JP3142267B2 - Pump device - Google Patents

Pump device

Info

Publication number
JP3142267B2
JP3142267B2 JP11040030A JP4003099A JP3142267B2 JP 3142267 B2 JP3142267 B2 JP 3142267B2 JP 11040030 A JP11040030 A JP 11040030A JP 4003099 A JP4003099 A JP 4003099A JP 3142267 B2 JP3142267 B2 JP 3142267B2
Authority
JP
Japan
Prior art keywords
pump
pressure
discharge
curve
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11040030A
Other languages
Japanese (ja)
Other versions
JP2000240586A (en
Inventor
恒夫 坂田
Original Assignee
株式会社相互ポンプ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社相互ポンプ製作所 filed Critical 株式会社相互ポンプ製作所
Priority to JP11040030A priority Critical patent/JP3142267B2/en
Publication of JP2000240586A publication Critical patent/JP2000240586A/en
Application granted granted Critical
Publication of JP3142267B2 publication Critical patent/JP3142267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、空調、給水設備
あるいは冷凍機に用いる液体圧送用のポンプ装置に関
し、特に、回転速度制御を加えない定速型ポンプを2台
以上並設しているポンプ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump device for pumping liquid used for air conditioning, water supply equipment or a refrigerator, and more particularly, to a pump in which two or more constant speed pumps without rotation speed control are arranged in parallel. Related to the device.

【0002】[0002]

【従来の技術】図9は従来例を示しており、定速型ポン
プとして、いわゆる回転速度が変更できない単速度ポン
プ1,2を2台並設し、各ポンプ1,2の吐出管3,4
を共通吐出管5に合流して、空調設備の熱交換部等、負
荷が変化する負荷発生部9に連通している。
2. Description of the Related Art FIG. 9 shows a conventional example in which two so-called single-speed pumps 1 and 2 whose rotational speeds cannot be changed are arranged side by side as constant-speed pumps. 4
Into a common discharge pipe 5 and communicate with a load generating section 9 where the load changes, such as a heat exchange section of an air conditioner.

【0003】図10は、図9に示すポンプ装置の運転状
態図であり、縦軸Hは揚程(吐出圧力)、横軸Qは吐出
し量(水量)、曲線P1は1台運転時の揚程曲線、P1+
P2は2台運転時の揚程曲線、曲線Rは2台運転時の定
格吐出し量2Qnに基づき計画された管路抵抗曲線であ
り、ポンプ装置は上記管路抵抗曲線Rに沿って運転され
る。計画通りに2台運転している時には、ポンプ運転点
はBとなり、これを1台当りに直すと、曲線P1上で揚
程Hnと交わる点Aが定格運転点となり、ポンプ動力
上、過負荷等、何等問題は生じない。
FIG. 10 is a diagram showing the operating state of the pump device shown in FIG. 9, in which the vertical axis H is the head (discharge pressure), the horizontal axis Q is the discharge amount (water amount), and the curve P1 is the head when one unit is operating. Curve, P1 +
P2 is a lift curve when the two units are operated, and curve R is a line resistance curve planned based on the rated discharge amount 2Qn when the two units are operated. The pump device is operated along the line resistance curve R. . When two units are operating as planned, the pump operating point is B. If this is changed to one unit, the point A intersecting with the head Hn on the curve P1 becomes the rated operating point, and the pump power, overload, etc. No problem arises.

【0004】[0004]

【発明が解決しようとする課題】図10において、2台
運転状態から負荷が減少して、1台運転となった時に
は、ポンプ運転点は管路抵抗曲線Rと曲線P1との交点
A1となる。該運転点A1の水量Q1は上記定格運転点A
の水量Qnよりもはるかに大きくなるから、過大水量で
の運転状態となり、ポンプ動力が過負荷になる可能性が
非常に高い。
In FIG. 10, when the load is reduced from the two-unit operation state to the one-unit operation, the pump operation point is the intersection A1 between the pipeline resistance curve R and the curve P1. . The water amount Q1 at the operating point A1 is equal to the rated operating point A
Since the water amount is much larger than the water amount Qn, the operation state becomes an excessive water amount, and the possibility that the pump power is overloaded is very high.

【0005】上記ポンプ動力の過負荷を防止するために
は、過負荷しない範囲までポンプ吐出口のバルブ絞りを
行って抑制することになるが、そうするとバルブ二次側
でのポンプ特性は破線で示す曲線P1´のようになり、
定格運転点Aの水量Qnに不足することになる。この水
量不足を補い、かつ、前記過負荷が生じないようにする
ために、一般的にはポンプ駆動用の電動機として、出力
が1ランクあるいは数ランク上の大型電動機を採用して
いる。ところが、大型の電動機を採用すると、該電動機
を制御する機器も同様に大型化し、設備コストがかさむ
ばかりではなく、流量が過大化し、ポンプ効率が低下す
る。また、キャビテーションや騒音振動の増加の原因と
もなる。
In order to prevent the above-mentioned overload of the pump power, the valve at the pump outlet is throttled down to a range where the overload is not overloaded. In this case, the pump characteristic on the valve secondary side is shown by a broken line. It becomes like curve P1 ',
The amount of water Qn at the rated operating point A will be insufficient. In order to compensate for this water shortage and prevent the overload from occurring, a large-sized motor whose output is one rank or several ranks is generally adopted as the motor for driving the pump. However, when a large motor is used, the equipment for controlling the motor is similarly increased in size, which not only increases the equipment cost but also increases the flow rate and lowers the pump efficiency. It also causes cavitation and noise and vibration.

【0006】図11は前記並列型のポンプ装置を冷凍機
に適用した従来例を示しており、並列配置された2つの
定速型ポンプ1,2は、吸込み側が共通の吸込みヘッダ
ー管24に接続し、吐出側はそれぞれ冷凍機21,22
に接続し、両冷凍機21,22は共通の吐出ヘッダー管
23に合流している。該吐出ヘッダー管23は共通管2
9を介して共通の二次側負荷発生部28に接続し、該二
次側負荷発生部28の出口は還りヘッダー管26に接続
し、さらに流量センサー30を介して吸込みヘッダー管
24へと戻されるように構成されている。吸込みヘッダ
ー管24及び吐出ヘッダー管23は、各ポンプ1,2の
単独管路以外の管路抵抗を共有している。
FIG. 11 shows a conventional example in which the above-described parallel type pump device is applied to a refrigerator. Two constant speed type pumps 1 and 2 arranged in parallel are connected to a suction header tube 24 having a common suction side. The discharge sides are refrigerators 21 and 22, respectively.
, And the two refrigerators 21 and 22 join the common discharge header tube 23. The discharge header tube 23 is a common tube 2
9 is connected to a common secondary load generator 28, the outlet of which is connected to the return header tube 26 and further returned to the suction header tube 24 via the flow rate sensor 30. It is configured to be. The suction header tube 24 and the discharge header tube 23 share a line resistance other than the individual lines of the pumps 1 and 2.

【0007】一般に冷凍機の運転は、二次側負荷発生部
の負荷が減少しても、内部凍結や冷凍効率の大幅な下落
を防止するため、一定限度まで冷水量が減少した時点
で、断水リレーを動作させ、冷凍機の運転を停止するよ
うにしている。そのため、図11に示すように吐出ヘッ
ダー管23と還りヘッダー管26の間にはバイパス管2
7が介装され、冷凍機を含める熱源側のポンプの運転
は、吐出ヘッダー管23と還ヘッダー管26とをバイパ
スさせることにより、ポンプ装置を定格運転させるいわ
ゆる定量運転となることが多い。しかし、上記のように
バイパスさせる構造であると、負荷の大小に関係なく、
エネルギーロスの多い運転が強いられ、燃料コストが高
くなる。
[0007] Generally, the operation of the refrigerator is stopped when the amount of chilled water is reduced to a certain limit, in order to prevent internal freezing and a drastic decrease in refrigeration efficiency even when the load on the secondary load generating unit is reduced. By operating the relay, the operation of the refrigerator is stopped. Therefore, as shown in FIG. 11, a bypass pipe 2 is provided between the discharge header pipe 23 and the return header pipe 26.
The operation of the pump on the heat source side including the refrigerator and the refrigerator 7 is often a so-called quantitative operation in which the pump device is rated and operated by bypassing the discharge header tube 23 and the return header tube 26. However, with the bypass structure as described above, regardless of the magnitude of the load,
Operation with a lot of energy loss is forced and fuel cost is increased.

【0008】[0008]

【発明の目的】本願発明の目的は、定速型ポンプを2台
以上並設したポンプ装置において、負荷が減少した場合
でも確実に定流量運転が行え、過大流量化による前記弊
害を防止することである。また、別の目的は、冷凍機等
において、従来のバイパス方式による非効率性を解消
し、電動機を大型化することなく、省エネ運転ができる
ポンプ装置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a pump device in which two or more constant speed pumps are arranged side by side, so that a constant flow rate operation can be reliably performed even when the load is reduced, and the above-mentioned adverse effects due to an excessive flow rate are prevented. It is. Another object of the present invention is to provide a pump device which can eliminate inefficiency due to a conventional bypass system in a refrigerator or the like and can perform energy-saving operation without increasing the size of a motor.

【0009】前記目的を達成するために本願請求項1記
載の発明は、回転速度が一定に固定された定速型ポンプ
1,2を複数台並列に備え、各ポンプ1,2の吐出部1
a,2aは、吐出管3,4及びこれらを集合した共通吐
出管5を介して共通の負荷発生部9(又は28)に接続
し、各ポンプ1,2の吐出部1a,2a又は一次側吐出
管部分3a,4aに、弁一次側圧力を一定圧に制御する
一次側圧力一定制御型二方弁11,12の弁一次側部分
を接続し、二方弁11,12の二次側出口を負荷発生部
9側に接続していることを特徴とするポンプ装置であ
る。これによりポンプの定流量運転が行え、過大流量化
による前記弊害を防止できる。また、ポンプに対し一次
側圧一定制御型の二方弁を接続するだけで実施でき、部
品コストも節約できる。
In order to achieve the above object, the invention according to claim 1 of the present application comprises a plurality of constant-speed pumps 1 and 2 having a fixed rotation speed in parallel, and a discharge unit 1 of each of the pumps 1 and 2.
a, 2a are connected to a common load generating section 9 (or 28) via discharge pipes 3, 4 and a common discharge pipe 5 in which these are assembled, and discharge sections 1a, 2a of the pumps 1, 2 or the primary side. The discharge pipe portions 3a, 4a are connected to the primary valve portions of the two-way valves 11, 12 for controlling the primary pressure of the valve to a constant pressure, and the secondary outlets of the two-way valves 11, 12 are connected. Is connected to the load generating unit 9 side. As a result, the pump can be operated at a constant flow rate, and the above-mentioned adverse effects due to an excessive flow rate can be prevented. Further, the present invention can be implemented simply by connecting a two-way valve of a constant primary pressure control type to the pump, and the cost of parts can be reduced.

【0010】請求項2記載の発明は、請求項1記載のポ
ンプ装置において、上記二方弁は、一次側設定圧をポン
プ規定揚程以外の値に設定変更可能であることを特徴と
している。
According to a second aspect of the present invention, in the pump device of the first aspect, the two-way valve is capable of changing a setting of a primary side set pressure to a value other than a specified pump head.

【0011】請求項3記載の発明は、請求項1記載のポ
ンプ装置において、各ポンプにそれぞれ一次側圧力一定
制御型の二方弁を備え、一次側設定圧をポンプ毎に異な
る値に設定変更可能であることを特徴としている。
According to a third aspect of the present invention, in the pump device according to the first aspect, each pump is provided with a two-way valve of a primary pressure constant control type, and the primary set pressure is changed to a different value for each pump. It is characterized by being possible.

【0012】[0012]

【発明の実施の形態】図1に示すポンプ装置は、本願発
明を適用した空調設備用の冷温水ポンプ装置であって、
2台の定速型ポンプ1,2を並設している。定速型ポン
プ1,2としては、回転速度が変更制御されないいわゆ
る単速度ポンプを使用しているが、可変速型ポンプであ
って、回転速度を固定したものを使用することも可能で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The pump device shown in FIG. 1 is a chilled / hot water pump device for an air conditioner to which the present invention is applied.
Two constant speed pumps 1 and 2 are provided side by side. As the constant-speed pumps 1 and 2, so-called single-speed pumps whose rotation speeds are not changed and controlled are used, but variable-speed pumps having fixed rotation speeds can also be used.

【0013】各定速型ポンプ1,2の吐出口1a,2aに
は吐出管3,4がそれぞれ接続し、両吐出管3,4は共
通吐出管5に合流し、該共通吐出管5は流量センサー6
等を介して共通の負荷発生部9、たとえば熱交換部等に
接続している。
Discharge pipes 3 and 4 are respectively connected to the discharge ports 1a and 2a of the constant-speed pumps 1 and 2, and both discharge pipes 3 and 4 merge into a common discharge pipe 5. Flow sensor 6
Are connected to a common load generating unit 9, for example, a heat exchange unit.

【0014】各定速型ポンプ1,2の吐出管3,4又は
各吐出口1a,2aに、一次側圧力一定制御機能を有する
二方弁11、12を配置している。図1では両ポンプ
1,2共に二方弁11,12を接続しているが、仮に、
一方の定速型ポンプ1を先発とし、他方の定速型ポンプ
2を後発として、それらの運転順序を固定している場合
には、先発の定速型ポンプ1に二方弁11を接続し、後
発の定速型ポンプ2の二方弁12を省略することは可能
である。二方弁11,12は、通常の電動式制御弁、空
圧式制御弁、油圧式制御弁又は水力を利用した自己制御
弁が適しており、弁11,12の一次側圧力を一定圧に
制御する機能を有している。いいかえれば、定速型ポン
プ1,2の吐出口1a,2a及び吐出管3,4の一次側吐
出管部分3a,4aの圧力を一定圧に制御する機能を有し
ている。
Two-way valves 11 and 12 having a primary side pressure constant control function are disposed in the discharge pipes 3 and 4 or the discharge ports 1a and 2a of the constant speed pumps 1 and 2, respectively. Although the two-way valves 11 and 12 are connected to both pumps 1 and 2 in FIG.
When one of the constant-speed pumps 1 is the starting and the other constant-speed pump 2 is the late, and their operation order is fixed, the two-way valve 11 is connected to the preceding constant-speed pump 1. It is possible to omit the two-way valve 12 of the later constant-speed pump 2. As the two-way valves 11 and 12, a normal electric control valve, a pneumatic control valve, a hydraulic control valve, or a self-control valve using hydraulic power is suitable, and the primary pressure of the valves 11, 12 is controlled to a constant pressure. It has the function to do. In other words, it has a function of controlling the pressures of the discharge ports 1a and 2a of the constant speed pumps 1 and 2 and the primary discharge pipe portions 3a and 4a of the discharge pipes 3 and 4 to a constant pressure.

【0015】図3は、図1のポンプ装置の1台運転状態
(先発の定速型ポンプ1のみの運転状態)を示す揚程曲
線図であり、縦軸Hは揚程、横軸Qは吐出し量(水量)
であり、ポンプ全揚程は吐出圧力に等しいとしている。
曲線P1がポンプ1の揚程曲線であり、二方弁11の一
次側設定圧をHn、定格吐出し量をQnとした時、点
(Qn,Hn)を定格運転点Aとし、該定格運転点Aを通
る管路抵抗曲線をRfnとし、管路抵抗を順次少なくした
ものを、大きいものから順に、Rf1,Rf2,Rf3として
いる。
FIG. 3 is a head curve diagram showing the operating state of one of the pump devices of FIG. 1 (operating state of only the preceding constant speed pump 1), wherein the vertical axis H is the head and the horizontal axis Q is the discharge. Amount (amount of water)
And the total pump head is equal to the discharge pressure.
Curve P1 is the lift curve of the pump 1. When the primary side set pressure of the two-way valve 11 is Hn and the rated discharge amount is Qn, the point (Qn, Hn) is the rated operating point A, and the rated operating point is The pipeline resistance curve passing through A is denoted by Rfn, and those with sequentially reduced pipeline resistance are denoted by Rf1, Rf2, and Rf3 in order from the largest one.

【0016】定格運転点Aで運転している時に、管路抵
抗(負荷)を曲線Rf1に下げたとすると、何の制御も加
えなければ、ポンプ運転点は、曲線Rf1と曲線P1との
交点A1になり、ポンプ吐出圧力が上記点A1に対応する
圧力まで低下することになる。しかし、本願発明のよう
に二方弁11を備え、該弁11の一次側圧力を一定圧力
に制御していると、ポンプ吐出圧力、すなわち二方弁1
1の一次側圧力の低下を検知することにより、二方弁内
部の絞り量を自動的に増大し、一次側圧力を定格運転点
Aに対応する圧力Hnまで上昇させる。この時の二方弁
11の絞り増大量は、管路抵抗曲線Rfnと同Rf1との差
に等しく、このため二方弁出口において仮想されるポン
プ性能(二次側圧力)は、ポンプの揚程曲線P1から、
抵抗曲線Rfnと同Rf1の差を、全吐出し量について差し
引いたものとなり、破線で示す揚程曲線P1-1となる。
したがってこの曲線P1-1と管路抵抗曲線Rf1との交点
An1が、二方弁出口における仮想ポンプ性能の運転点と
なるから、この時の吐出し量はQnとなり、前記定格運
転点Aと同一の吐出し量になる。
If the line resistance (load) is reduced to the curve Rf1 during the operation at the rated operating point A, the pump operating point will be at the intersection A1 between the curve Rf1 and the curve P1 if no control is applied. And the pump discharge pressure drops to the pressure corresponding to the point A1. However, when the two-way valve 11 is provided as in the present invention and the primary pressure of the valve 11 is controlled to a constant pressure, the pump discharge pressure, that is, the two-way valve 1
By detecting a decrease in the primary pressure, the throttle amount inside the two-way valve is automatically increased, and the primary pressure is increased to the pressure Hn corresponding to the rated operating point A. The amount of increase in the throttle of the two-way valve 11 at this time is equal to the difference between the line resistance curve Rfn and the same Rf1. Therefore, the pump performance (secondary pressure) imagined at the two-way valve outlet is determined by the pump head From the curve P1,
The difference between the resistance curve Rfn and the resistance curve Rf1 is subtracted for the entire discharge amount, and the result is a lift curve P1-1 indicated by a broken line.
Therefore, the intersection point An1 between the curve P1-1 and the pipeline resistance curve Rf1 is the operating point of the virtual pump performance at the two-way valve outlet, and the discharge amount at this time is Qn, which is the same as the rated operating point A. Discharge amount.

【0017】この状態でのポンプ本来の運転点は前記点
Aに他ならないので、二次側管路抵抗が変化しても、ポ
ンプは当初と同一の運転点Aで運転を続行していること
になる。
Since the original operating point of the pump in this state is nothing but the point A, the pump continues to operate at the same operating point A as the original even if the secondary line resistance changes. become.

【0018】続いて管路抵抗が低下して、曲線Rf2にな
ると、二方弁11の一次側圧力は点A2まで低下するた
め、二方弁11の絞り量はさらに大きくなり、点A2か
ら点Aへと絞り調整される。この時の運転点は、曲線R
f1の時と同様である。すなわち、二方弁出口(二次側)
での揚程(仮想ポンプ性能)は曲線P1-2となり、該曲
線P1-2と曲線Rf2との交点An2が仮想運転点となり、
この時の吐出し量はQnとなり、前記定格運転点Aと同
一の吐出し量になる。勿論、この時のポンプ本来の運転
点は、前記曲線Rf1の場合と同様、点Aである。
Subsequently, when the pipe resistance decreases and the curve Rf2 is reached, the primary pressure of the two-way valve 11 decreases to the point A2, so that the throttle amount of the two-way valve 11 further increases, and The aperture is adjusted to A. The operating point at this time is represented by curve R
Same as f1. That is, two-way valve outlet (secondary side)
Is a curve P1-2, the intersection An2 of the curve P1-2 and the curve Rf2 is a virtual operating point,
The discharge amount at this time is Qn, which is the same discharge amount as the rated operating point A. Of course, the original operating point of the pump at this time is point A, as in the case of the curve Rf1.

【0019】さらに管路抵抗が低下して、曲線Rf3にな
った場合でも、上記曲線Rf1,Rf2の場合と同様に、仮
想ポンプ性能の運転点はAn3、ポンプ本来の運転点は
A、吐出し量はQnとなり、いずれの場合でも、二方弁
により一次側圧力を一定に制御する結果、ポンプ吐出し
量は一定値Qnに保たれる。すなわち、定流量運転され
ることが判る。
Further, even when the pipe line resistance further decreases and becomes the curve Rf3, as in the case of the curves Rf1 and Rf2, the operating point of the virtual pump performance is An3, the original operating point of the pump is A, and the discharge is The amount becomes Qn, and in any case, as a result of controlling the primary pressure to be constant by the two-way valve, the pump discharge amount is maintained at the constant value Qn. That is, it is understood that the constant flow rate operation is performed.

【0020】図2は、定速型ポンプの2台並列運転状態
を示す図であり、図3と同様にポンプの定格揚程をHn
とし、二方弁11,12の一次側設定圧力を同じHnと
し、曲線P1+P2は、2台運転時の揚程曲線である。こ
こで流量が2QnからQnへ減少するときは、前述のよう
にポンプ出口側、すなわち二方弁11の一次側圧力も低
下するので、二方弁11は内部の絞りを増加させて圧力
Hnを維持しようとする。この結果ポンプ吐出圧は圧力
Hnに維持される。今、二方弁11の全開時抵抗を無視
すると、二方弁全開時の曲線P1に対する抵抗は曲線R
のみとなるが、次第に流量が減少すると、二方弁11は
一次側圧力の低下を防ぐため、内部絞りを増加する。ポ
ンプが一台運転となった時は、絞りの増加分は曲線rと
なり、ポンプ1は曲線P1と曲線rとの交点Aで運転す
ることになる。そして二方弁11の二次側でみると、仮
想ポンプ性能は曲線P1から弁抵抗増加分rを差し引い
た曲線P1-nとなり、この曲線P1-nと曲線Rとの交点A
nが仮想ポンプ性能の運転点となり、吐出し量はQnと
なる。すなわち、二方弁11の一次側設定圧力をHnと
指定することにより、先発ポンプ1は吐出し量Qnで固
定して運転されることになり、前記図10の従来例のよ
うに運転点A1での過大吐出し量Q1を回避することがで
きる。
FIG. 2 is a view showing a state in which two constant-speed pumps are operated in parallel. As in FIG.
The primary side set pressures of the two-way valves 11 and 12 are set to the same Hn, and a curve P1 + P2 is a lift curve when two units are operated. Here, when the flow rate decreases from 2Qn to Qn, as described above, the pump outlet side, that is, the primary pressure of the two-way valve 11 also decreases, so the two-way valve 11 increases the internal throttle to reduce the pressure Hn. Try to keep. As a result, the pump discharge pressure is maintained at the pressure Hn. If the resistance of the two-way valve 11 when fully opened is ignored, the resistance to the curve P1 when the two-way valve 11 is fully opened is represented by a curve R1.
However, when the flow rate gradually decreases, the two-way valve 11 increases the internal throttle in order to prevent a decrease in the primary pressure. When one pump is operated, the increase in the throttle becomes a curve r, and the pump 1 operates at the intersection A between the curve P1 and the curve r. On the secondary side of the two-way valve 11, the virtual pump performance becomes a curve P1-n obtained by subtracting the valve resistance increase r from the curve P1, and the intersection A of the curve P1-n and the curve R is obtained.
n becomes the operating point of the virtual pump performance, and the discharge amount becomes Qn. That is, by designating the primary side set pressure of the two-way valve 11 as Hn, the advance pump 1 is operated with the discharge amount Qn fixed, and the operating point A1 as in the conventional example of FIG. The excessive discharge amount Q1 can be avoided.

【0021】このように、定速型ポンプ1,2の2台並
列運転において、従来では、1台のポンプを停止する
と、残る1台は定格を大きく上回る吐出し量で回転し、
過負荷、あるいは振動騒音増加などの諸問題が生じる
が、本願発明のように、少なくとも先発の定速型ポンプ
P1の吐出部に、一次側圧力一定制御型の二方弁11を
配置し、弁一次側圧力を一定に制御することにより、ポ
ンプ1は定格水量Qnで運転され、上記不具合は生じな
い。
As described above, in the parallel operation of two constant-speed pumps 1 and 2, conventionally, when one pump is stopped, the remaining one rotates at a discharge rate greatly exceeding the rating,
Although various problems such as an overload or an increase in vibration noise occur, as in the present invention, the two-way valve 11 of the primary pressure constant control type is arranged at least at the discharge part of the constant-speed pump P1 which has been developed earlier. By controlling the primary pressure to be constant, the pump 1 is operated at the rated water volume Qn, and the above problem does not occur.

【0022】[0022]

【発明の実施の形態2】図4は冷凍機21,22に対し
それぞれ定速型ポンプ1,2を接続した装置に、本願請
求項2記載の発明を適用したものである。基本的な構造
は前記図11の装置と同様であり、同じ部品には同じ符
号を付し、重複する説明は省略する。
[Embodiment 2] FIG. 4 shows an apparatus in which constant-speed pumps 1 and 2 are connected to refrigerators 21 and 22, respectively, to which the invention described in claim 2 of the present application is applied. The basic structure is the same as that of the device shown in FIG. 11, and the same components are denoted by the same reference numerals and overlapping description will be omitted.

【0023】各定速型ポンプ1,2の吐出部にそれぞれ
一次側圧力一定制御型の二方弁11,12が設けられ、
二方弁11,12の一次側圧力(ポンプ吐出圧)を一定
に制御するようになっており、かつ、上記二方弁11,
12は、設定圧がポンプ規定揚程Hn以外の値に設定変
更可能となっている。
The discharge sections of the constant speed pumps 1 and 2 are provided with two-way valves 11 and 12 of a constant primary pressure control type, respectively.
The primary pressure (pump discharge pressure) of the two-way valves 11, 12 is controlled to be constant, and the two-way valves 11, 12
Reference numeral 12 indicates that the set pressure can be changed to a value other than the specified pump head Hn.

【0024】図5は定速型ポンプ1台の運転状態を示す
ものであり、横軸に流量Qを%で示し、縦軸に揚程(ポ
ンプ圧力)Hを同じく%で示している。P1はポンプ1
の揚程曲線、Rは管路抵抗を代表した曲線であり、両曲
線P1,Rの交点Aはポンプ1の定格運転点を示してい
る。定格水量Qnを比率100%とし、冷凍機の下限水
量Qbをたとえば60%としている。Hnは比率100%
の定格揚程、Hbは前記水量Qbに対応する揚程であり、
たとえば比率130%である。
FIG. 5 shows the operating state of one constant speed pump. The horizontal axis shows the flow rate Q in%, and the vertical axis shows the head (pump pressure) H in%. P1 is pump 1
Is a curve representing the pipeline resistance, and the intersection A of the curves P1, R indicates the rated operating point of the pump 1. The rated water amount Qn is set to 100%, and the lower limit water amount Qb of the refrigerator is set to, for example, 60%. Hn is 100% ratio
Hb is the head corresponding to the water amount Qb,
For example, the ratio is 130%.

【0025】二次側負荷発生部28の負荷減少に伴い、
水量がQnから次第にQbへと減少するとき、二方弁1
1,12の一次側設定圧をHbと指定すれば、前記説明
と同様にポンプの運転点はA4、二方弁11の二次側仮
想ポンプ性能はP1-n、仮想ポンプ性能の運転点はAbと
なり、これにより吐出し量はQbに固定される。
As the load on the secondary load generator 28 decreases,
When the amount of water gradually decreases from Qn to Qb, two-way valve 1
If the primary side set pressure of 1, 12 is designated as Hb, the pump operating point is A4, the secondary virtual pump performance of the two-way valve 11 is P1-n, and the virtual pump performance operating point is Ab, whereby the ejection amount is fixed at Qb.

【0026】このように、冷凍機下限水量Qbは、負荷
の連続的な減少にかかわらず、設定値通りに確実に維持
される。その他、従来のバイパス方式の定量運転に比べ
ると、負荷に応じた動力に節減される。たとえば、Lは
ポンプ動力(軸動力)の変化を示しているが、従来の定
量運転では軸動力がL1必要であるのに対し、本願では
L2に節減される。
As described above, the refrigerator lower limit water amount Qb is reliably maintained at the set value irrespective of the continuous decrease in the load. In addition, compared to the conventional bypass-type fixed operation, the power is reduced according to the load. For example, L indicates a change in pump power (shaft power). In the conventional quantitative operation, the shaft power is required to be L1, whereas in the present application, L2 is reduced.

【0027】要するに、二方弁11,12を規定揚程以
外の設定圧に変更可能としていると、図4に示す冷凍機
において、水量100%から下限水量60%までの変化
に対応して、ポンプ圧力がそれぞれの水量に対応する圧
力(比%)になるように二方弁11,12を可変設定す
ることにより、いかなるときでも冷凍機の下限水量を確
保すると同時に、流量の低下に応じて運転動力が低下す
るポンプ特性を利用することで、従来の定量運転に比べ
て省エネを達成することができるのである。
In short, if the two-way valves 11 and 12 can be changed to a set pressure other than the specified head, in the refrigerator shown in FIG. By variably setting the two-way valves 11 and 12 so that the pressure becomes a pressure (%) corresponding to each water amount, the lower limit water amount of the refrigerator is ensured at any time, and at the same time, the operation is performed according to a decrease in the flow rate. By using the pump characteristic that reduces the power, it is possible to achieve energy saving compared to the conventional quantitative operation.

【0028】さらに図6により、定格水量Qn以下の小
水量において、二方弁11,12の制御作用で、ポンプ
の吐出し量に対応した圧力でポンプが運転できることを
説明する。
Further, FIG. 6 explains that the pump can be operated at a pressure corresponding to the discharge amount of the pump by controlling the two-way valves 11 and 12 in a small water amount equal to or less than the rated water amount Qn.

【0029】冷房負荷が減少した場合に、空調機に対す
る冷水供給量を調整弁で絞りを増加させる等の方法によ
り、管路抵抗を増加して、抵抗曲線Rより大きな抵抗曲
線r1になったとして、この時の水量がQbであるとする
と、ポンプ特性上の圧力はHbであり、曲線r1とポン
プの揚程P1との交点はA4となる。このような状態を設
定し、維持するためには、二方弁11,12の設定圧を
Hbと指示しておけば良い。そうすると、この時の弁二
次側で仮想したポンプ特性は、曲線P1から、各水量に
わたって曲線Rと曲線r1との差をマイナスしたことで
得られる曲線P1-1となる。そして曲線P1-1と曲線Rと
の交点An1が仮想ポンプ運転点となる。このことは、一
旦設定した圧力Hbを変更しない限り、上記仮想運転点
An1、すなわち水量Qbでの運転が保証される。さら
に、負荷水量がQcに減少した時も、二方弁11,12
の一次側圧力をHcと指示している限り、ポンプ運転点
はA5、仮想ポンプ性能は曲線P1-2、仮想ポンプ運転点
はAn2となり、水量Qcが吐出される。
When the cooling load is reduced, the pipe resistance is increased by a method such as increasing the amount of chilled water supplied to the air conditioner by using a regulating valve to increase the throttle, and the resistance curve r1 becomes larger than the resistance curve R. If the amount of water at this time is Qb, the pressure on the pump characteristic is Hb, and the intersection of the curve r1 and the pump head P1 is A4. In order to set and maintain such a state, the set pressure of the two-way valves 11 and 12 may be designated as Hb. Then, the pump characteristic imagined on the valve secondary side at this time is a curve P1-1 obtained by subtracting the difference between the curve R and the curve r1 from the curve P1 over each water amount. Then, an intersection An1 between the curve P1-1 and the curve R is a virtual pump operating point. This means that the operation at the virtual operating point An1, that is, the water amount Qb, is guaranteed unless the set pressure Hb is changed once. Further, when the load water amount is reduced to Qc, the two-way valves 11, 12
As long as the primary side pressure is indicated as Hc, the pump operating point is A5, the virtual pump performance is curve P1-2, the virtual pump operating point is An2, and the water amount Qc is discharged.

【0030】すなわち、水量Qcを下限水量とする時
は、二方弁11,12の一次側設定圧をその水量に対応
する圧力Hcに指定しておけば、この水量Qcよりも減少
することはなく、冷凍機に必要な下限水量は確保される
のである。
That is, when the water amount Qc is set to the lower limit water amount, if the primary side set pressure of the two-way valves 11 and 12 is designated to the pressure Hc corresponding to the water amount, the water amount Qc cannot be reduced below this water amount Qc. Therefore, the minimum water volume required for the refrigerator is secured.

【0031】図6の水量QnからQcに亘って、対応する
ポンプ圧力を予め設定しておくことにより、定格水量Q
nから下限水量Qcの範囲で、実流量に伴って二方弁1
1,12の一次側設定圧が自動的に設定替えされること
になり、確実な運転状態を継続することができる。そし
て、下限水量を確実に守ることができるのである。
By setting the corresponding pump pressure in advance from the water amounts Qn to Qc in FIG. 6, the rated water amount Q
In the range from n to the lower limit water amount Qc, the two-way valve 1
The primary set pressures of the first and the second 12 are automatically changed, so that a reliable operating state can be maintained. And the lower limit water amount can be surely kept.

【0032】[0032]

【発明の実施の形態3】図7において、4台の定速型ポ
ンプ41,42,43,44を並設し、各ポンプ41,
42,43,44の吐出部に一次側圧力一定制御型の二
方弁51,52,53,54を接続してなるポンプ装置
に、本願請求項3記載の発明を適用した場合を説明す
る。すなわち、各二方弁51,52,53,54は、設
定圧がポンプ毎に異なる値に設定変更可能としているの
である。
Third Embodiment In FIG. 7, four constant-speed pumps 41, 42, 43, and 44 are provided side by side.
A case where the invention according to claim 3 of the present application is applied to a pump device in which two-way valves 51, 52, 53, 54 of a constant primary pressure control type are connected to discharge portions 42, 43, 44 will be described. That is, the setting pressure of each of the two-way valves 51, 52, 53, 54 can be changed to a different value for each pump.

【0033】図8は、図7のポンプ装置の4台運転状態
における揚程曲線図を示している。1台運転時におい
て、二方弁51がない場合の運転点はA1となるが、本
願では二方弁51の一次側圧力一定制御により、仮想ポ
ンプ性能の運転点はAnとなり、吐出し量は定格のQnと
なり、また、ポンプ吐出圧力はHnに保たれる。
FIG. 8 shows a head curve in the four-unit operation state of the pump device of FIG. In the single-unit operation, the operating point when there is no two-way valve 51 is A1, but in the present application, the operating point of the virtual pump performance is An due to the primary side constant pressure control of the two-way valve 51, and the discharge amount is It becomes the rated Qn, and the pump discharge pressure is kept at Hn.

【0034】同じく2台運転中は、前記説明と同様に、
二方弁52がない場合の運転点はB1となるが、本願で
は二方弁52の一次側圧力一定制御により、仮想ポンプ
性能の運転点はBnとなり、吐出し量は2Qn、ポンプ吐
出圧力はHnに保たれる。
Similarly, during the operation of the two vehicles, as described above,
The operating point when the two-way valve 52 is not provided is B1, but in this application, the operating point of the virtual pump performance is Bn, the discharge amount is 2Qn, and the pump discharge pressure is Hn is maintained.

【0035】3台運転中は、前記説明と同様に、二方弁
53がない場合の運転点はC1となるが、本願では二方
弁53の一次側圧力一定制御により、仮想ポンプ性能の
運転点はCnとなり、吐出し量は3Qn、ポンプ吐出圧力
はHnに保たれる。
During the operation of the three units, the operating point when there is no two-way valve 53 is C1 as described above. The point is Cn, the discharge amount is kept at 3Qn, and the pump discharge pressure is kept at Hn.

【0036】4台運転中は、全ポンプが定格となる。以
上のように、何台が並列運転しても、二方弁の一次側圧
力をポンプのその時の定格吐出し量に相当する圧力に設
定しておけば、ポンプは定格水量一定に運転され、過大
水量運転や過負荷運転状態になることがない。
During operation of all four units, all pumps are rated. As described above, no matter how many units are operated in parallel, if the primary pressure of the two-way valve is set to the pressure corresponding to the rated discharge amount of the pump at that time, the pump will be operated at a constant rated water volume, Excessive water operation or overload operation does not occur.

【0037】また、各水量間の変化に応じた必要圧力設
定を予め行っておけば、連続した水量変化に対し、それ
ぞれの状態で二方弁に対して必要圧力設定が自動的に行
われることになるので、全水量範囲にわたり確実なポン
プ吐出し量が過不足なく得られることになる。この時の
圧力の上下限は、図8において、1台運転時、水量最小
時設定圧はHs、水量最大時設定圧はHnとなり、2台運
転時、水量最小時設定圧はH1、水量最大時設定圧はHn
となり、3台運転時、水量最小時設定圧はH2、水量最
大時設定圧はHnとなり、4台運転時、水量最小時設定
圧はH3、水量最大時設定圧はHnとなる。このような最
大最小圧力間を、ポンプ揚程曲線に近似させた圧力設定
とすればよい。
Further, if the necessary pressure is set in advance in accordance with the change between the water amounts, the required pressure is automatically set for the two-way valve in each state with respect to the continuous change in the water amount. Therefore, a reliable pump discharge amount can be obtained without excess or shortage over the entire water amount range. In FIG. 8, the upper and lower limits of the pressure at this time are as follows. In FIG. 8, the set pressure at the time of minimum water flow is Hs and the set pressure at the maximum water flow is Hn. Time set pressure is Hn
When three units are operated, the set pressure at the minimum water amount is H2, and the set pressure at the maximum water amount is Hn. When four units are operated, the set pressure at the minimum water amount is H3 and the set pressure at the maximum water amount is Hn. The pressure between the maximum and minimum pressures may be set as a pressure approximating the pump head curve.

【0038】[0038]

【発明の効果】(1)複数台の定速型ポンプを並設し、
各ポンプの吐出管を合流させて共通の負荷発生部に接続
するポンプ装置において、ポンプの吐出部に、一次側圧
力を一定に制御する二方弁を設けているので、負荷が減
少して1台運転状態となった時でも、過大流量化を防
ぎ、ポンプ動力が過負荷になるのを防ぐことができる。
According to the present invention, (1) a plurality of constant-speed pumps are arranged side by side,
In a pump device in which discharge pipes of respective pumps are merged and connected to a common load generating unit, a two-way valve for controlling the primary pressure to a constant level is provided at the discharge unit of the pump. Even in the case of the platform operation state, it is possible to prevent the flow rate from becoming excessively large and prevent the pump power from being overloaded.

【0039】(2)ポンプ駆動用の電動機等を大型化す
ることなく、小型のポンプを効率良く利用してポンプ動
力の過負荷を防ぐことができるので、設備コストが節約
できると共に、キャビテーションや騒音振動の発生も防
止することができる。
(2) It is possible to efficiently use a small pump and prevent overload of the pump power without increasing the size of an electric motor for driving the pump, so that equipment costs can be reduced, and cavitation and noise can be reduced. Generation of vibration can also be prevented.

【0040】(3)二方弁を規定揚程以外の設定圧に変
更可能としていると、たとえば冷凍機において、水量1
00%から下限水量までの変化に対応して、ポンプ圧力
がそれぞれの水量に対応する圧力になるように二方弁を
可変設定することにより、いかなるときでも冷凍機の下
限水量を確保すると同時に、流量の低下に応じて運転動
力が低下するポンプ特性を利用することで、従来の定量
運転に比べて省エネを達成することができるのである。
(3) If the two-way valve can be changed to a set pressure other than the specified head, for example, in the refrigerator,
In response to the change from 00% to the lower limit water amount, the two-way valve is variably set so that the pump pressure becomes a pressure corresponding to each water amount, thereby ensuring the lower limit water amount of the refrigerator at any time, By using the pump characteristic in which the operating power decreases as the flow rate decreases, energy saving can be achieved as compared with the conventional quantitative operation.

【0041】(4)各二方弁を、設定圧がポンプ毎に異
なる値に設定変更可能としていると、何台が並列運転し
ても、二方弁の一次側圧力をポンプのその時の定格吐出
し量に相当する圧力に設定しておけば、ポンプは定格水
量一定に運転され、過大水量運転や過負荷運転状態にな
ることがない。
(4) If the set pressure of each two-way valve can be changed to a different value for each pump, the primary pressure of the two-way valve can be adjusted to the rated pressure of the pump no matter how many units are operated in parallel. If the pressure is set to the pressure corresponding to the discharge amount, the pump is operated at a constant rated water amount, and there is no excessive water amount operation or overload operation state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願発明を適用したポンプ装置の配管略図で
ある。
FIG. 1 is a schematic piping diagram of a pump device to which the present invention is applied.

【図2】 図1のポンプ装置の揚程曲線図である。FIG. 2 is a head curve diagram of the pump device of FIG.

【図3】 図1のポンプ装置の1台運転時の状態を示す
揚程曲線図である。
3 is a lift curve diagram showing a state of one pump device of FIG. 1 during operation.

【図4】 本願請求項2記載の発明を冷凍機に適用した
配管略図である。
FIG. 4 is a schematic diagram of a piping in which the invention described in claim 2 of the present application is applied to a refrigerator.

【図5】 図4のポンプ装置を1台運転した場合の揚程
曲線図である。
FIG. 5 is a head curve diagram when one pump device of FIG. 4 is operated.

【図6】 図4のポンプ装置を2台運転した場合の揚程
曲線図である。
6 is a head curve diagram when two pump devices of FIG. 4 are operated.

【図7】 本願請求項3記載の発明を適用したポンプ装
置の配管略図である。
FIG. 7 is a schematic piping diagram of a pump device to which the invention described in claim 3 of the present application is applied.

【図8】 図7のポンプ装置の運転状態を示す揚程曲線
図である。
8 is a head curve diagram showing an operation state of the pump device of FIG.

【図9】 従来例の配管略図である。FIG. 9 is a schematic diagram of a conventional pipe.

【図10】 図9のポンプ装置の2台運転状態を示す揚
程曲線図である。
FIG. 10 is a lift curve diagram showing an operating state of two pump units of FIG. 9;

【図11】 従来の冷凍機の配管略図である。FIG. 11 is a piping schematic diagram of a conventional refrigerator.

【符号の説明】[Explanation of symbols]

1,2,41,42,43,44 定速型ポンプ 9,28 共通負荷発生部 11,12,51,52,53,54 一次側圧力一定
制御型の二方弁
1,2,41,42,43,44 Constant-speed pump 9,28 Common load generator 11,12,51,52,53,54 Two-way valve with constant primary pressure control

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転速度が一定に固定された定速型ポン
プ1,2を複数台並列に備え、 各ポンプ1,2の吐出部1a,2aは、吐出管3,4及
びこれらを集合した共通吐出管5を介して共通の負荷発
生部9(又は28)に接続し、 各ポンプ1,2の吐出部1a,2a又は一次側吐出管部
分3a,4aに、弁一次側圧力を一定圧に制御する一次
側圧力一定制御型二方弁11,12の弁一次側部分を接
続し、 二方弁11,12の二次側出口を負荷発生部9側に接続
していることを特徴とするポンプ装置。
1. A plurality of constant-speed pumps 1 and 2 having a fixed rotation speed are provided in parallel, and discharge sections 1a and 2a of each of the pumps 1 and 2 collect discharge pipes 3 and 4 and these. Connected to the common load generating section 9 (or 28) via the common discharge pipe 5, the discharge section 1a, 2a or the primary discharge pipe section 3a, 4a of each of the pumps 1 and 2 applies a valve primary pressure to a constant pressure. The two-way valves 11 and 12 are connected to the primary side of the constant-pressure control type two-way valves 11 and 12, and the outlets of the two-way valves 11 and 12 are connected to the load generator 9 side. Pumping equipment.
【請求項2】 上記二方弁1,2は、一次側設定圧をポ
ンプ規定揚程以外の値に設定変更可能であることを特徴
とする請求項1記載のポンプ装置。
2. The pump device according to claim 1, wherein the two-way valves 1 and 2 are capable of changing a primary side set pressure to a value other than a specified pump head.
【請求項3】 上記各二方弁1,2は、ポンプ毎に異な
る値に設定変更可能である規定揚程以外の値に設定変更
可能であることを特徴とする請求項1記載のポンプ装
置。
3. The pump apparatus according to claim 1, wherein each of said two-way valves 1 and 2 is changeable to a value other than a specified head which can be changed to a different value for each pump.
JP11040030A 1999-02-18 1999-02-18 Pump device Expired - Fee Related JP3142267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11040030A JP3142267B2 (en) 1999-02-18 1999-02-18 Pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11040030A JP3142267B2 (en) 1999-02-18 1999-02-18 Pump device

Publications (2)

Publication Number Publication Date
JP2000240586A JP2000240586A (en) 2000-09-05
JP3142267B2 true JP3142267B2 (en) 2001-03-07

Family

ID=12569522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11040030A Expired - Fee Related JP3142267B2 (en) 1999-02-18 1999-02-18 Pump device

Country Status (1)

Country Link
JP (1) JP3142267B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4331539B2 (en) 2003-07-31 2009-09-16 株式会社フジキン Gas supply device to chamber and chamber internal pressure control method using the same
JP4399227B2 (en) 2003-10-06 2010-01-13 株式会社フジキン Chamber internal pressure control device and internal pressure controlled chamber
WO2010095679A1 (en) * 2009-02-18 2010-08-26 株式会社東芝 Lubricating oil system
CN113482730A (en) * 2021-08-17 2021-10-08 宝武集团鄂城钢铁有限公司 Oil supply device, control method and storage medium

Also Published As

Publication number Publication date
JP2000240586A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
EP1134523B1 (en) Chilling unit with "free-cooling", designed to operate also with variable flow rate
JP2018016299A (en) Method for operating cooling system of ship
JP3142267B2 (en) Pump device
JP2701812B2 (en) Hydraulic fan hydraulic drive controller for cooling tower
US4484454A (en) Air conditioning apparatus
JPH0131877Y2 (en)
JP3745357B2 (en) Air conditioning system
JPH07103584A (en) Air-conditioning equipment
JPH06159741A (en) Heat-medium transporting control method and apparatus for district cooling/heating
KR100796838B1 (en) Engine Controlling Device and Engine Driving Type Heat Pump Device Using the Same
JP2003207190A (en) Air conditioning system
JPS5811341A (en) Air-conditioning apparatus
JP3834905B2 (en) Multi-room air conditioner
JPS62282110A (en) Control device for hydraulic-device type cooling fan
CN220453976U (en) Variable-evaporation-volume variable-frequency heat pump unit
JPH09317465A (en) Hydraulic drive for cooling fan
JPS6327204Y2 (en)
JPH06280563A (en) Control method for cooling water temperature of engine and device thereof
JPS6212427A (en) Hydraulic driving device for vehicles
JP2554137B2 (en) How to operate the heat storage device
JP3270272B2 (en) Control system for heat source system for air conditioning
JPS62116846A (en) Control device for the number of operating refrigerating machines
JPH0623713Y2 (en) Cooling fan drive
JPH05172427A (en) Engine-driven air conditioning apparatus
JPH11118282A (en) Cold/hot water supply device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees