生回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02880793A JP3322357B2 (ja) | 1992-09-25 | 1993-02-18 | 定電圧発生回路 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-255203 | 1992-09-25 | ||
JP25520392 | 1992-09-25 | ||
JP02880793A JP3322357B2 (ja) | 1992-09-25 | 1993-02-18 | 定電圧発生回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06161581A true JPH06161581A (ja) | 1994-06-07 |
JP3322357B2 JP3322357B2 (ja) | 2002-09-09 |
Family
ID=26366959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02880793A Expired - Fee Related JP3322357B2 (ja) | 1992-09-25 | 1993-02-18 | 定電圧発生回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3322357B2 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002244749A (ja) * | 2001-02-15 | 2002-08-30 | Seiko Instruments Inc | 基準電圧回路 |
JP2007188245A (ja) * | 2006-01-12 | 2007-07-26 | Toshiba Corp | 基準電圧発生回路および半導体集積装置 |
JP2010067031A (ja) * | 2008-09-11 | 2010-03-25 | Mitsumi Electric Co Ltd | 基準電圧発生回路および電源クランプ回路 |
CN111712911A (zh) * | 2018-02-15 | 2020-09-25 | 株式会社吉川希斯泰克 | 半导体装置 |
-
1993
- 1993-02-18 JP JP02880793A patent/JP3322357B2/ja not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002244749A (ja) * | 2001-02-15 | 2002-08-30 | Seiko Instruments Inc | 基準電圧回路 |
JP2007188245A (ja) * | 2006-01-12 | 2007-07-26 | Toshiba Corp | 基準電圧発生回路および半導体集積装置 |
JP4703406B2 (ja) * | 2006-01-12 | 2011-06-15 | 株式会社東芝 | 基準電圧発生回路および半導体集積装置 |
JP2010067031A (ja) * | 2008-09-11 | 2010-03-25 | Mitsumi Electric Co Ltd | 基準電圧発生回路および電源クランプ回路 |
CN111712911A (zh) * | 2018-02-15 | 2020-09-25 | 株式会社吉川希斯泰克 | 半导体装置 |
Also Published As
Publication number | Publication date |
---|---|
JP3322357B2 (ja) | 2002-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4583037A (en) | High swing CMOS cascode current mirror | |
US5825695A (en) | Semiconductor device for reference voltage | |
US4042839A (en) | Low power dissipation combined enhancement depletion switching driver circuit | |
US5929679A (en) | Voltage monitoring circuit capable of reducing power dissipation | |
JP2000114891A (ja) | 電流源回路 | |
US6812757B2 (en) | Phase lock loop apparatus | |
US5821823A (en) | Voltage-controlled oscillator | |
JPH1188072A (ja) | Mos半導体集積回路 | |
US4211985A (en) | Crystal oscillator using a class B complementary MIS amplifier | |
US6636073B2 (en) | Semiconductor integrated circuit | |
JPH06161581A (ja) | 定電圧発生回路 | |
JP2500985B2 (ja) | 基準電圧発生回路 | |
JPS6021605A (ja) | 正帰還を利用するcmos高利得増幅器 | |
JPH0794988A (ja) | Mos型半導体クランプ回路 | |
US4947056A (en) | MOSFET for producing a constant voltage | |
CN110365293B (zh) | 振荡装置 | |
US20120188019A1 (en) | Output circuit | |
JP2798022B2 (ja) | 基準電圧回路 | |
US6906583B1 (en) | Metal oxide semiconductor field effect transistor (MOSFET) cascode current mirror | |
JP2001325033A (ja) | 定電流回路 | |
JPS6245203A (ja) | Mos増幅出力回路 | |
JPH04120907A (ja) | オペアンプ回路 | |
JPH0424813A (ja) | 定電圧回路 | |
KR100234358B1 (ko) | 기준전압 발생회로 | |
JPH07192474A (ja) | 半導体センスアンプ回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080628 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090628 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |