JPH06159741A - Heat-medium transporting control method and apparatus for district cooling/heating - Google Patents

Heat-medium transporting control method and apparatus for district cooling/heating

Info

Publication number
JPH06159741A
JPH06159741A JP33966592A JP33966592A JPH06159741A JP H06159741 A JPH06159741 A JP H06159741A JP 33966592 A JP33966592 A JP 33966592A JP 33966592 A JP33966592 A JP 33966592A JP H06159741 A JPH06159741 A JP H06159741A
Authority
JP
Japan
Prior art keywords
heat source
heat
pump
cold water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33966592A
Other languages
Japanese (ja)
Other versions
JPH07104017B2 (en
Inventor
Akihiko Ogawa
彰彦 小川
Kazuhiko Fujii
和彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP33966592A priority Critical patent/JPH07104017B2/en
Publication of JPH06159741A publication Critical patent/JPH06159741A/en
Publication of JPH07104017B2 publication Critical patent/JPH07104017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To enable a low load pumping power in particular to be reduced by a method wherein when a heat-medium is transferred from a plurality of parallel connected heat source plants, one or more of pumps of each of the heat source plants can be driven in variable speed and the number of rotations of the pump and the like can be controlled according to the load. CONSTITUTION:A cold water pumping system is provided with a plurality of (n) sets of parallel connected heat source plants A having a flow rate controller 4c installed in a bypassing pipe passage for bypassing a freezer 1 in addition to the freezer 1 and a cold water pump 2 and the like. Cold water generated at the heat source plants A is supplied to a cooling or heating target region B where the number of (m) of the receiving facilities 10 are arranged in parallel. In this case, one cold water pump 21 is driven by an inverter motor 5 and the other cold water pump is driven by an ordinary induction motor. Then, under a high load operation time, an appropriate number of pumps 2 are operated at a specified speed in such a way that a utilization differential pressure of a receiving facility 10 placed near an end of a regional pipe B1 is kept constant and in turn under a low load state, only the cold water pump 21 is operated at a variable speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地域に設けられた複数
の熱媒受入設備(後続の空調機等に連結するもの)に、
複数のポンプと熱源機器(冷凍機やヒートポンプ・熱交
換器等)とを備える熱源プラントより熱媒(冷水や温水
・蒸気など)を循環(供給および回収)させる、地域冷
暖房(地域熱供給ともいう)のための熱媒搬送に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of heat medium receiving facilities (which are connected to a subsequent air conditioner or the like) provided in a region,
District heating and cooling (also called district heat supply) that circulates (supply and recover) heat medium (cold water, hot water, steam, etc.) from a heat source plant that has multiple pumps and heat source equipment (refrigerator, heat pump, heat exchanger, etc.) ) Is related to the transfer of the heat medium.

【0002】[0002]

【従来の技術】近年、都市部の一部では、複数のビルに
対して冷水や温水・蒸気などを一箇所から集中的に供給
し、都市機能を高度化するとともにエネルギーの有効利
用を図るという地域冷暖房システムが施されている。
2. Description of the Related Art In recent years, in some urban areas, cold water, hot water, steam, etc. are centrally supplied to a plurality of buildings from one location to improve urban functions and effectively use energy. A district heating and cooling system is provided.

【0003】一般に、地域冷暖房システムは、熱源機器
である冷凍機やヒートポンプ・熱交換器などが、熱媒用
のポンプとともに熱源プラント内に組み込まれ、それら
が、各ビル内の受入設備につながる地域配管と接続され
て構成される。熱媒の循環系統としては、一部が蓄熱槽
などに連結されて熱媒が一たん大気に開放される開放系
と、大気への開放部分がない密閉系とがある。しかし開
放系の場合には、大気圧からの熱媒の押し上げ揚程が必
要なためポンプ動力が大きくなるうえ、大気開放部にお
いて熱媒が空気に接して多くの酸素を含み、配管等に腐
食が起こりやすいことから、そのような不都合のない密
閉系が多く採用される。
Generally, in a district heating and cooling system, a refrigerator, a heat pump, a heat exchanger, etc., which are heat source devices, are incorporated in a heat source plant together with a pump for a heat medium, and these are connected to a receiving facility in each building. It is configured to be connected to piping. As the circulation system of the heat medium, there are an open system in which a part is connected to a heat storage tank or the like and the heat medium is once opened to the atmosphere, and a closed system in which there is no open portion to the atmosphere. However, in the case of an open system, pump power is increased because it is necessary to lift the heat medium from atmospheric pressure, and the heat medium contains a large amount of oxygen in contact with air in the atmosphere-opened portion, causing corrosion in pipes and the like. Since it is likely to occur, a closed system without such inconvenience is often adopted.

【0004】熱源プラント内には、複数の熱源機器や複
数のポンプがそれぞれ並列に設置されるのが普通であ
る。これは、一台のみでは地域の熱媒需要に応えにくい
ためでもあるが、主として、季節的な需要の変化に対応
しやすくしたためである。すなわち、地域冷暖房システ
ムの最大熱負荷は夏または冬に生じ、それによって熱源
プラントの設備能力が決まるが、中間季(春・秋)や夜
間には熱負荷(需要)が低いため、運転する機器の台数
を減らして省エネルギーを図れるようにしたのである。
中間季や夜間の熱負荷は上記の最大熱負荷に比べて極め
て小さく、しかもそのような期間は長いことから、この
期間中、やり方しだいでは消費エネルギーを大幅に低減
できる。とくに、熱媒が水(冷水や温水)である場合に
は大きな搬送動力が必要なため、熱源機器での熱エネル
ギーだけでなく、ポンプの動力エネルギーを削減するこ
とにも重要な意味がある。
In the heat source plant, a plurality of heat source devices and a plurality of pumps are usually installed in parallel. This is because it is difficult to meet the demand for heat medium in the area with only one unit, but mainly because it is easy to respond to seasonal demand changes. That is, the maximum heat load of the district heating and cooling system occurs in summer or winter, which determines the facility capacity of the heat source plant, but the heat load (demand) is low during the middle seasons (spring / autumn) and at night, so the equipment to be operated It was possible to reduce energy consumption by reducing the number of vehicles.
The heat load during the mid-season and at night is extremely smaller than the maximum heat load described above, and since such a period is long, energy consumption can be significantly reduced during this period depending on the method. In particular, when the heat medium is water (cold water or hot water), a large transport power is required. Therefore, it is important to reduce not only the heat energy of the heat source device but also the power energy of the pump.

【0005】図5に、従来の代表的な地域冷暖房システ
ムの系統図を示す。熱源プラントAのうちに、冷凍機
(熱源機器)1やポンプ2などが複数組(n組。各組に
12・…・n の添字を付している)並列に接続されて
おり、プラントA内の集合配管A1を介して、複数(m
組。同様に添字を付す)の受入設備10が並列に接続さ
れた地域Bの配管B1とつながっている。符号A2は、
プラントAによる冷水(熱媒)の供給流量と地域Bの側
の使用流量との差を調節するためのバイパス配管で、符
号6は、地域Bより戻った冷水の圧力を一定に維持する
ための加圧タンクである。
FIG. 5 shows a system diagram of a conventional typical district heating and cooling system. In the heat source plant A, a plurality of sets (n sets. Refrigerators (heat source devices) 1, pumps 2 and the like.
(Indicated by subscripts 1 , 2 , ..., N ) are connected in parallel, and a plurality (m) are connected via the collective pipe A1 in the plant A.
set. Similarly, the receiving equipment 10 (with subscript) is connected to the pipe B1 in the area B connected in parallel. The symbol A2 is
Bypass piping for adjusting the difference between the flow rate of cold water (heat medium) supplied by the plant A and the flow rate used on the side of the area B, and reference numeral 6 is for maintaining the pressure of the cold water returned from the area B constant. It is a pressurized tank.

【0006】図5のようなシステムでは、冷水の温度制
御が容易である等の理由で通常は冷凍機1とポンプ2と
が定格流量で運転され、プラントA側の冷水流量は個々
の定格流量の合計となる。一方、地域Bには冷房需要に
見合った流量のみが循環するので、熱源プラントAの側
の流量との差は、バイパス配管A2内をバイパス流量と
して流れる。各受入設備10において必要な圧力(利用
差圧)を確保する目的で、バイパス配管A2には流量
(開度)調節弁9を設け、その開度はつぎのように制御
している。すなわち、冷水の供給地点であるプラントA
内の配管A1(または地域配管B1のうちのプラントA
寄りの箇所)において、往き・戻りの両地点にそれぞれ
圧力計7・8を設け、両者の検知圧力の差(供給元の地
点での差圧ゆえ、以下、供給差圧という)が一定になる
よう、圧力コントローラ11にて調節弁9を操作する。
地域Bより戻った冷水の圧力は加圧タンク6にて一定に
維持されるので、圧力計7による往きの圧力(供給圧力
または送水圧力)のみに基づいて制御することもある。
In the system as shown in FIG. 5, the refrigerator 1 and the pump 2 are normally operated at the rated flow rate because the temperature control of the cold water is easy, and the cold water flow rate on the plant A side is the individual rated flow rate. Is the sum of On the other hand, since only the flow rate corresponding to the cooling demand circulates in the region B, the difference from the flow rate on the heat source plant A side flows in the bypass pipe A2 as the bypass flow rate. A flow rate (opening) control valve 9 is provided in the bypass pipe A2 for the purpose of ensuring a necessary pressure (use differential pressure) in each receiving facility 10, and the opening is controlled as follows. That is, plant A, which is the cold water supply point
Internal pipe A1 (or plant A of regional pipe B1)
Pressure gauges 7 and 8 are provided at both the forward and backward points (at a point closer to each other) so that the difference between the detected pressures of the two (hereinafter referred to as the supply differential pressure because of the differential pressure at the source point) is constant. So that the pressure controller 11 operates the control valve 9.
Since the pressure of the cold water returned from the region B is kept constant in the pressure tank 6, it may be controlled based on only the forward pressure (supply pressure or water supply pressure) by the pressure gauge 7.

【0007】地域Bにおける冷水需要が低い場合には、
冷凍機1およびポンプ2の運転組数を減らし、中間季な
どには、冷凍機1・ポンプ2の一組のみを定格流量運転
しながら、上記と同様にバイパス流量を調節して需・給
のバランスをとる。さらに、バイパス流量をフルに調節
してもなおプラントAによる流量が地域Bの需要を超え
るときには、流量計3および流量コントローラ4cの作
用でポンプ吐出弁4を操作し、供給差圧(または供給圧
力)が一定になるようにその開度を調整する。このよう
な制御方法は、特開昭62−116846号公報にも記
載がある。
When the demand for cold water in region B is low,
The number of operating groups of the refrigerator 1 and the pump 2 is reduced, and in the middle season and the like, while only one set of the refrigerator 1 and the pump 2 is operating at the rated flow rate, the bypass flow rate is adjusted in the same manner as above to adjust the supply and demand. to keep balance. Furthermore, when the flow rate from the plant A exceeds the demand in the region B even when the bypass flow rate is fully adjusted, the pump discharge valve 4 is operated by the action of the flow meter 3 and the flow rate controller 4c to supply the supply differential pressure (or supply pressure). ) Is adjusted so that it becomes constant. Such a control method is also described in JP-A No. 62-116846.

【0008】[0008]

【発明が解決しようとする課題】密閉系の循環系統を有
する地域冷暖房システムにおいて熱媒の需給量を以上の
ように調整する従来の方法には、つぎのような不都合が
ある。
The conventional method for adjusting the supply and demand of the heat medium in the district heating and cooling system having the closed circulation system has the following disadvantages.

【0009】イ) 地域の熱媒需要が非常に小さい時に
も、少なくとも一台はポンプを定格流量運転するため、
ポンプに要する動力が大きい。つまり、熱媒需要がどん
なに小さくても、ポンプ一台分の動力消費が必ず発生す
るため、省エネルギーが十分になされたとは言えない。
熱媒需要の小さい期間は前述のようにかなりの長期に及
ぶことから、このようなロスは無視できない。
A) Even when the heat medium demand in the area is very small, at least one pump operates at the rated flow rate,
The power required for the pump is large. In other words, no matter how small the heat medium demand is, the power consumption for one pump is inevitably generated, and it cannot be said that the energy saving is sufficient.
Such a loss cannot be ignored because the period when the demand for the heat medium is small extends over a considerable period as described above.

【0010】ロ) ポンプ吐出弁を絞ることによって熱源
プラント側の流量を減らす(前掲の特開昭62−116
846号公報参照)としても、ポンプ動力の削減の面で
はあまり効果的でない。ポンプ動力は、ポンプ効率を一
定とすれば容量(流量)と揚程の積に比例するが、ポン
プ吐出弁によって容量を絞ったとき、揚程については逆
に若干上昇するからである。
(B) The flow rate on the heat source plant side is reduced by throttling the pump discharge valve (Japanese Patent Laid-Open No. 62-116).
No. 846), it is not very effective in terms of reducing pump power. This is because the pump power is proportional to the product of the capacity (flow rate) and the head when the pump efficiency is constant, but when the capacity is reduced by the pump discharge valve, the head is slightly increased on the contrary.

【0011】なお、密閉系の循環系統のうちには、図5
に紹介したように熱源プラント側の循環と地域側の循環
とを共通のポンプで賄う一ポンプ方式のほかに、熱源プ
ラント側と地域側とにそれぞれポンプを設ける二ポンプ
方式(図示省略)があるが、後者の場合にも、熱源プラ
ント側の一次のポンプについて上記イ)・ロ)の不都合がと
もなうことに変わりはない。そればかりか、ポンプの台
数が多いため、設備費が高いという新たな不都合が付随
する。
It should be noted that, among the closed circulation systems, FIG.
In addition to the one-pump system that uses a common pump to circulate heat on the heat source plant side and the circulation on the regional side as described in Section 2, there is a two-pump system (not shown) in which pumps are provided on the heat source plant side and the regional side. However, even in the latter case, the primary pumps on the heat source plant side still have the disadvantages of the above a) and b). Not only that, but because of the large number of pumps, there is a new inconvenience that the equipment cost is high.

【0012】本発明は、地域冷暖房の熱媒搬送に関し
て、低負荷時のポンプ動力を従来以上に削減することの
できる制御方法と装置とを提供するものである。
[0012] The present invention provides a control method and apparatus capable of reducing the pump power under a low load more than ever before, in regard to heat medium transfer for district heating and cooling.

【0013】[0013]

【課題を解決するための手段】本発明の熱媒搬送制御方
法(請求項1)は、地域冷暖房のため、熱源機器とポン
プとをそれぞれ複数並列に接続(うち運転台数は地域の
需要に応じて決める)した熱源プラントより、大気開放
部分を経由させずに(つまり密閉系の循環系統で)地域
配管を介して複数の受入設備へ熱媒を循環させるに関
し、プラント側・地域側間の熱媒需給量を調整する制御
方法であって、下記A)・B)を特徴とする。すなわち、 A) 上記ポンプのうち一台以上を変速駆動可能とし、 B) 地域配管の末端寄りにある受入設備の利用差圧(前
述の供給差圧に対し、以下これを末端差圧という)を一
定にするよう、a)高負荷時には、ポンプ(のうち適当台
数)を定速で運転するとともに、地域配管を経由しない
バイパス流量を調節し、b)低負荷時には、上記の変速駆
動可能なポンプのみを運転してその回転数を調整する。
According to the heat medium transfer control method of the present invention (claim 1), a plurality of heat source devices and pumps are connected in parallel for the purpose of district cooling and heating (of which the operating number depends on the local demand). The heat source between the plant side and the regional side regarding the circulation of the heat medium from the heat source plant to multiple receiving facilities via regional piping without passing through the open air part (that is, in a closed circulation system). It is a control method that adjusts the supply and demand of the medium, and is characterized by the following A) and B). That is, A) One or more of the above pumps can be driven at variable speeds, and B) Utilization differential pressure of the receiving equipment near the end of the regional piping (hereinafter referred to as the terminal differential pressure for the supply differential pressure mentioned above) In order to keep it constant: a) At high load, the pump (suitable number of them) is operated at a constant speed, and the bypass flow rate that does not pass through the regional piping is adjusted, and b) At low load, the above-mentioned variable speed drive pump is possible. Only drive and adjust its speed.

【0014】また本発明の熱媒搬送装置(請求項2)
は、熱源機器とポンプとをそれぞれ複数並列に接続(運
転台数は地域の需要に応じて決める)した熱源プラント
と、複数の熱媒受入設備を接続した地域配管とを、大気
開放部分を設けずに(つまり密閉系として)、かつ、地
域配管を経由しないバイパス配管を一部に設けて接続し
た装置であって、下記〜を特徴とする。すなわち、 地域配管の末端寄りに受入設備の利用差圧(つまり
末端差圧)の検知手段を配置し、 熱源プラント内のポンプのうち一台以上をインバー
タモータ駆動とし、 上記の検知手段の出力に応じたバイパス配管の流
路開度の調節と、同じの出力に応じた上記インバータ
モータの回転数制御とを選択的に行う制御手段を設け
た。
Further, the heat medium carrier of the present invention (claim 2)
Is a heat source plant in which a plurality of heat source devices and pumps are connected in parallel (the number of operating units is determined according to local demand) and a regional pipe connecting a plurality of heat medium receiving facilities are not provided with an atmosphere opening portion. (That is, as a closed system), and a device in which a bypass pipe that does not pass through a regional pipe is partially provided and connected, and is characterized by the following items. That is, a means for detecting the differential pressure used in the receiving facility (that is, the differential pressure at the end) is placed near the end of the regional piping, and at least one of the pumps in the heat source plant is driven by an inverter motor. There is provided a control means for selectively adjusting the flow path opening degree of the bypass pipe and controlling the rotation speed of the inverter motor according to the same output.

【0015】請求項3の熱媒搬送装置は、さらに、 並列のポンプを一括に接続して集合配管にするとと
もに、並列の熱源機器を一括に接続して集合配管とし、
両集合配管を接続した−ものである。
According to a third aspect of the present invention, there is further provided a heat medium transfer device, wherein parallel pumps are collectively connected to form a collective pipe, and parallel heat source devices are collectively connected to form a collective pipe.
Both collecting pipes are connected.

【0016】[0016]

【作用】本発明の制御方法(請求項1)は、高負荷時、
すなわち地域側の熱媒需要が高い場合には、上記B)のa)
に記載したとおり、バイパス流量を調節しながら、需要
に応じた台数のポンプを定速運転する。このことは、B)
の初めに記載したように地域配管の末端差圧を一定にす
る点では供給差圧を一定にする従来(図5)のやり方と
異なるものの、ポンプの駆動やその動力消費の点で差異
はない。
The control method (Claim 1) of the present invention, when under high load,
That is, when the heat medium demand on the local side is high, a) in B) above
As described in, while adjusting the bypass flow rate, operate the constant number of pumps according to demand. This is B)
Although it is different from the conventional method (Fig. 5) in which the supply differential pressure is made constant in that the terminal differential pressure of the regional piping is made constant as described at the beginning of the above, there is no difference in the drive of the pump and the power consumption thereof. .

【0017】しかし低負荷時、すなわち地域側の熱媒需
要が低くて、定格運転のポンプを変速駆動可能なものの
み(たとえば一台)にしてもなお熱源プラント側の熱媒
供給が上回る場合、本方法では、ポンプ動力を極めて有
効に削減することができる。
However, at the time of low load, that is, when the demand for the heat medium on the side of the area is low, and only the pump capable of variable speed driving of the rated operation (for example, one pump) is still supplied with the heat medium on the side of the heat source plant, In this way, the pump power can be reduced very effectively.

【0018】ポンプ動力の削減ができる第一の理由は、
上記A)のとおり変速駆動可能にしたポンプを上記B)のb)
のように回転数調整することによって、熱媒流量を制御
(変流量制御)している点にある。すなわち、ポンプ吐
出弁を絞るのではないため、揚程の上昇がない。また、
一般にポンプの動力は回転数の三乗に比例するので、回
転数を下げて流量を減らすと動力は大幅に削減できるこ
とになる。
The first reason that the pump power can be reduced is
A pump capable of variable speed drive as described in A) above is used in b) above in B).
As described above, the heat medium flow rate is controlled (variable flow rate control) by adjusting the rotation speed. That is, since the pump discharge valve is not throttled, the lift does not rise. Also,
Generally, the power of a pump is proportional to the cube of the number of revolutions, so if the number of revolutions is reduced to reduce the flow rate, the power can be greatly reduced.

【0019】動力削減のできる第二の理由は、上記のよ
うな流量制御を、B)に記載したとおり地域配管における
末端差圧が一定になるように行うことである。受入設備
の部分で必要な利用差圧は、前記(図5の例)のように
供給差圧を基準とする制御によっても確保できるが、そ
の場合は、配管等での圧力損失(圧損)が低くなる低流
量時にも同じ供給差圧を保つ。そうすると、末端寄りに
接続された受入設備には低流量時に、高流量時よりもむ
しろ高い、いわば必要以上の利用差圧をかけることにな
る。それに対し、上記のように末端差圧を基準に制御す
れば、末端寄りの受入設備に対する利用差圧を一定に確
保しながら、配管等の圧損が低いときにはその分だけ供
給地点の圧力を下げるので、必要以上にポンプの動力を
消費することがない。
The second reason that the power can be reduced is that the flow rate control as described above is performed so that the terminal differential pressure in the regional piping becomes constant as described in B). The use differential pressure required in the receiving equipment can be secured by the control based on the supply differential pressure as described above (example of FIG. 5), but in that case, pressure loss (pressure loss) in piping etc. Maintains the same supply differential pressure even at low flow rates. Then, the receiving equipment connected toward the end is subjected to a higher use differential pressure than necessary at a low flow rate rather than at a high flow rate. On the other hand, if the control is performed based on the differential pressure at the terminal as described above, the pressure at the supply point will be reduced by that amount when the pressure loss of the piping is low, while the usage differential pressure for the receiving equipment near the terminal is kept constant. , The pump power is not consumed more than necessary.

【0020】本発明の熱媒搬送装置(請求項2)は、上
記した制御方法の実施に直接使用することができる。す
なわち、まず高負荷時には、に記載した制御手段によ
ってバイパス配管の流路開度の調節(つまりバイパス流
量の調節)を行いながら、必要台数のポンプを定速運転
する。そして、ポンプの運転台数を減らし、のインバ
ータモータ駆動のもののみに減らしたのちは、の制御
手段を切り換え、の検知手段で検知する末端差圧を一
定にするようインバータ(周波数の変更)にてそのポン
プの回転数制御をし、それによってポンプ動力を削減す
るのである。
The heat medium carrier of the present invention (claim 2) can be directly used for carrying out the above-mentioned control method. That is, first, when the load is high, the required number of pumps are operated at a constant speed while adjusting the flow passage opening of the bypass pipe (that is, adjusting the bypass flow rate) by the control means described in (1). Then, after reducing the number of pumps to be driven by only the inverter motor drive, the control means is switched and the inverter (frequency change) is used to make the terminal differential pressure detected by the detection means constant. By controlling the rotation speed of the pump, the pump power is reduced.

【0021】請求項3に記載の熱媒搬送装置では、上記
に加え、低負荷時に運転する熱源機器を任意に選べると
いう利点がある。つまり、この装置のように複数のポン
プと複数の熱源機器とが集合配管を介して接続されてい
ると、ポンプの運転台数を減らしてインバータモータ駆
動のものだけにした場合にも、運転する熱源機器を、複
数台のうちから自由に選択することができる。このこと
は、ポンプと熱源機器とがそれぞれ一対一に対応づけて
接続されている場合には行い得ないもので、熱源機器の
運転が低負荷時にも特定のものに偏らないため同機器の
寿命上このましいほか、同機器のいずれかが故障した場
合にも運転を継続できるというメリットもある。
In addition to the above, the heat medium carrier according to the third aspect has an advantage that the heat source device operated at a low load can be arbitrarily selected. That is, if a plurality of pumps and a plurality of heat source devices are connected via a collective pipe like this device, even if the number of operating pumps is reduced and only pumps driven by an inverter motor are used, the heat source to be operated The device can be freely selected from a plurality of devices. This cannot be done when the pump and heat source equipment are connected in a one-to-one correspondence, and the life of the heat source equipment does not deviate to a specific one even when the load is low. Besides this, it has the advantage that operation can be continued even if one of the devices fails.

【0022】[0022]

【実施例】本発明の第一実施例として、図1に冷水のポ
ンプシステムを示す。符号Aの部分(図において配管の
中間省略箇所より左方の部分)が熱源プラントで、冷凍
機(吸収冷凍機やターボ冷凍機など)1や冷水ポンプ2
のほか、戻り圧力維持のための加圧タンク6などが配置
されている。冷凍機1と冷水ポンプ2とは、流量計3や
流量調整弁(ポンプ吐出弁)4・流量コントローラ4c
を含めてそれぞれ一対一に対応して接続され、それらが
n組(各組の機器に 12・…・nの添字を付している)
だけ並列に接続されている。
EXAMPLE As a first example of the present invention, FIG. 1 shows a cold water pump system. A portion A (a portion on the left side of the pipe where the middle portion of the pipe is omitted) is a heat source plant, and is a refrigerator (such as an absorption refrigerator or a turbo refrigerator) 1 or a cold water pump 2.
Besides, a pressure tank 6 and the like for maintaining the return pressure are arranged. The refrigerator 1 and the chilled water pump 2 include a flow meter 3, a flow rate adjusting valve (pump discharge valve) 4, a flow rate controller 4c.
Are connected in a one-to-one correspondence with each other, and there are n sets (the devices of each set are suffixed with 1 , 2 , ..., N )
Only connected in parallel.

【0023】各冷水ポンプ2は、対応する冷凍機1の定
格流量をカバーできる能力を備え、冷凍機1の起動・停
止シーケンスにより冷凍機1と同時に制御される。ま
た、冷凍機台数制御の信号により自動発停されることも
ある。この台数制御は、冷暖房対象地域B(m個の受入
設備101・102・…・10m が並列配置されている)
に供給する冷水の流量と温度、ならびに地域Bから戻っ
た冷水の温度を計測し、地域Bに供給する熱量と流量の
両方が不足しないように熱源プラントAの冷凍機1と冷
水ポンプ2を自動発停させるものである。また、熱負荷
の予測システムと組み合わせた台数制御も可能である。
Each chilled water pump 2 has the ability to cover the rated flow rate of the corresponding refrigerator 1, and is controlled simultaneously with the refrigerator 1 by the start / stop sequence of the refrigerator 1. In addition, it may be automatically stopped by a signal for controlling the number of refrigerators. This unit number control is performed in the cooling / heating target area B (m receiving facilities 10 1 , 10 2 , ..., 10 m are arranged in parallel)
The flow rate and temperature of the cold water supplied to the area B and the temperature of the cold water returned from the area B are measured, and the refrigerator 1 and the cold water pump 2 of the heat source plant A are automatically operated so that both the heat quantity and the flow rate supplied to the area B are not insufficient. It starts and stops. It is also possible to control the number of units in combination with a heat load prediction system.

【0024】本システムでは、n台の冷水ポンプ2のう
ち1台(No.1冷水ポンプ2)をインバータモータ
5で駆動し、他は通常の誘導モータで駆動する。上記の
台数制御においてNo.1冷凍機1とNo.1冷水ポ
ンプ2の運転を第一優先とし、プラントAの運転時に
は両者が常に起動されるようにする。符号9は、バイパ
ス配管A2に設けた冷水流量調節弁であり、地域配管B
1の末端部に設置した圧力計7・8による信号の差(す
なわち末端差圧。末端部の受入設備10のための利用差
圧に相当する)に基づき、圧力コントローラ11および
切替器12を介して熱源プラントA側の冷水循環量と地
域B側の冷水循環量との差を調節する。
In this system, one of the n chilled water pumps 2 (No. 1 chilled water pump 2 1 ) is driven by the inverter motor 5, and the other is driven by a normal induction motor. In the above number control, 1 refrigerator 1 1 and No. 1 1 the operation of the chilled water pump 2 1 as the first priority, so that both are always activated during operation of the plant A. Reference numeral 9 is a chilled water flow rate control valve provided in the bypass pipe A2, and the regional pipe B
Based on the signal difference (that is, the terminal differential pressure, which corresponds to the differential pressure used for the receiving equipment 10 at the terminal end) of the pressure gauges 7 and 8 installed at the terminal end of 1, through the pressure controller 11 and the switching device 12. The difference between the chilled water circulation amount on the heat source plant A side and the chilled water circulation amount on the region B side is adjusted.

【0025】地域Bの冷房負荷が高いときは、台数制御
の信号により冷凍機1と冷水ポンプ2のセットを負荷に
見合った台数で運転し、各冷凍機1の冷水量はNo.1
冷凍機1を含めて定格流量とする。つまり、No.1
冷水ポンプ2のインバータモータ5の回転数も一定と
する。このとき、バイパス配管A2の流量は、地域配管
B1の上記末端差圧が一定(約1.5キロ)になるよ
う、前記のように調節弁9によって制御される。
When the cooling load in the region B is high, the set of the refrigerator 1 and the chilled water pump 2 is operated by a number corresponding to the load by the signal for controlling the number of units, and the chilled water amount of each refrigerator 1 is No. 1. 1
The rated flow rate, including the refrigerator 1 1. That is, No. 1
Rotational speed of the chilled water pump 2 1 inverter motor 5 is also constant. At this time, the flow rate of the bypass pipe A2 is controlled by the control valve 9 as described above so that the terminal differential pressure of the regional pipe B1 becomes constant (about 1.5 km).

【0026】図2に、熱源プラントAと地域Bとにおけ
る配管A1・B1内の圧力バランスを示す。この図で
は、熱源プラントAおよび地域Bが各同一レベルの平面
上に設置される場合を比較しており、横軸に示す丸囲み
数字・・…は、それぞれ冷水ポンプ2・調節弁4・
冷凍機1・調節弁9(バイパス配管A2部)、および末
端の受入設備10の各箇所を表す。本図において、ま
ず破線は、最高負荷時の状態を示している。
FIG. 2 shows the pressure balance in the pipes A1 and B1 in the heat source plant A and the area B. This figure compares the case where the heat source plant A and the area B are installed on the same level plane, and the circled numbers on the horizontal axis ... Respectively indicate the chilled water pump 2, the control valve 4, ...
Each of the refrigerator 1, the control valve 9 (bypass pipe A2 part), and the receiving facility 10 m at the end is shown. In this figure, the broken line shows the state at maximum load.

【0027】地域Bの負荷が低下し、台数制御の信号に
より第1優先であるNo.1冷凍機1とNo.1冷水
ポンプ2のみの運転となれば、流量調整のための機
器、すなわち図1における前述の圧力計7・8や圧力コ
ントローラ11・切替器12・流量調節弁9を含む、い
わば選択機能つきの制御手段が、それに連動する。つま
り、切替器12を切り替え、地域配管B1の末端差圧の
信号を一定(約1.5キロ)にするよう、No.1冷水
ポンプ1のインバータモータ5の回転数制御を行い、
熱源プラントAの側を変流量制御する。この時、バイパ
ス流量調節弁9は全閉あるいは微開とする(微開とすれ
ば、地域B側の冷水の流量急増時にも対応できる)。ま
た、ポンプ2の吐出側の流量調整弁4は、冷水流量
が減少するため自動的に全開となる。この時の圧力のバ
ランスを図2の実線で示す。
The load of the area B is reduced, and the No. 1 which is the first priority is given by the signal for controlling the number of units. 1 refrigerator 1 1 and No. 1 If the operation of only one cold water pump 2 1, for the flow rate adjustment device, i.e. includes a pressure gauge 7, 8 and the pressure controller 11, switch 12, flow control valve 9 described above in FIG. 1, so to speak selection function with The control means interlock with it. That is, the switch 12 is switched so that the signal of the terminal differential pressure of the regional pipe B1 is kept constant (about 1.5 km). 1 performs rotational speed control of the chilled water pump 1 1 of the inverter motor 5,
The variable flow rate control is performed on the heat source plant A side. At this time, the bypass flow rate control valve 9 is fully closed or slightly opened (if it is slightly opened, it is possible to cope with a sudden increase in the flow rate of cold water on the region B side). The flow rate control valve 4 first pump 2 1 on the discharge side becomes automatically fully opened for coolant flow rate is reduced. The pressure balance at this time is shown by the solid line in FIG.

【0028】従来のように(前掲の特開昭62−116
846号公報参照)定速ポンプを使用して、流量を流量
調整弁4で絞る場合の圧力バランスを、同じ図2に一点
鎖線で示す。末端差圧を一定にすべく制御するとして
も、流量調整弁4での圧力損失が大きいためポンプ2
に必要な揚程は高くなる。
As in the prior art (Japanese Patent Laid-Open No. 62-116).
The pressure balance in the case where the flow rate is adjusted by the flow rate adjusting valve 4 using a constant speed pump is shown in the same FIG. Even if the terminal differential pressure is controlled to be constant, since the pressure loss in the flow rate adjusting valve 4 is large, the pump 2 1
The required head is high.

【0029】また、熱源プラントAから地域Bに供給す
る地点での冷水差圧(供給差圧)の信号を計測し、それ
を一定にしながら(ここまでは図5の例と同じ)冷水ポ
ンプ2をインバータモータ5で速度制御する方法につ
いては、低負荷時の圧力バランスは図2において二点鎖
線のようになり、冷水ポンプ2の揚程を本実施例ほど
には下げることができない。この場合、配管内の圧力損
失が小さいにも拘わらず、冷水の供給地点(図2のの
箇所)の差圧を最高負荷時のものと同じにするので、末
端の受入設備10にはかなり高い(必要とされる約
1.5キロの倍ほどの)利用差圧を与えることになる。
ポンプ2においては、容量(流量)を減らすものの揚
程(圧力)をあまり減らし得ないので、図3に示すポン
プ特性からわかるように(やはり二点鎖線で示す)、イ
ンバータモータ5およびポンプ2の回転数を大幅には
下げることができない。このため、ポンプ動力の低減幅
は小さく、省エネの効果は顕著ではない。
Further, the signal of the cold water differential pressure (supply differential pressure) at the point of supplying from the heat source plant A to the area B is measured, and kept constant (the same as in the example of FIG. 5 up to this point), the cold water pump 2 for information on how to control the speed 1 by an inverter motor 5, the pressure balance at the time of low load is as shown in two-dot chain line in FIG. 2, it is impossible to lower the lift of the cold water pump 2 1 enough embodiment. In this case, although the pressure loss in the pipe is small, the differential pressure at the cold water supply point (the point in FIG. 2) is made the same as that at the time of maximum load, so the terminal receiving facility 10 m is considerably It will give a high (about double the required 1.5 km) differential pressure.
In the pump 2 1, since not much volume reduced lifting height of which reduce (flow rate) (pressure), (indicated by also the two-dot chain line) as seen from the pump characteristic shown in FIG. 3, the inverter motor 5 and pump 2 1 It is not possible to significantly reduce the number of rotations of. Therefore, the reduction range of the pump power is small and the energy saving effect is not remarkable.

【0030】その点、本実施例の方法では、低負荷時
に、冷水ポンプ2の容量だけでなく揚程をも大幅に下
げることができる(図2参照)ため、図3(太い実線)
のようにポンプ2の回転数はかなり(定格の70%程
度に)下げられる。一般に、ポンプ動力は回転数の3乗
に比例するため、この場合の省エネ効果は極めて大きく
なる。
[0030] In that respect, the method of the present embodiment, at the time of low load, the lift well capacity chilled water pump 2 1 can be reduced even significantly (see FIG. 2) for, FIG. 3 (thick solid line)
Rotational speed of the pump 2 1 is lowered considerably (to 70% of rating), as. In general, the pump power is proportional to the cube of the rotation speed, so the energy saving effect in this case is extremely large.

【0031】つづいて図4に、本発明の第二の実施例を
示す。図1のシステムでは、低負荷時は常にNo.1冷
凍機1を運転することになり、配管系統を変えないま
ま低負荷時にどの冷凍機1でも運転できるようにするた
めには、全ての冷水ポンプ2をインバータモータ5で駆
動する必要があって相当なコストアップとなる。図4の
実施例は、この点を改善したものである。
Next, FIG. 4 shows a second embodiment of the present invention. In the system shown in FIG. 1, No. So that it operates a refrigerator 1 1, in order to be able to operation In any chiller 1 at low load without changing the piping system it has been necessary to drive all of the chilled water pump 2 by the inverter motor 5 Will result in a considerable cost increase. The embodiment of FIG. 4 improves on this point.

【0032】図4のシステムでは、冷凍機1と一対一に
対応しない冷水ポンプ2をまとめてk台(21・22・…
・2)設置し、このうち1台のポンプ2をインバー
タモータ5による駆動としたうえ、これらとn台の冷凍
機11・12・…・1とは集合配管Axを介して接続し
ている。そしてこれらの台数制御については、冷凍機1
の能力分割に見合った冷凍機1の台数制御と、ポンプ2
の能力分割に見合ったポンプ2の台数制御とする。この
方法では、冷凍機1の台数制御の運転優先順位の設定を
変えることにより、全ての冷凍機1のうちから任意のも
のを低負荷時に運転することが可能となる。なお図4の
実施例は、以上の点を除いて図1の実施例と特別な差異
はないため、共通する部分に図1と同じ符号を付して説
明を省略する。
In the system of FIG. 4, there are k cold water pumps 2 (2 1 , 2 2 , ...
・ 2 k ) installed, and one of these pumps 2 1 is driven by the inverter motor 5, and these and n refrigerators 1 1 1 2 ..... 1 n are connected via a collective pipe Ax. Connected. For controlling the number of these units, the refrigerator 1
Control of the number of refrigerators 1 commensurate with the division of capacity of the
The number of pumps 2 is controlled in accordance with the capacity division. In this method, by changing the setting of the operation priority order for controlling the number of refrigerators 1, it becomes possible to operate any of the refrigerators 1 at a low load. The embodiment of FIG. 4 has no special difference from the embodiment of FIG. 1 except for the above points, and therefore common portions are denoted by the same reference numerals as those of FIG. 1 and description thereof is omitted.

【0033】以上、二つの実施例を紹介したが、本発明
がこれらのみに限定されるものでないことは言うまでも
ない。すなわち本発明は、たとえば下記のようにも実施
することが可能である。
Although the two embodiments have been introduced above, it goes without saying that the present invention is not limited to these embodiments. That is, the present invention can be implemented as follows, for example.

【0034】イ) 受入設備の利用差圧の検知は、必ずし
も地域配管の最末端において行わねばならないわけでは
ない。末端部に近いほど効果は高いが、たとえば中間的
な箇所にある受入設備について検知しても、熱源プラン
トに近い箇所のいわゆる供給差圧を検知して制御する場
合よりも顕著な効果が期待できる。
A) The detection of the differential pressure used in the receiving facility does not necessarily have to be performed at the extreme end of the regional piping. The closer to the end, the higher the effect, but even when detecting, for example, the receiving facility at an intermediate location, a more remarkable effect can be expected than when detecting and controlling the so-called supply differential pressure at a location near the heat source plant. .

【0035】ロ) 冷凍機の冷水を定格流量に比べてあま
りに低流量にすると冷水の凍結が心配されるため、イン
バータモータの制御の応答性や出力の下限値を設定する
などの手段をとるのもよい。
(B) If the flow rate of the cold water of the refrigerator is too low compared to the rated flow rate, there is concern about freezing of the cold water. Therefore, measures such as setting the control response of the inverter motor and the lower limit value of the output are taken. Good.

【0036】ハ) ポンプや冷凍機などの接続は、図1等
の順番に限らず、冷凍機にかかる圧力を下げる必要があ
る場合などは、流量計3・冷凍機1・冷水ポンプ2・流
量調整弁4を、熱媒の流れ方向に沿ってこの順番で連絡
することもある。
C) The connection of the pump, the refrigerator, etc. is not limited to the order shown in FIG. 1, but when it is necessary to reduce the pressure applied to the refrigerator, the flow meter 3, the refrigerator 1, the chilled water pump 2, the flow rate, etc. The regulating valve 4 may be connected in this order along the flow direction of the heat medium.

【0037】ニ) 以上では冷水のポンプシステムについ
て述べたが、温水のポンプシステムについても同様であ
る。後者のシステムでは、図1や図4における冷凍機1
がヒートポンプや温水熱交換器などに置き換わるが、ほ
かに大きな相違はない。一般的な地域冷暖房システムで
は、以上のような冷水ポンプシステムと温水ポンプシス
テムとが並列的に併設されている。
D) Although the cold water pump system has been described above, the same applies to the hot water pump system. In the latter system, the refrigerator 1 shown in FIGS.
Is replaced by a heat pump or hot water heat exchanger, but there is no other major difference. In a general district heating and cooling system, the cold water pump system and the hot water pump system described above are installed in parallel.

【0038】[0038]

【発明の効果】本発明(請求項1・2の方法および装
置)には以下のような効果がある。すなわち、 1) 低負荷時、つまり地域における需要が低い場合のポ
ンプ動力を、大幅に削減することができる。しかも、従
来に比べて特別高価な設備・機器等を必要としないの
で、わずかの投資で大きな省エネ効果を上げることがで
きる。
The present invention (the method and apparatus according to claims 1 and 2) has the following effects. That is, 1) It is possible to significantly reduce the pump power when the load is low, that is, when the local demand is low. Moreover, since it does not require specially expensive facilities and equipment as compared with conventional ones, a large energy saving effect can be achieved with a small investment.

【0039】2) 受入設備に対して、適正な利用差圧を
常に確保できるため、熱媒の安定供給が可能である。
2) Since an appropriate utilization differential pressure can be always ensured for the receiving facility, a stable supply of the heat medium is possible.

【0040】3) 熱源機器(冷凍機やヒートポンプ・温
水熱交換器など)を出る熱媒の温度制御について、従来
の制御手段がそのまま利用できる。
3) Regarding the temperature control of the heat medium leaving the heat source device (refrigerator, heat pump, hot water heat exchanger, etc.), the conventional control means can be used as it is.

【0041】請求項3の装置では、さらに、 4) 地域の負荷が低いとき、運転する熱源機器を任意に
選べるので、同機器の寿命およびトラブル対策について
利点がある。
In the apparatus of claim 3, further, 4) there is an advantage in the life of the equipment and trouble measures because the heat source equipment to be operated can be arbitrarily selected when the load in the area is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例としての冷水ポンプシステ
ム(熱媒搬送装置)を示す系統図である。
FIG. 1 is a system diagram showing a cold water pump system (heat medium carrier) as a first embodiment of the present invention.

【図2】図1のシステムにおける各箇所での圧力バラン
スを、他のシステムにおけるものと比較して示す線図で
ある。
FIG. 2 is a diagram showing pressure balance at various points in the system of FIG. 1 in comparison with those in other systems.

【図3】ポンプの特性曲線上に、図1のシステムにおけ
るポンプの使用条件および他の場合のポンプの使用条件
を重ねて示す線図である。
FIG. 3 is a diagram in which operating conditions of the pump in the system of FIG. 1 and operating conditions of the pump in other cases are superimposed on the characteristic curve of the pump.

【図4】本発明の第二実施例としての冷水ポンプシステ
ム(熱媒搬送装置)を示す系統図である。
FIG. 4 is a system diagram showing a cold water pump system (heat medium transfer device) as a second embodiment of the present invention.

【図5】従来の冷水ポンプシステム(熱媒搬送装置)を
示す系統図である。
FIG. 5 is a system diagram showing a conventional cold water pump system (heat medium transfer device).

【符号の説明】[Explanation of symbols]

A 熱源プラント A2 バイパス配管 Ax 集合配管 B 地域 B1 地域配管 1 冷凍機(熱源機器) 2 ポンプ 5 インバータモータ 10 受入設備 A heat source plant A2 bypass piping Ax collective piping B area B1 area piping 1 refrigerator (heat source equipment) 2 pump 5 inverter motor 10 receiving facility

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地域冷暖房のため、熱源機器とポンプと
をそれぞれ複数並列に接続した熱源プラントより、大気
開放部分を経由させずに地域配管を介して複数の受入設
備へ熱媒を循環させる熱媒搬送の制御方法であって、 上記ポンプのうち一台以上を変速駆動可能とし、 地域配管の末端寄りにある受入設備の利用差圧を一定に
するよう、a)高負荷時には、ポンプを定速で運転すると
ともに、地域配管を経由しないバイパス流量を調節し、
b)低負荷時には、上記の変速駆動可能なポンプのみを運
転してその回転数を調整することを特徴とする地域冷暖
房の熱媒搬送制御方法。
1. Heat for circulating a heat medium from a heat source plant in which a plurality of heat source devices and pumps are connected in parallel for district heating and cooling to a plurality of receiving facilities via regional piping without passing through an open air portion. A method of controlling medium transport, in which one or more of the above pumps can be driven at variable speeds and the differential pressure used in the receiving equipment near the end of the regional piping is kept constant. While operating at high speed, adjust the bypass flow rate that does not pass through the regional piping,
b) A heating medium transfer control method for district cooling and heating, characterized in that only the pump capable of variable speed driving is operated at low load to adjust the rotation speed.
【請求項2】 地域冷暖房のため、熱源機器とポンプと
をそれぞれ複数並列に接続した熱源プラントと、複数の
熱媒受入設備を接続した地域配管とを、大気開放部分を
設けずに、かつ、地域配管を経由しないバイパス配管を
一部に設けて接続した熱媒搬送装置であって、 地域配管の末端寄りに受入設備の利用差圧の検知手段を
配置し、かつ、熱源プラント内の上記ポンプのうち一台
以上をインバータモータ駆動としたうえ、 上記検知手段の出力に応じたバイパス配管の流路開度の
調節と、同じ出力に応じた上記インバータモータの回転
数制御とを選択的に行う制御手段を設けたことを特徴と
する地域冷暖房の熱媒搬送装置。
2. For district heating and cooling, a heat source plant in which a plurality of heat source devices and pumps are respectively connected in parallel and a regional pipe in which a plurality of heat medium receiving facilities are connected are provided without providing an atmosphere opening portion, and A heat medium transfer device in which a bypass pipe that does not pass through a regional pipe is partially provided and connected, wherein the means for detecting the differential pressure of the utilization of the receiving facility is arranged near the end of the regional pipe, and the pump in the heat source plant One or more of them are driven by an inverter motor, and the flow path opening of the bypass pipe is adjusted according to the output of the detection means, and the rotation speed control of the inverter motor according to the same output is selectively performed. A heating / cooling medium transfer device for district heating / cooling, comprising a control means.
【請求項3】 並列のポンプを一括に接続して集合配管
にするとともに、並列の熱源機器を一括に接続して集合
配管とし、両集合配管を接続した請求項2に記載の地域
冷暖房の熱媒搬送装置。
3. The heat for district heating and cooling according to claim 2, wherein parallel pumps are collectively connected to form a collective pipe, and parallel heat source devices are collectively connected to form a collective pipe, and both collective pipes are connected. Medium transport device.
JP33966592A 1992-11-25 1992-11-25 Heat medium transfer control method and heat medium transfer device for district cooling and heating Expired - Fee Related JPH07104017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33966592A JPH07104017B2 (en) 1992-11-25 1992-11-25 Heat medium transfer control method and heat medium transfer device for district cooling and heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33966592A JPH07104017B2 (en) 1992-11-25 1992-11-25 Heat medium transfer control method and heat medium transfer device for district cooling and heating

Publications (2)

Publication Number Publication Date
JPH06159741A true JPH06159741A (en) 1994-06-07
JPH07104017B2 JPH07104017B2 (en) 1995-11-08

Family

ID=18329651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33966592A Expired - Fee Related JPH07104017B2 (en) 1992-11-25 1992-11-25 Heat medium transfer control method and heat medium transfer device for district cooling and heating

Country Status (1)

Country Link
JP (1) JPH07104017B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112744A (en) * 2004-10-18 2006-04-27 Aoki Jutaku Kizai Hanbai Kk Radiation cooling system
JP2009281611A (en) * 2008-05-20 2009-12-03 Sanden Corp Air conditioning device for vehicle
JP2016205814A (en) * 2016-08-08 2016-12-08 ダイキン工業株式会社 Load distribution system
WO2023032133A1 (en) * 2021-09-02 2023-03-09 三菱電機ビルソリューションズ株式会社 Heating and cooling system for buildings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038188A (en) * 2014-08-11 2016-03-22 ダイキン工業株式会社 Load distribution system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112744A (en) * 2004-10-18 2006-04-27 Aoki Jutaku Kizai Hanbai Kk Radiation cooling system
JP2009281611A (en) * 2008-05-20 2009-12-03 Sanden Corp Air conditioning device for vehicle
JP2016205814A (en) * 2016-08-08 2016-12-08 ダイキン工業株式会社 Load distribution system
WO2023032133A1 (en) * 2021-09-02 2023-03-09 三菱電機ビルソリューションズ株式会社 Heating and cooling system for buildings

Also Published As

Publication number Publication date
JPH07104017B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
CN103047710B (en) Motor room air conditioning system and control method
CN201652653U (en) Circulating air-conditioning system of liquid pump
CN105841408B (en) Closed-type circulating cooling water energy-saving driving system and method
JP2004340492A (en) Cooling system
JP2001091087A (en) Method for controlling refrigerator of absorption heater chiller
JP2701812B2 (en) Hydraulic fan hydraulic drive controller for cooling tower
JPH06159741A (en) Heat-medium transporting control method and apparatus for district cooling/heating
CN113959131A (en) Method and device for controlling water chilling unit and water chilling unit
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JP3304010B2 (en) Ice storage refrigerator and operation method
JPS6256427B2 (en)
JP2615043B2 (en) Liquefied natural gas cold energy utilization
JP3142267B2 (en) Pump device
CN114659293B (en) Air-cooled heat pump
JPS62116846A (en) Control device for the number of operating refrigerating machines
JP2554137B2 (en) How to operate the heat storage device
JPH06280563A (en) Control method for cooling water temperature of engine and device thereof
JP2001004242A (en) Heat storage system
KR102411439B1 (en) Chilled water direct cooling apparatus for saving energy
JP3270272B2 (en) Control system for heat source system for air conditioning
JPH074758A (en) Cooling device
JPH07200069A (en) Cooling water controller
JPH1114221A (en) Cooling facility and operating method therefor
JPH06313644A (en) Controlling method for very low temperature refrigerating plant
Dubov Heat recovery, energy savings for semiconductor plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees