WO2023032133A1 - Heating and cooling system for buildings - Google Patents

Heating and cooling system for buildings Download PDF

Info

Publication number
WO2023032133A1
WO2023032133A1 PCT/JP2021/032328 JP2021032328W WO2023032133A1 WO 2023032133 A1 WO2023032133 A1 WO 2023032133A1 JP 2021032328 W JP2021032328 W JP 2021032328W WO 2023032133 A1 WO2023032133 A1 WO 2023032133A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
water
cooling
building
heating
Prior art date
Application number
PCT/JP2021/032328
Other languages
French (fr)
Japanese (ja)
Inventor
昌弘 小田根
Original Assignee
三菱電機ビルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルソリューションズ株式会社 filed Critical 三菱電機ビルソリューションズ株式会社
Priority to CN202180101855.1A priority Critical patent/CN117881932A/en
Priority to PCT/JP2021/032328 priority patent/WO2023032133A1/en
Priority to JP2023544921A priority patent/JPWO2023032133A1/ja
Publication of WO2023032133A1 publication Critical patent/WO2023032133A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/08Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with separate supply and return lines for hot and cold heat-exchange fluids i.e. so-called "4-conduit" system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a building heating and cooling system.
  • the building cooling and heating system of Patent Document 1 includes a water-cooled building multi-air conditioner, return water from other buildings in a certain area of the district cooling and heating to the district cooling and heating plant, and a heat source for the water-cooled building multi-air conditioner. It has a heat exchanger that exchanges heat with water, and a control means that uses the temperature of return water from the building to control the temperature of the heat source water that is supplied to the heat source unit of the water-cooled building multi-air conditioner.
  • Patent Document 1 In the building cooling and heating system described in Patent Document 1, there are times when it is desired to operate air conditioners on a specific floor when air conditioners on other floors are stopped, such as early in the morning in summer or after working hours. be. In such cases, large capacity pumps must be operated to supply cold and hot water from the district heating and cooling plant into the building. When a large-capacity pump is operated, the tenant of the specific floor has to bear the electricity charge for the amount of power, which increases the tenant's electricity charge.
  • an object of the present disclosure is to provide a building cooling and heating system that can prevent the electricity bills of tenants on a specific floor from increasing when only the air conditioners on the specific floor are operated. .
  • the building cooling and heating system of the present disclosure includes a first heat source pump for supplying cold water from the district heating and cooling plant into the building, and a second heat source pump for supplying hot water from the district cooling and heating plant into the building. , an air handling unit that uses cold and hot water to cool and heat the first group of floors in the building, and a water cooling unit that uses cold water returned from the building to the district heating and cooling plant to cool and heat the second group of floors in the building. Equipped with air conditioning and heating equipment.
  • the first heat source pump and the second heat source pump operate when the floors of the first group are cooled and heated, and the first heat source pump and the second heat source pump are stopped when only the floors of the second group are cooled and heated. .
  • FIG. 1 is a diagram illustrating the configuration of a building cooling and heating system according to Embodiment 1;
  • FIG. 1 is a diagram showing the configuration of a water-cooled air conditioning system 51 according to Embodiment 1.
  • FIG. 1 is a diagram illustrating a configuration of heat source equipment 20 of Embodiment 1.
  • FIG. 3 is a flow chart showing a control procedure of the building cooling/heating system of Embodiment 1.
  • FIG. FIG. 10 is a diagram showing the configuration of a water-cooled air conditioning system 51a according to Embodiment 2;
  • FIG. 10 is a diagram showing the configuration of a heat source device 20 according to Embodiment 2;
  • 7 is a flow chart showing the operation procedure of the building cooling/heating system of Embodiment 2.
  • FIG. 1 is a diagram showing the configuration of a building cooling and heating system of a reference example.
  • the building cooling and heating system of the reference example includes a cold water supply pipe 12a, a hot water supply pipe 10a, a cold water return pipe 12b, a hot water return pipe 10b, a first heat source pump 41, and a second heat source pump. 42.
  • the chilled water supply pipe 12a supplies chilled water from the district heating and cooling plant to the air handling unit 31 in the building.
  • the hot water supply pipe 10a supplies hot water from the district heating and cooling plant to the air handling unit 31 in the building.
  • the chilled water return pipe 12b returns the chilled water flowing out from the air handling unit 31 in the building to the district heating and cooling plant.
  • the hot water return pipe 10b returns hot water flowing out from the air handling unit 31 in the building to the district heating and cooling plant.
  • the first heat source pump 41 is arranged in the cold water supply pipe 12a.
  • a first heat source pump 41 supplies chilled water from a district heating and cooling plant into the building.
  • the second heat source pump 42 is arranged in the hot water supply pipe 10a.
  • a second heat source pump 42 supplies hot water from a district heating and cooling plant into the building.
  • the building cooling and heating system of the reference example includes an air handling unit 31 and dampers 32a and 32b provided for each floor.
  • each floor may have a plurality of air handling units 31 installed, but here, for convenience of explanation, it is assumed that each floor has one air handling unit installed.
  • the air handling unit 31 cools or heats the floor using cold water supplied from the cold water outgoing pipe 12a or hot water supplied from the hot water outgoing pipe 10a.
  • the air handling unit 31 comprises an air filter, heat exchanger, humidifier and blower.
  • the air handling unit 31 is installed in a dedicated machine room, and air is sent to each room by dampers 32a and 32b.
  • Cold water flows into the air handling unit 31 through the cold water outlet pipe 12a, and hot water flows into the air handling unit 31 through the hot water outlet pipe 10a.
  • Cold water flowing out from the air handling unit 31 is sent to the cold water return pipe 12b, and hot water flowing out from the air handling unit 31 is sent to the hot water return pipe 10b.
  • FIG. 2 is a diagram showing the configuration of the building cooling/heating system according to the first embodiment.
  • the building cooling and heating system of Embodiment 1 includes a cold water supply pipe 12a, a hot water supply pipe 10a, a cold water return pipe 12b, a hot water return pipe 10b, A first heat source pump 41 and a second heat source pump 42 are provided.
  • the chilled water supply pipe 12a supplies chilled water from the district heating and cooling plant to the air handling unit 31 in the building.
  • the hot water supply pipe 10a supplies hot water from the district heating and cooling plant to the air handling unit 31 in the building.
  • the chilled water return pipe 12b returns the chilled water flowing out from the air handling unit 31 in the building to the district heating and cooling plant.
  • the hot water return pipe 10b returns hot water flowing out from the air handling unit 31 in the building to the district heating and cooling plant.
  • the first heat source pump 41 is arranged in the cold water supply pipe 12a.
  • a first heat source pump 41 supplies chilled water from a district heating and cooling plant into the building.
  • the second heat source pump 42 is arranged in the hot water supply pipe 10a.
  • a second heat source pump 42 supplies hot water from a district heating and cooling plant into the building.
  • the building cooling and heating system of Embodiment 1 includes an air handling unit 31 and dampers 32a and 32b provided for each floor of the first group in the building.
  • each floor may have a plurality of air handling units 31 installed, but here, for convenience of explanation, it is assumed that each floor has one air handling unit installed.
  • the floors of the first group are the floors other than the 10th floor in the building, and the floors of the second group are the 10th floor in the building, but the present invention is not limited to this.
  • the second group of floors may be multiple floors in the building.
  • the air handling unit 31 cools or heats the floors in charge of the first group in the building using cold water supplied from the cold water outgoing pipe 12a or hot water supplied from the hot water outgoing pipe 10a.
  • the air handling unit 31 comprises an air filter, heat exchanger, humidifier and blower.
  • the air handling unit 31 is installed in a dedicated machine room, and air is sent to each room by dampers 32a and 32b.
  • Cold water flows into the air handling unit 31 through the cold water outlet pipe 12a, and hot water flows into the air handling unit 31 through the hot water outlet pipe 10a.
  • Cold water flowing out from the air handling unit 31 is sent to the cold water return pipe 12b, and hot water flowing out from the air handling unit 31 is sent to the hot water return pipe 10b.
  • the building cooling and heating system of Embodiment 1 includes water-cooled cooling and heating equipment 51 provided for each floor of the second group.
  • the water-cooled cooling and heating equipment 51 cools or heats the floors of the second group in the building, using cold water supplied from the cold water return pipe 12b.
  • the reason why only cold water is used without using hot water is as follows.
  • a water-cooled multi air conditioner for buildings is capable of cooling and heating operations as long as the temperature of the supplied water is in the range of 10°C to 45°C.
  • Cold water supplied from the cold water return pipe 12b is often about 12°C. Therefore, the water-cooled building multi-air conditioner is capable of cooling operation and heating operation using cold water supplied from the cold water return pipe 12b.
  • FIG. 3 is a diagram showing the configuration of water-cooled cooling and heating equipment 51 of Embodiment 1.
  • the water-cooled cooling and heating equipment 51 includes a heat exchanger 24 , a transfer pump 23 , a heat source device 20 , a branch controller 21 , and a plurality of indoor units 22 .
  • the heat source unit 20, the branch controller 21, and the plurality of indoor units 22 constitute a water-cooled multi-air conditioner for buildings.
  • the heat exchanger 24 includes a portion of the cold water return pipe 12b and a portion of the pipe 25.
  • the heat exchanger 24 exchanges heat between cold water flowing through part of the cold water return pipe 12 b and heat source water flowing through part of the pipe 25 .
  • the heat source machine 20 uses the heat source water to generate cool air or warm air.
  • the conveying pump 23 is arranged in the pipe 25 .
  • the transport pump 23 transports the heat source water to the heat source equipment 20 .
  • the branch controller 21 supplies cold air or warm air generated by the heat source device 20 to each indoor unit 22 in accordance with the settings such as the operation mode of each indoor unit 22 .
  • One or more indoor units 22 are installed for each room.
  • the flow dividing controller 21 forms a flow path for supplying gaseous refrigerant to the indoor unit for heating and supplying liquid refrigerant to the indoor unit for cooling.
  • the indoor unit 22 supplies cold air or warm air to the room in which it is installed.
  • the indoor unit 22 can individually set the operation mode and the room temperature setting.
  • FIG. 4 is a diagram showing the configuration of heat source equipment 20 according to the first embodiment.
  • the heat source device 20 includes a compressor 61 and a flow switching device 62 through which refrigerant flows, and a water-cooled condenser 64 through which refrigerant and heat source water flow.
  • the water-cooled condenser 64 is of a double-tube type, in which the heat source water flows inside and the refrigerant flows outside.
  • the indoor unit 22 includes an indoor heat exchanger 63 through which a refrigerant flows, and an air blower 66. Although only one indoor unit 22 is shown in FIG. 4, a plurality of indoor units 22 may be installed.
  • the flow path of the flow switching device 62 is switched so that the refrigerant discharged from the compressor 61 flows into the indoor heat exchanger 63 .
  • a high-temperature, high-pressure gas refrigerant is discharged from the compressor 61 by compressing the low-temperature, low-pressure refrigerant by the compressor 61 .
  • the gas refrigerant discharged from the compressor 61 flows into the indoor heat exchanger 63 via the flow switching device 62 .
  • the refrigerant that has flowed into the indoor heat exchanger 63 is condensed by exchanging heat with the air in the indoor heat exchanger 63 and flows out of the indoor heat exchanger 63 as a low-temperature, high-pressure liquid refrigerant.
  • the liquid refrigerant flowing out of the indoor heat exchanger 63 is turned into a low-temperature, low-pressure liquid refrigerant by the water-cooled condenser 64 .
  • the low-temperature, low-pressure liquid refrigerant flows into the compressor 61 via the flow switching device 62 .
  • the heat source water that has flowed out of the heat exchanger 24 flows into the water-cooled condenser 64 via the transfer pump 23 .
  • the heat source water flowing out of the water-cooled condenser 64 exchanges heat with cold water in the heat exchanger 24 and flows out of the heat exchanger 24 .
  • the compressor 61 As the low-temperature, low-pressure refrigerant is compressed by the compressor 61 , high-temperature, high-pressure gas refrigerant is discharged from the compressor 61 .
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 61 flows through the flow switching device 62 to the water-cooled condenser 64 .
  • the gas refrigerant is turned into a low-temperature, low-pressure liquid refrigerant by the water-cooled condenser 64 and flows into the indoor heat exchanger 63 .
  • the refrigerant that has flowed into the indoor heat exchanger 63 exchanges heat with the air in the indoor heat exchanger 63 to evaporate and flow out of the indoor heat exchanger 63 as a low-temperature, low-pressure gas refrigerant.
  • the refrigerant that has flowed out of the indoor heat exchanger 63 is sucked into the compressor 61 via the flow switching device 62 .
  • the heat source water that has flowed out of the heat exchanger 24 flows into the water-cooled condenser 64 via the transfer pump 23 .
  • the heat source water flowing out of the water-cooled condenser 64 exchanges heat with cold water in the heat exchanger 24 and flows out of the heat exchanger 24 .
  • FIG. 5 is a flow chart representing the control procedure of the building cooling and heating system according to the first embodiment.
  • step S101 when the air-conditioning operation of any floor is executed, the process proceeds to step S102.
  • step S102 if the air-conditioning operation is performed only on the floors of the second group, the process proceeds to step S103.
  • step S106 if only the first group floors are to be air-conditioned, the process proceeds to step S107, and if the first group floors and second group floors are to be air-conditioned, the process goes to step S110.
  • control device 500 stops all the air handling units 31.
  • step S107 the control device 500 causes the first heat source pump 41 and the second heat source pump 42 to operate.
  • step S108 the control device 500 stops the heat exchangers 24, heat source units 20, transfer pumps 23, branch controllers 21, and indoor units 22 on all floors of the second group.
  • step S109 the control device 500 operates the air handling unit 31 of the floor to be air-conditioned among the floors of the first group.
  • step S111 the control device 500 causes the heat exchangers 24, the heat source units 20, the transport pumps 23, the branch controllers 21, and the indoor units 22 of the floors in the second group to be air-conditioned to operate.
  • step S112 the control device 500 operates the air handling unit 31 of the floor to be air-conditioned among the floors of the first group.
  • the first heat source pump 41 and the second heat source pump 42 are stopped to prevent the tenants of the second group floor from increasing their electricity bills. can be done.
  • the tenants of the second group can freely operate the air conditioners at any time without worrying about electricity charges.
  • this embodiment by using cold water returned to the district heating and cooling plant, it is possible to eliminate the need to install a cooling tower and a boiler.
  • FIG. 6 is a diagram showing the configuration of a water-cooled air conditioning system 51a according to the second embodiment.
  • the water-cooled cooling and heating equipment 51 a includes a heat source device 20 , a branch controller 21 and a plurality of indoor units 22 .
  • the heat source unit 20, the branch controller 21, and the plurality of indoor units 22 constitute a water-cooled multi-air conditioner for buildings.
  • the cold water return pipe 12 b is connected to the branch pipe 35 .
  • Cold water flowing through the cold water return pipe 12 b is supplied to the heat source device 20 by the branch pipe 35 .
  • the heat source device 20 uses cold water flowing through the branch pipe 35 to generate cool air or warm air.
  • the branch controller 21 supplies cold air or warm air generated by the heat source device 20 to each indoor unit 22 according to settings such as the operation mode of each indoor unit 22 .
  • One or more indoor units 22 are installed for each room.
  • the indoor unit 22 supplies cold air or warm air to the room in which it is installed.
  • the indoor unit 22 can individually set the operation mode and the room temperature setting.
  • FIG. 7 is a diagram showing the configuration of heat source equipment 20 according to the second embodiment.
  • the heat source device 20 includes a compressor 61 and a channel switching device 62 through which refrigerant flows, and a water-cooled condenser 64 through which refrigerant and cold water flow.
  • the water-cooled condenser 64 is of a double-tube type, in which cold water flows inside and refrigerant flows outside.
  • the indoor unit 22 includes an indoor heat exchanger 63 through which refrigerant flows, and an air blower 66 .
  • the operation of the water-cooled cooling/heating equipment 51a when the operation mode is cooling will be described.
  • the flow direction of the refrigerant during cooling is indicated by solid arrows.
  • the flow path of the flow switching device 62 is switched so that the refrigerant discharged from the compressor 61 flows into the indoor heat exchanger 63 .
  • a high-temperature, high-pressure gas refrigerant is discharged from the compressor 61 by compressing the low-temperature, low-pressure refrigerant by the compressor 61 .
  • the gas refrigerant discharged from the compressor 61 flows into the indoor heat exchanger 63 via the flow switching device 62 .
  • the refrigerant that has flowed into the indoor heat exchanger 63 is condensed by exchanging heat with the air in the indoor heat exchanger 63 and flows out of the indoor heat exchanger 63 as a low-temperature, high-pressure liquid refrigerant.
  • the liquid refrigerant flowing out of the indoor heat exchanger 63 is turned into a low-temperature, low-pressure liquid refrigerant by the water-cooled condenser 64 .
  • the low-temperature, low-pressure liquid refrigerant flows into the compressor 61 via the flow switching device 62 .
  • the compressor 61 As the low-temperature, low-pressure refrigerant is compressed by the compressor 61 , high-temperature, high-pressure gas refrigerant is discharged from the compressor 61 .
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 61 flows through the flow switching device 62 to the water-cooled condenser 64 .
  • the gas refrigerant is turned into a low-temperature, low-pressure liquid refrigerant by the water-cooled condenser 64 and flows into the indoor heat exchanger 63 .
  • the refrigerant that has flowed into the indoor heat exchanger 63 exchanges heat with the air in the indoor heat exchanger 63 to evaporate and flow out of the indoor heat exchanger 63 as a low-temperature, low-pressure gas refrigerant.
  • the refrigerant that has flowed out of the indoor heat exchanger 63 is sucked into the compressor 61 via the flow switching device 62 .
  • FIG. 8 is a flow chart showing the operating procedure of the building cooling and heating system of the second embodiment.
  • step S101 when the air-conditioning operation of any floor is executed, the process proceeds to step S102.
  • step S102 if the air-conditioning operation is performed only on the floors of the second group, the process proceeds to step S103.
  • step S106 if only the first group floors are to be air-conditioned, the process proceeds to step S107, and if the first group floors and second group floors are to be air-conditioned, the process goes to step S110.
  • step S103 the control device 500 stops the first heat source pump 41 and the second heat source pump 42.
  • step S104A the control device 500 causes the heat source units 20, the branch controllers 21, and the indoor units 22 of the floors in the second group to be air-conditioned to operate.
  • control device 500 stops all the air handling units 31.
  • step S107 the control device 500 causes the first heat source pump 41 and the second heat source pump 42 to operate.
  • step S108A the control device 500 stops the heat source units 20, the flow dividing controllers 21, and the indoor units 22 on all floors of the second group.
  • step S110 the control device 500 causes the first heat source pump 41 and the second heat source pump 42 to operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

In this invention, a first heat source pump (41) supplies chilled water from a district heating and cooling plant into a building. A second heat source pump (42) supplies hot water from the district heating and cooling plant into the building. An air handling unit (31) uses the chilled water and the hot water to heat and cool a first group of floors in the building. Water-cooled heating and cooling equipment (51) uses chilled water returned from the building to the district heating and cooling plant to heat and cool a second group of floors in the building. The first heat source pump (41) and the second heat source pump (42) operate when heating and cooling the first group of floors, and the first heat source pump (41) and the second heat source pump (42) stop when heating and cooling the second group of floors only.

Description

ビル用冷暖房システムAir conditioning system for buildings
 本開示は、ビル用冷暖房システムに関する。 The present disclosure relates to a building heating and cooling system.
 従来から、地域冷暖房プラントから送られる冷水および温水などを利用したビル用冷暖房システムが知られている。 Building heating and cooling systems that use cold water and hot water sent from district heating and cooling plants have long been known.
 たとえば、特許文献1のビル用冷暖房システムは、水冷式ビル用マルチエアコンと、地域冷暖房の一定地域内にある他のビルからの地域冷暖房プラントへの還水と、水冷式ビル用マルチエアコンの熱源水とを熱交換する熱交換器と、ビルからの還水の温度を利用して水冷式ビル用マルチエアコンの熱源ユニットに供給する熱源水の温度を制御する制御手段とを有する。 For example, the building cooling and heating system of Patent Document 1 includes a water-cooled building multi-air conditioner, return water from other buildings in a certain area of the district cooling and heating to the district cooling and heating plant, and a heat source for the water-cooled building multi-air conditioner. It has a heat exchanger that exchanges heat with water, and a control means that uses the temperature of return water from the building to control the temperature of the heat source water that is supplied to the heat source unit of the water-cooled building multi-air conditioner.
特開2020-70950号公報Japanese Patent Application Laid-Open No. 2020-70950
 特許文献1に記載のビル用冷暖房システムでは、夏季の早朝、または定時後などの時間帯において、他のフロアの空調機が停止しているときに、特定のフロアの空調機を運転したい場合がある。そのような場合には、地域冷暖房プラントからの冷水および温水をビル内に供給するための大容量のポンプを動作させなければならない。大容量のポンプを動作させたときに電力量の電気料金をその特定フロアのテナントが負担しなければならず、テナントの電気料金が高くなる。 In the building cooling and heating system described in Patent Document 1, there are times when it is desired to operate air conditioners on a specific floor when air conditioners on other floors are stopped, such as early in the morning in summer or after working hours. be. In such cases, large capacity pumps must be operated to supply cold and hot water from the district heating and cooling plant into the building. When a large-capacity pump is operated, the tenant of the specific floor has to bear the electricity charge for the amount of power, which increases the tenant's electricity charge.
 それゆえに、本開示の目的は、特定のフロアの空調機のみを運転する場合に、特定のフロアのテナントの電気料金が高くなるのを防止することができるビル用冷暖房システムを提供することである。 Therefore, an object of the present disclosure is to provide a building cooling and heating system that can prevent the electricity bills of tenants on a specific floor from increasing when only the air conditioners on the specific floor are operated. .
 本開示のビル用冷暖房システムは、地域冷暖房プラントからの冷水をビル内に供給するための第1の熱源ポンプと、地域冷暖房プラントからの温水をビル内に供給するための第2の熱源ポンプと、冷水および温水を利用して、ビル内の第1グループのフロアを冷暖房するエアハンドリングユニットと、ビルから地域冷暖房プラントへ戻す冷水を利用して、ビル内の第2グループのフロアを冷暖房する水冷式冷暖房設備とを備える。第1グループのフロアを冷暖房するときには、第1の熱源ポンプおよび第2の熱源ポンプは動作し、第2グループのフロアのみを冷暖房するときには、第1の熱源ポンプおよび第2の熱源ポンプは停止する。 The building cooling and heating system of the present disclosure includes a first heat source pump for supplying cold water from the district heating and cooling plant into the building, and a second heat source pump for supplying hot water from the district cooling and heating plant into the building. , an air handling unit that uses cold and hot water to cool and heat the first group of floors in the building, and a water cooling unit that uses cold water returned from the building to the district heating and cooling plant to cool and heat the second group of floors in the building. Equipped with air conditioning and heating equipment. The first heat source pump and the second heat source pump operate when the floors of the first group are cooled and heated, and the first heat source pump and the second heat source pump are stopped when only the floors of the second group are cooled and heated. .
 本開示によれば、特定のフロアの空調機のみを運転する場合に、特定のフロアのテナントの電気料金が高くなるのを防止することができる。 According to the present disclosure, when operating only air conditioners on a specific floor, it is possible to prevent the electricity charges of tenants on a specific floor from increasing.
参考例のビル用冷暖房システムの構成を表わす図である。It is a figure showing the structure of the cooling-and-heating system for buildings of a reference example. 実施の形態1のビル用冷暖房システムの構成を表わす図である。1 is a diagram illustrating the configuration of a building cooling and heating system according to Embodiment 1; FIG. 実施の形態1の水冷式冷暖房設備51の構成を表わす図である。1 is a diagram showing the configuration of a water-cooled air conditioning system 51 according to Embodiment 1. FIG. 実施の形態1の熱源機20の構成を表わす図である。1 is a diagram illustrating a configuration of heat source equipment 20 of Embodiment 1. FIG. 実施の形態1のビル用冷暖房システムの制御手順を表わすフローチャートである。3 is a flow chart showing a control procedure of the building cooling/heating system of Embodiment 1. FIG. 実施の形態2の水冷式冷暖房設備51aの構成を表わす図である。FIG. 10 is a diagram showing the configuration of a water-cooled air conditioning system 51a according to Embodiment 2; 実施の形態2の熱源機20の構成を表わす図である。FIG. 10 is a diagram showing the configuration of a heat source device 20 according to Embodiment 2; 実施の形態2のビル用冷暖房システムの動作手順を表わすフローチャートである。7 is a flow chart showing the operation procedure of the building cooling/heating system of Embodiment 2. FIG.
 以下、実施の形態について図面を参照して説明する。
 実施の形態1.
 (参考例)
 図1は、参考例のビル用冷暖房システムの構成を表わす図である。
Embodiments will be described below with reference to the drawings.
Embodiment 1.
(Reference example)
FIG. 1 is a diagram showing the configuration of a building cooling and heating system of a reference example.
 参考例のビル用冷暖房システムは、冷水用往水配管12a、温水用往水配管10a、冷水用還水配管12b、温水用還水配管10b、第1の熱源ポンプ41、および第2の熱源ポンプ42を備える。 The building cooling and heating system of the reference example includes a cold water supply pipe 12a, a hot water supply pipe 10a, a cold water return pipe 12b, a hot water return pipe 10b, a first heat source pump 41, and a second heat source pump. 42.
 冷水用往水配管12aは、地域冷暖房プラントからの冷水をビル内のエアハンドリングユニット31に供給する。温水用往水配管10aは、地域冷暖房プラントから温水をビル内のエアハンドリングユニット31に供給する。冷水用還水配管12bは、ビル内のエアハンドリングユニット31から流出した冷水を地域冷暖房プラントへ戻す。温水用還水配管10bは、ビル内のエアハンドリングユニット31から流出した温水を地域冷暖房プラントへ戻す。 The chilled water supply pipe 12a supplies chilled water from the district heating and cooling plant to the air handling unit 31 in the building. The hot water supply pipe 10a supplies hot water from the district heating and cooling plant to the air handling unit 31 in the building. The chilled water return pipe 12b returns the chilled water flowing out from the air handling unit 31 in the building to the district heating and cooling plant. The hot water return pipe 10b returns hot water flowing out from the air handling unit 31 in the building to the district heating and cooling plant.
 第1の熱源ポンプ41は、冷水用往水配管12aに配置される。第1の熱源ポンプ41は、地域冷暖房プラントからの冷水をビル内に供給する。第2の熱源ポンプ42は、温水用往水配管10aに配置される。第2の熱源ポンプ42は、地域冷暖房プラントからの温水をビル内に供給する。 The first heat source pump 41 is arranged in the cold water supply pipe 12a. A first heat source pump 41 supplies chilled water from a district heating and cooling plant into the building. The second heat source pump 42 is arranged in the hot water supply pipe 10a. A second heat source pump 42 supplies hot water from a district heating and cooling plant into the building.
 参考例のビル用冷暖房システムは、フロアごとに設けられるエアハンドリングユニット31、およびダンバ32a,32bを備える。実際には、各フロアに複数のエアハンドリングユニット31が設置されていてもよいが、ここでは、説明の便宜上、各フロアに1つのエアハンドリングユニットが設置されているものとする。 The building cooling and heating system of the reference example includes an air handling unit 31 and dampers 32a and 32b provided for each floor. In practice, each floor may have a plurality of air handling units 31 installed, but here, for convenience of explanation, it is assumed that each floor has one air handling unit installed.
 エアハンドリングユニット31は、冷水用往水配管12aから供給される冷水、または温水用往水配管10aから供給される温水を用いて、フロアを冷房または暖房する。エアハンドリングユニット31は、エアフィルタ、熱交換器、加湿器、および送風機を備える。エアハンドリングユニット31は、専用の機械室に設置され、ダンバ32a,32bによって、各部屋に空気を送る。エアハンドリングユニット31には、冷水用往水配管12aを通じて冷水が流入し、温水用往水配管10aを通じて温水が流入する。エアハンドリングユニット31から流出した冷水は、冷水用還水配管12bに送られ、エアハンドリングユニット31から流出した温水は、温水用還水配管10bに送られる。 The air handling unit 31 cools or heats the floor using cold water supplied from the cold water outgoing pipe 12a or hot water supplied from the hot water outgoing pipe 10a. The air handling unit 31 comprises an air filter, heat exchanger, humidifier and blower. The air handling unit 31 is installed in a dedicated machine room, and air is sent to each room by dampers 32a and 32b. Cold water flows into the air handling unit 31 through the cold water outlet pipe 12a, and hot water flows into the air handling unit 31 through the hot water outlet pipe 10a. Cold water flowing out from the air handling unit 31 is sent to the cold water return pipe 12b, and hot water flowing out from the air handling unit 31 is sent to the hot water return pipe 10b.
 図2は、実施の形態1のビル用冷暖房システムの構成を表わす図である。
 実施の形態1のビル用冷暖房システムは、参考例のビル用冷暖房システムと同様に、冷水用往水配管12a、温水用往水配管10a、冷水用還水配管12b、温水用還水配管10b、第1の熱源ポンプ41、および第2の熱源ポンプ42を備える。
FIG. 2 is a diagram showing the configuration of the building cooling/heating system according to the first embodiment.
As in the building cooling and heating system of the reference example, the building cooling and heating system of Embodiment 1 includes a cold water supply pipe 12a, a hot water supply pipe 10a, a cold water return pipe 12b, a hot water return pipe 10b, A first heat source pump 41 and a second heat source pump 42 are provided.
 冷水用往水配管12aは、地域冷暖房プラントからの冷水をビル内のエアハンドリングユニット31に供給する。温水用往水配管10aは、地域冷暖房プラントから温水をビル内のエアハンドリングユニット31に供給する。冷水用還水配管12bは、ビル内のエアハンドリングユニット31から流出した冷水を地域冷暖房プラントへ戻す。温水用還水配管10bは、ビル内のエアハンドリングユニット31から流出した温水を地域冷暖房プラントへ戻す。 The chilled water supply pipe 12a supplies chilled water from the district heating and cooling plant to the air handling unit 31 in the building. The hot water supply pipe 10a supplies hot water from the district heating and cooling plant to the air handling unit 31 in the building. The chilled water return pipe 12b returns the chilled water flowing out from the air handling unit 31 in the building to the district heating and cooling plant. The hot water return pipe 10b returns hot water flowing out from the air handling unit 31 in the building to the district heating and cooling plant.
 第1の熱源ポンプ41は、冷水用往水配管12aに配置される。第1の熱源ポンプ41は、地域冷暖房プラントからの冷水をビル内に供給する。第2の熱源ポンプ42は、温水用往水配管10aに配置される。第2の熱源ポンプ42は、地域冷暖房プラントからの温水をビル内に供給する。 The first heat source pump 41 is arranged in the cold water supply pipe 12a. A first heat source pump 41 supplies chilled water from a district heating and cooling plant into the building. The second heat source pump 42 is arranged in the hot water supply pipe 10a. A second heat source pump 42 supplies hot water from a district heating and cooling plant into the building.
 実施の形態1のビル用冷暖房システムは、ビル内の第1グループのフロアごとに設けられるエアハンドリングユニット31、およびダンバ32a,32bを備える。実際には、各フロアに複数のエアハンドリングユニット31が設置されていてもよいが、ここでは、説明の便宜上、各フロアに1つのエアハンドリングユニットが設置されているものとする。本実施の形態では、第1グループのフロアをビル内の10階以外のフロアとし、第2グループのフロアをビル内の10階のフロアとするが、これに限定されるものではない。第2グループのフロアをビル内の複数階のフロアとしてもよい。 The building cooling and heating system of Embodiment 1 includes an air handling unit 31 and dampers 32a and 32b provided for each floor of the first group in the building. In practice, each floor may have a plurality of air handling units 31 installed, but here, for convenience of explanation, it is assumed that each floor has one air handling unit installed. In this embodiment, the floors of the first group are the floors other than the 10th floor in the building, and the floors of the second group are the 10th floor in the building, but the present invention is not limited to this. The second group of floors may be multiple floors in the building.
 エアハンドリングユニット31は、冷水用往水配管12aから供給される冷水、または温水用往水配管10aから供給される温水を用いて、ビル内の第1グループの担当するフロアを冷房または暖房する。エアハンドリングユニット31は、エアフィルタ、熱交換器、加湿器、および送風機を備える。エアハンドリングユニット31は、専用の機械室に設置され、ダンバ32a,32bによって、各部屋に空気を送る。エアハンドリングユニット31には、冷水用往水配管12aを通じて冷水が流入し、温水用往水配管10aを通じて温水が流入する。エアハンドリングユニット31から流出した冷水は、冷水用還水配管12bに送られ、エアハンドリングユニット31から流出した温水は、温水用還水配管10bに送られる。 The air handling unit 31 cools or heats the floors in charge of the first group in the building using cold water supplied from the cold water outgoing pipe 12a or hot water supplied from the hot water outgoing pipe 10a. The air handling unit 31 comprises an air filter, heat exchanger, humidifier and blower. The air handling unit 31 is installed in a dedicated machine room, and air is sent to each room by dampers 32a and 32b. Cold water flows into the air handling unit 31 through the cold water outlet pipe 12a, and hot water flows into the air handling unit 31 through the hot water outlet pipe 10a. Cold water flowing out from the air handling unit 31 is sent to the cold water return pipe 12b, and hot water flowing out from the air handling unit 31 is sent to the hot water return pipe 10b.
 実施の形態1のビル用冷暖房システムは、第2グループのフロアごとに設けられる水冷式冷暖房設備51を備える。 The building cooling and heating system of Embodiment 1 includes water-cooled cooling and heating equipment 51 provided for each floor of the second group.
 水冷式冷暖房設備51は、冷水用還水配管12bから供給される冷水を用いて、ビル内の第2グループの担当するフロアを冷房または暖房する。温水を用いずに、冷水だけを用いるのは、以下の理由による。水冷式ビル用マルチエアコンは、供給される水の温度が10℃~45℃の範囲であれば、冷房および暖房運転が可能である。冷水用還水配管12bから供給される冷水は、約12℃ぐらいとなる場合が多い。よって、水冷式ビル用マルチエアコンは、冷水用還水配管12bから供給される冷水を用いて、冷房運転および暖房運転が可能である。 The water-cooled cooling and heating equipment 51 cools or heats the floors of the second group in the building, using cold water supplied from the cold water return pipe 12b. The reason why only cold water is used without using hot water is as follows. A water-cooled multi air conditioner for buildings is capable of cooling and heating operations as long as the temperature of the supplied water is in the range of 10°C to 45°C. Cold water supplied from the cold water return pipe 12b is often about 12°C. Therefore, the water-cooled building multi-air conditioner is capable of cooling operation and heating operation using cold water supplied from the cold water return pipe 12b.
 実施の形態1のビル用冷暖房システムは、制御装置500を備える。
 制御装置500は、第1の熱源ポンプ41、第2の熱源ポンプ42、エアハンドリングユニット31、および水冷式冷暖房設備51を制御する。
The building cooling and heating system of Embodiment 1 includes a control device 500 .
The control device 500 controls the first heat source pump 41 , the second heat source pump 42 , the air handling unit 31 , and the water-cooled cooling and heating equipment 51 .
 図3は、実施の形態1の水冷式冷暖房設備51の構成を表わす図である。
 水冷式冷暖房設備51は、熱交換器24と、搬送用ポンプ23と、熱源機20と、分流コントローラ21と、複数の室内機22とを備える。熱源機20、分流コントローラ21、および複数の室内機22は、水冷式ビル用マルチエアコンを構成する。
FIG. 3 is a diagram showing the configuration of water-cooled cooling and heating equipment 51 of Embodiment 1. As shown in FIG.
The water-cooled cooling and heating equipment 51 includes a heat exchanger 24 , a transfer pump 23 , a heat source device 20 , a branch controller 21 , and a plurality of indoor units 22 . The heat source unit 20, the branch controller 21, and the plurality of indoor units 22 constitute a water-cooled multi-air conditioner for buildings.
 熱交換器24は、冷水用還水配管12bの一部と、配管25の一部とを含む。熱交換器24は、冷水用還水配管12bの一部を流れる冷水と、配管25の一部を流れる熱源水とを熱交換させる。 The heat exchanger 24 includes a portion of the cold water return pipe 12b and a portion of the pipe 25. The heat exchanger 24 exchanges heat between cold water flowing through part of the cold water return pipe 12 b and heat source water flowing through part of the pipe 25 .
 熱源機20は、熱源水を用いて、冷気または暖気を生成する。
 搬送用ポンプ23は、配管25に配置される。搬送用ポンプ23は、熱源水を熱源機20へ搬送する。
The heat source machine 20 uses the heat source water to generate cool air or warm air.
The conveying pump 23 is arranged in the pipe 25 . The transport pump 23 transports the heat source water to the heat source equipment 20 .
 分流コントローラ21は、各室内機22の運転モード等の設定に応じて熱源機20が生成した冷気または暖気を各室内機22に供給する。部屋ごとに1個以上の室内機22が設置される。分流コントローラ21は、暖房を行う室内機に気体の冷媒を供給し、冷房を行う室内機に液体の冷媒を供給するための流路を形成する。室内機22は、設置されている部屋に冷気又は暖気を供給する。室内機22は、運転モードおよび室温設定を個々に設定できる。 The branch controller 21 supplies cold air or warm air generated by the heat source device 20 to each indoor unit 22 in accordance with the settings such as the operation mode of each indoor unit 22 . One or more indoor units 22 are installed for each room. The flow dividing controller 21 forms a flow path for supplying gaseous refrigerant to the indoor unit for heating and supplying liquid refrigerant to the indoor unit for cooling. The indoor unit 22 supplies cold air or warm air to the room in which it is installed. The indoor unit 22 can individually set the operation mode and the room temperature setting.
 図4は、実施の形態1の熱源機20の構成を表わす図である。
 熱源機20は、冷媒が流れる圧縮機61および流路切替装置62と、冷媒および熱源水が流れる水冷凝縮器64とを備える。水冷凝縮器64は、二重管式であって、内側を熱源水が流れ、外側を冷媒が流れる。
FIG. 4 is a diagram showing the configuration of heat source equipment 20 according to the first embodiment.
The heat source device 20 includes a compressor 61 and a flow switching device 62 through which refrigerant flows, and a water-cooled condenser 64 through which refrigerant and heat source water flow. The water-cooled condenser 64 is of a double-tube type, in which the heat source water flows inside and the refrigerant flows outside.
 室内機22は、冷媒が流れる室内熱交換器63と、送風機66とを備える。図4では、1つの室内機22のみが示されているが、複数の室内機22が設置されるものとしてもよい。 The indoor unit 22 includes an indoor heat exchanger 63 through which a refrigerant flows, and an air blower 66. Although only one indoor unit 22 is shown in FIG. 4, a plurality of indoor units 22 may be installed.
 運転モードが冷房の場合の、水冷式冷暖房設備51の動作を説明する。図4において、冷房時における冷媒の流通方向が実線矢印で示されている。 The operation of the water-cooled air conditioning system 51 when the operation mode is cooling will be described. In FIG. 4, the flow direction of the refrigerant during cooling is indicated by solid arrows.
 圧縮機61から吐出される冷媒が室内熱交換器63に流入するように、流路切替装置62の流路が切り替えられる。低温低圧の冷媒が圧縮機61によって圧縮されることで、高温高圧のガス冷媒が圧縮機61から吐出される。圧縮機61から吐出されたガス冷媒は、流路切替装置62を経由して、室内熱交換器63に流入する。室内熱交換器63に流入した冷媒は、室内熱交換器63において、空気と熱交換することで凝縮し、低温高圧の液冷媒となって室内熱交換器63から流出する。室内熱交換器63から流出した液冷媒は、水冷凝縮器64によって低温低圧の液冷媒になる。低温低圧の液冷媒は、流路切替装置62を経て、圧縮機61に流入する。 The flow path of the flow switching device 62 is switched so that the refrigerant discharged from the compressor 61 flows into the indoor heat exchanger 63 . A high-temperature, high-pressure gas refrigerant is discharged from the compressor 61 by compressing the low-temperature, low-pressure refrigerant by the compressor 61 . The gas refrigerant discharged from the compressor 61 flows into the indoor heat exchanger 63 via the flow switching device 62 . The refrigerant that has flowed into the indoor heat exchanger 63 is condensed by exchanging heat with the air in the indoor heat exchanger 63 and flows out of the indoor heat exchanger 63 as a low-temperature, high-pressure liquid refrigerant. The liquid refrigerant flowing out of the indoor heat exchanger 63 is turned into a low-temperature, low-pressure liquid refrigerant by the water-cooled condenser 64 . The low-temperature, low-pressure liquid refrigerant flows into the compressor 61 via the flow switching device 62 .
 熱交換器24から流出した熱源水は、搬送用ポンプ23を経て、水冷凝縮器64に流入する。水冷凝縮器64から流出した熱源水は、熱交換器24において、冷水と熱交換して、熱交換器24から流出する。 The heat source water that has flowed out of the heat exchanger 24 flows into the water-cooled condenser 64 via the transfer pump 23 . The heat source water flowing out of the water-cooled condenser 64 exchanges heat with cold water in the heat exchanger 24 and flows out of the heat exchanger 24 .
 運転モードが暖房の場合の、水冷式冷暖房設備51の動作を説明する。図4において、暖房時における冷媒の流通方向が破線矢印で示されている。 The operation of the water-cooled air conditioning system 51 when the operation mode is heating will be described. In FIG. 4, the flow direction of the refrigerant during heating is indicated by a dashed arrow.
 低温低圧の冷媒が圧縮機61によって圧縮されることで、高温高圧のガス冷媒が圧縮機61から吐出される。圧縮機61から吐出された高温高圧のガス冷媒は、流路切替装置62を経て、水冷凝縮器64に流れる。ガス冷媒は、水冷凝縮器64によって低温低圧の液冷媒になって、室内熱交換器63に流入する。室内熱交換器63に流入した冷媒は、室内熱交換器63において、空気と熱交換することで蒸発し、低温低圧のガス冷媒となって室内熱交換器63から流出する。室内熱交換器63から流出した冷媒は、流路切替装置62を介して圧縮機61に吸入される。 As the low-temperature, low-pressure refrigerant is compressed by the compressor 61 , high-temperature, high-pressure gas refrigerant is discharged from the compressor 61 . The high-temperature and high-pressure gas refrigerant discharged from the compressor 61 flows through the flow switching device 62 to the water-cooled condenser 64 . The gas refrigerant is turned into a low-temperature, low-pressure liquid refrigerant by the water-cooled condenser 64 and flows into the indoor heat exchanger 63 . The refrigerant that has flowed into the indoor heat exchanger 63 exchanges heat with the air in the indoor heat exchanger 63 to evaporate and flow out of the indoor heat exchanger 63 as a low-temperature, low-pressure gas refrigerant. The refrigerant that has flowed out of the indoor heat exchanger 63 is sucked into the compressor 61 via the flow switching device 62 .
 熱交換器24から流出した熱源水は、搬送用ポンプ23を経て、水冷凝縮器64に流入する。水冷凝縮器64から流出した熱源水は、熱交換器24において、冷水と熱交換して、熱交換器24から流出する。 The heat source water that has flowed out of the heat exchanger 24 flows into the water-cooled condenser 64 via the transfer pump 23 . The heat source water flowing out of the water-cooled condenser 64 exchanges heat with cold water in the heat exchanger 24 and flows out of the heat exchanger 24 .
 図5は、実施の形態1のビル用冷暖房システムの制御手順を表わすフローチャートである。 FIG. 5 is a flow chart representing the control procedure of the building cooling and heating system according to the first embodiment.
 ステップS101において、いずれかのフロアの空調運転が実行されるときには、処理がステップS102に進む。 In step S101, when the air-conditioning operation of any floor is executed, the process proceeds to step S102.
 ステップS102において、第2グループのフロアのみ空調運転が実行される場合には、処理がステップS103に進む。 In step S102, if the air-conditioning operation is performed only on the floors of the second group, the process proceeds to step S103.
 ステップS106において、第1グループのフロアのみ空調運転が実行される場合には、処理がステップS107に進み、第1グループのフロアおよび第2グループのフロアの空調運転が実行される場合には、処理がステップS110に進む。 In step S106, if only the first group floors are to be air-conditioned, the process proceeds to step S107, and if the first group floors and second group floors are to be air-conditioned, the process goes to step S110.
 ステップS103において、制御装置500は、第1の熱源ポンプ41および第2の熱源ポンプ42を停止させる。 In step S103, the control device 500 stops the first heat source pump 41 and the second heat source pump 42.
 ステップS104において、制御装置500は、第2グループのフロアのうち空調運転するフロアの熱交換器24、熱源機20、搬送用ポンプ23、分流コントローラ21、および室内機22を運転させる。 In step S104, the control device 500 operates the heat exchangers 24, the heat source units 20, the transport pumps 23, the branch controllers 21, and the indoor units 22 of the floors in the second group that are air-conditioned.
 ステップS105において、制御装置500は、すべてのエアハンドリングユニット31を停止させる。 At step S105, the control device 500 stops all the air handling units 31.
 ステップS107において、制御装置500は、第1の熱源ポンプ41および第2の熱源ポンプ42を運転させる。 In step S107, the control device 500 causes the first heat source pump 41 and the second heat source pump 42 to operate.
 ステップS108において、制御装置500は、第2グループのすべてのフロアの熱交換器24、熱源機20、搬送用ポンプ23、分流コントローラ21、および室内機22を停止させる。 In step S108, the control device 500 stops the heat exchangers 24, heat source units 20, transfer pumps 23, branch controllers 21, and indoor units 22 on all floors of the second group.
 ステップS109において、制御装置500は、第1グループのフロアのうち空調運転するフロアのエアハンドリングユニット31を運転させる。 In step S109, the control device 500 operates the air handling unit 31 of the floor to be air-conditioned among the floors of the first group.
 ステップS110において、制御装置500は、第1の熱源ポンプ41および第2の熱源ポンプ42を運転させる。 In step S110, the control device 500 causes the first heat source pump 41 and the second heat source pump 42 to operate.
 ステップS111において、制御装置500は、第2グループのフロアのうち空調運転するフロアの熱交換器24、熱源機20、搬送用ポンプ23、分流コントローラ21、および室内機22を運転させる。 In step S111, the control device 500 causes the heat exchangers 24, the heat source units 20, the transport pumps 23, the branch controllers 21, and the indoor units 22 of the floors in the second group to be air-conditioned to operate.
 ステップS112において、制御装置500は、第1グループのフロアのうち空調運転するフロアのエアハンドリングユニット31を運転させる。 In step S112, the control device 500 operates the air handling unit 31 of the floor to be air-conditioned among the floors of the first group.
 第2グループフロアの空調機のみを運転する場合に、第1の熱源ポンプ41および第2の熱源ポンプ42を停止するので、第2グループのフロアのテナントの電気料金が高くなるのを防止することができる。これによって、第2グループのテナントは、電気料金を気にすることなく、いつでも自由に空調を運転することができる。本実施の形態では、地域冷暖房プラントへ戻す冷水を利用することによって、冷水塔及びボイラーを設置しなくてもよくすることができる。 When only the air conditioners of the second group floor are operated, the first heat source pump 41 and the second heat source pump 42 are stopped to prevent the tenants of the second group floor from increasing their electricity bills. can be done. As a result, the tenants of the second group can freely operate the air conditioners at any time without worrying about electricity charges. In this embodiment, by using cold water returned to the district heating and cooling plant, it is possible to eliminate the need to install a cooling tower and a boiler.
 実施の形態2.
 図6は、実施の形態2の水冷式冷暖房設備51aの構成を表わす図である。
Embodiment 2.
FIG. 6 is a diagram showing the configuration of a water-cooled air conditioning system 51a according to the second embodiment.
 水冷式冷暖房設備51aは、熱源機20と、分流コントローラ21と、複数の室内機22とを備える。熱源機20、分流コントローラ21、および複数の室内機22は、水冷式ビル用マルチエアコンを構成する。 The water-cooled cooling and heating equipment 51 a includes a heat source device 20 , a branch controller 21 and a plurality of indoor units 22 . The heat source unit 20, the branch controller 21, and the plurality of indoor units 22 constitute a water-cooled multi-air conditioner for buildings.
 冷水用還水配管12bは、分岐配管35と接続する。分岐配管35によって、冷水用還水配管12bを流れる冷水が、熱源機20に供給される。 The cold water return pipe 12 b is connected to the branch pipe 35 . Cold water flowing through the cold water return pipe 12 b is supplied to the heat source device 20 by the branch pipe 35 .
 熱源機20は、分岐配管35を流れる冷水を用いて、冷気または暖気を生成する。
 分流コントローラ21は、各室内機22の運転モード等の設定に応じて熱源機20が生成した冷気または暖気を各室内機22に供給する。部屋ごとに1個以上の室内機22が設置される。室内機22は、設置されている部屋に冷気又は暖気を供給する。室内機22は、運転モードおよび室温設定を個々に設定できる。
The heat source device 20 uses cold water flowing through the branch pipe 35 to generate cool air or warm air.
The branch controller 21 supplies cold air or warm air generated by the heat source device 20 to each indoor unit 22 according to settings such as the operation mode of each indoor unit 22 . One or more indoor units 22 are installed for each room. The indoor unit 22 supplies cold air or warm air to the room in which it is installed. The indoor unit 22 can individually set the operation mode and the room temperature setting.
 図7は、実施の形態2の熱源機20の構成を表わす図である。
 熱源機20は、冷媒が流れる圧縮機61および流路切替装置62と、冷媒および冷水が流れる水冷凝縮器64とを備える。水冷凝縮器64は、二重管式であって、内側を冷水が流れ、外側を冷媒が流れる。
FIG. 7 is a diagram showing the configuration of heat source equipment 20 according to the second embodiment.
The heat source device 20 includes a compressor 61 and a channel switching device 62 through which refrigerant flows, and a water-cooled condenser 64 through which refrigerant and cold water flow. The water-cooled condenser 64 is of a double-tube type, in which cold water flows inside and refrigerant flows outside.
 室内機22は、冷媒が流れる室内熱交換器63と、送風機66とを備える。
 運転モードが冷房の場合の、水冷式冷暖房設備51aの動作を説明する。図7において、冷房時における冷媒の流通方向が実線矢印で示されている。
The indoor unit 22 includes an indoor heat exchanger 63 through which refrigerant flows, and an air blower 66 .
The operation of the water-cooled cooling/heating equipment 51a when the operation mode is cooling will be described. In FIG. 7, the flow direction of the refrigerant during cooling is indicated by solid arrows.
 圧縮機61から吐出される冷媒が室内熱交換器63に流入するように、流路切替装置62の流路が切り替えられる。低温低圧の冷媒が圧縮機61によって圧縮されることで、高温高圧のガス冷媒が圧縮機61から吐出される。圧縮機61から吐出されたガス冷媒は、流路切替装置62を経由して、室内熱交換器63に流入する。室内熱交換器63に流入した冷媒は、室内熱交換器63において、空気と熱交換することで凝縮し、低温高圧の液冷媒となって室内熱交換器63から流出する。室内熱交換器63から流出した液冷媒は、水冷凝縮器64によって低温低圧の液冷媒になる。低温低圧の液冷媒は、流路切替装置62を経て、圧縮機61に流入する。 The flow path of the flow switching device 62 is switched so that the refrigerant discharged from the compressor 61 flows into the indoor heat exchanger 63 . A high-temperature, high-pressure gas refrigerant is discharged from the compressor 61 by compressing the low-temperature, low-pressure refrigerant by the compressor 61 . The gas refrigerant discharged from the compressor 61 flows into the indoor heat exchanger 63 via the flow switching device 62 . The refrigerant that has flowed into the indoor heat exchanger 63 is condensed by exchanging heat with the air in the indoor heat exchanger 63 and flows out of the indoor heat exchanger 63 as a low-temperature, high-pressure liquid refrigerant. The liquid refrigerant flowing out of the indoor heat exchanger 63 is turned into a low-temperature, low-pressure liquid refrigerant by the water-cooled condenser 64 . The low-temperature, low-pressure liquid refrigerant flows into the compressor 61 via the flow switching device 62 .
 冷水用還水配管12bから分岐配管35を経て、冷水が水冷凝縮器64に流入する。水冷凝縮器64から流出した冷水は、分岐配管35を経て、冷水用還水配管12bに流れる。 Cold water flows into the water-cooled condenser 64 via the branch pipe 35 from the cold water return pipe 12b. Cold water flowing out of the water-cooled condenser 64 flows through the branch pipe 35 to the cold water return pipe 12b.
 運転モードが暖房の場合の、水冷式冷暖房設備51aの動作を説明する。図7において、暖房時における冷媒の流通方向が破線矢印で示されている。 The operation of the water-cooled air conditioning system 51a when the operation mode is heating will be described. In FIG. 7, the flow direction of the refrigerant during heating is indicated by a dashed arrow.
 低温低圧の冷媒が圧縮機61によって圧縮されることで、高温高圧のガス冷媒が圧縮機61から吐出される。圧縮機61から吐出された高温高圧のガス冷媒は、流路切替装置62を経て、水冷凝縮器64に流れる。ガス冷媒は、水冷凝縮器64によって低温低圧の液冷媒になって、室内熱交換器63に流入する。室内熱交換器63に流入した冷媒は、室内熱交換器63において、空気と熱交換することで蒸発し、低温低圧のガス冷媒となって室内熱交換器63から流出する。室内熱交換器63から流出した冷媒は、流路切替装置62を介して圧縮機61に吸入される。 As the low-temperature, low-pressure refrigerant is compressed by the compressor 61 , high-temperature, high-pressure gas refrigerant is discharged from the compressor 61 . The high-temperature and high-pressure gas refrigerant discharged from the compressor 61 flows through the flow switching device 62 to the water-cooled condenser 64 . The gas refrigerant is turned into a low-temperature, low-pressure liquid refrigerant by the water-cooled condenser 64 and flows into the indoor heat exchanger 63 . The refrigerant that has flowed into the indoor heat exchanger 63 exchanges heat with the air in the indoor heat exchanger 63 to evaporate and flow out of the indoor heat exchanger 63 as a low-temperature, low-pressure gas refrigerant. The refrigerant that has flowed out of the indoor heat exchanger 63 is sucked into the compressor 61 via the flow switching device 62 .
 冷水用還水配管12bから分岐配管35を経て、冷水が水冷凝縮器64に流入する。水冷凝縮器64から流出した冷水は、分岐配管35を経て、冷水用還水配管12bに流れる。 Cold water flows into the water-cooled condenser 64 via the branch pipe 35 from the cold water return pipe 12b. Cold water flowing out of the water-cooled condenser 64 flows through the branch pipe 35 to the cold water return pipe 12b.
 図8は、実施の形態2のビル用冷暖房システムの動作手順を表わすフローチャートである。 FIG. 8 is a flow chart showing the operating procedure of the building cooling and heating system of the second embodiment.
 ステップS101において、いずれかのフロアの空調運転が実行されるときには、処理がステップS102に進む。 In step S101, when the air-conditioning operation of any floor is executed, the process proceeds to step S102.
 ステップS102において、第2グループのフロアのみ空調運転が実行される場合には、処理がステップS103に進む。 In step S102, if the air-conditioning operation is performed only on the floors of the second group, the process proceeds to step S103.
 ステップS106において、第1グループのフロアのみ空調運転が実行される場合には、処理がステップS107に進み、第1グループのフロアおよび第2グループのフロアの空調運転が実行される場合には、処理がステップS110に進む。 In step S106, if only the first group floors are to be air-conditioned, the process proceeds to step S107, and if the first group floors and second group floors are to be air-conditioned, the process goes to step S110.
 ステップS103において、制御装置500は、第1の熱源ポンプ41および第2の熱源ポンプ42を停止させる。 In step S103, the control device 500 stops the first heat source pump 41 and the second heat source pump 42.
 ステップS104Aにおいて、制御装置500は、第2グループのフロアのうち空調運転するフロアの熱源機20、分流コントローラ21、および室内機22を運転させる。 In step S104A, the control device 500 causes the heat source units 20, the branch controllers 21, and the indoor units 22 of the floors in the second group to be air-conditioned to operate.
 ステップS105において、制御装置500は、すべてのエアハンドリングユニット31を停止させる。 At step S105, the control device 500 stops all the air handling units 31.
 ステップS107において、制御装置500は、第1の熱源ポンプ41および第2の熱源ポンプ42を運転させる。 In step S107, the control device 500 causes the first heat source pump 41 and the second heat source pump 42 to operate.
 ステップS108Aにおいて、制御装置500は、第2グループのすべてのフロアの熱源機20、分流コントローラ21、および室内機22を停止させる。 In step S108A, the control device 500 stops the heat source units 20, the flow dividing controllers 21, and the indoor units 22 on all floors of the second group.
 ステップS109において、制御装置500は、第1グループのフロアのうち空調運転するフロアのエアハンドリングユニット31を運転させる。 In step S109, the control device 500 operates the air handling unit 31 of the floor to be air-conditioned among the floors of the first group.
 ステップS110において、制御装置500は、第1の熱源ポンプ41および第2の熱源ポンプ42を運転させる。 In step S110, the control device 500 causes the first heat source pump 41 and the second heat source pump 42 to operate.
 ステップS111Aにおいて、制御装置500は、第2グループのフロアのうち空調運転するフロアの熱源機20、分流コントローラ21、および室内機22を運転させる。 In step S111A, the control device 500 causes the heat source units 20, the branch controllers 21, and the indoor units 22 of the floors in the second group to be air-conditioned to operate.
 ステップS112において、制御装置500は、第1グループのフロアのうち空調運転するフロアのエアハンドリングユニット31を運転させる。 In step S112, the control device 500 operates the air handling unit 31 of the floor to be air-conditioned among the floors of the first group.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.
10a 温水用往水配管、10b 温水用還水配管、12a 冷水用往水配管、12b 冷水用還水配管、20 熱源機、21 分流コントローラ、22 室内機、23 搬送用ポンプ、24 熱交換器、25 配管、31 エアハンドリングユニット、32a,32b ダンバ、35 分岐配管、41 第1の熱源ポンプ、42 第2の熱源ポンプ、51,51a 水冷式冷暖房設備、61 圧縮機、62 路切替装置、63 室内熱交換器、64 水冷凝縮器、66 送風機、500 制御装置。 10a hot water return pipe, 10b hot water return pipe, 12a cold water return pipe, 12b cold water return pipe, 20 heat source unit, 21 branch controller, 22 indoor unit, 23 transfer pump, 24 heat exchanger, 25 Piping, 31 Air handling unit, 32a, 32b Damper, 35 Branch piping, 41 First heat source pump, 42 Second heat source pump, 51, 51a Water-cooled cooling and heating equipment, 61 Compressor, 62 Path switching device, 63 Indoor Heat exchanger, 64 Water-cooled condenser, 66 Blower, 500 Control device.

Claims (5)

  1.  地域冷暖房プラントからの冷水をビル内に供給するための第1の熱源ポンプと、
     前記地域冷暖房プラントからの温水を前記ビル内に供給するための第2の熱源ポンプと、
     前記冷水および温水を利用して、前記ビル内の第1グループのフロアを冷暖房するエアハンドリングユニットと、
     前記ビルから前記地域冷暖房プラントへ戻す前記冷水を利用して、前記ビル内の第2グループのフロアを冷暖房する水冷式冷暖房設備と、を備え、
     前記第1グループのフロアを冷暖房するときには、前記第1の熱源ポンプおよび前記第2の熱源ポンプは動作し、前記第2グループのフロアのみを冷暖房するときには、前記第1の熱源ポンプおよび前記第2の熱源ポンプは停止する、ビル用冷暖房システム。
    a first heat source pump for supplying chilled water from a district heating and cooling plant into the building;
    a second heat source pump for supplying hot water from the district heating and cooling plant into the building;
    an air handling unit that uses the cold and hot water to cool and heat a first group of floors in the building;
    a water-cooled cooling and heating facility that uses the cold water returned from the building to the district heating and cooling plant to cool and heat a second group of floors in the building,
    When cooling/heating the first group of floors, the first heat source pump and the second heat source pump operate, and when only the second group of floors are cooled/heated, the first heat source pump and the second heat source pump operate. The heat source pump of the building is stopped.
  2.  前記水冷式冷暖房設備は、
     前記冷水と熱源水とを熱交換させる熱交換器と、
     前記熱源水を利用する熱源機と、
     冷媒が流れる室内熱交換器を有する室内機と、
     前記熱源水を前記熱源機へ搬送する搬送用ポンプ、とを有し、
     前記熱源機は、前記冷媒が流れる圧縮機および流路切り替え装置と、前記熱源水および前記冷媒が流れる水冷凝縮器とを有する、請求項1記載のビル用冷暖房システム。
    The water-cooled cooling and heating equipment includes:
    a heat exchanger for exchanging heat between the cold water and the heat source water;
    a heat source machine that uses the heat source water;
    an indoor unit having an indoor heat exchanger through which a refrigerant flows;
    a conveying pump for conveying the heat source water to the heat source equipment,
    2. The building cooling and heating system according to claim 1, wherein said heat source device has a compressor and a channel switching device through which said refrigerant flows, and a water-cooled condenser through which said heat source water and said refrigerant flow.
  3.  前記第2グループのフロアを冷暖房するときには、前記熱源機と、前記室内機と、前記搬送用ポンプと、前記熱交換器とが動作し、
     前記第2グループのフロアを冷暖房しないときには、前記熱源機と、前記室内機と、前記搬送用ポンプと、前記熱交換器とが停止する、請求項2記載のビル用冷暖房システム。
    When cooling and heating the floor of the second group, the heat source unit, the indoor unit, the transfer pump, and the heat exchanger operate,
    3. The building cooling and heating system according to claim 2, wherein said heat source unit, said indoor unit, said transfer pump, and said heat exchanger are stopped when said second group of floors is not cooled or heated.
  4.  前記水冷式冷暖房設備は、
     前記冷水を利用する熱源機と、
     冷媒が流れる室内熱交換器を有する室内機を備え、
     前記熱源機は、前記冷媒が流れる圧縮機および流路切り替え装置と、前記冷水および前記冷媒が流れる水冷凝縮器とを有する、請求項1記載のビル用冷暖房システム。
    The water-cooled cooling and heating equipment includes:
    a heat source machine that uses the cold water;
    Equipped with an indoor unit having an indoor heat exchanger through which a refrigerant flows,
    2. The building cooling and heating system according to claim 1, wherein said heat source device has a compressor and a channel switching device through which said refrigerant flows, and a water-cooled condenser through which said chilled water and said refrigerant flow.
  5.  前記第2グループのフロアを冷暖房するときには、前記熱源機と、前記室内機とが動作し、
     前記第2グループのフロアを冷暖房しないときには、前記熱源機と、前記室内機とが停止する、請求項4記載のビル用冷暖房システム。
    When cooling and heating the floor of the second group, the heat source unit and the indoor unit operate,
    5. The building cooling/heating system according to claim 4, wherein the heat source unit and the indoor unit are stopped when the floors of the second group are not cooled or heated.
PCT/JP2021/032328 2021-09-02 2021-09-02 Heating and cooling system for buildings WO2023032133A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180101855.1A CN117881932A (en) 2021-09-02 2021-09-02 Refrigerating and heating system for building
PCT/JP2021/032328 WO2023032133A1 (en) 2021-09-02 2021-09-02 Heating and cooling system for buildings
JP2023544921A JPWO2023032133A1 (en) 2021-09-02 2021-09-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032328 WO2023032133A1 (en) 2021-09-02 2021-09-02 Heating and cooling system for buildings

Publications (1)

Publication Number Publication Date
WO2023032133A1 true WO2023032133A1 (en) 2023-03-09

Family

ID=85412417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032328 WO2023032133A1 (en) 2021-09-02 2021-09-02 Heating and cooling system for buildings

Country Status (3)

Country Link
JP (1) JPWO2023032133A1 (en)
CN (1) CN117881932A (en)
WO (1) WO2023032133A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159741A (en) * 1992-11-25 1994-06-07 Kawasaki Heavy Ind Ltd Heat-medium transporting control method and apparatus for district cooling/heating
JP2000146356A (en) * 1998-11-13 2000-05-26 Kajima Corp District cooling and heating system employing distributed heat pumps
JP2004211998A (en) * 2003-01-07 2004-07-29 Takasago Thermal Eng Co Ltd Air conditioning system
JP2018096551A (en) * 2016-12-08 2018-06-21 株式会社Nttファシリティーズ Cold water circulation system
JP2020070950A (en) * 2018-10-30 2020-05-07 三菱電機ビルテクノサービス株式会社 Building cooling and heating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159741A (en) * 1992-11-25 1994-06-07 Kawasaki Heavy Ind Ltd Heat-medium transporting control method and apparatus for district cooling/heating
JP2000146356A (en) * 1998-11-13 2000-05-26 Kajima Corp District cooling and heating system employing distributed heat pumps
JP2004211998A (en) * 2003-01-07 2004-07-29 Takasago Thermal Eng Co Ltd Air conditioning system
JP2018096551A (en) * 2016-12-08 2018-06-21 株式会社Nttファシリティーズ Cold water circulation system
JP2020070950A (en) * 2018-10-30 2020-05-07 三菱電機ビルテクノサービス株式会社 Building cooling and heating system

Also Published As

Publication number Publication date
JPWO2023032133A1 (en) 2023-03-09
CN117881932A (en) 2024-04-12

Similar Documents

Publication Publication Date Title
JP6414354B1 (en) Air conditioning system
CN101349456B (en) Air conditioner
KR100891581B1 (en) Air conditioner
US10101043B2 (en) HVAC system and method of operation
EP3396264B1 (en) Air-source heat pump air conditioner
JP2006292313A (en) Geothermal unit
KR20190023784A (en) Equipment system of building having one pipe
JP6907653B2 (en) Air conditioning system
US20230358415A1 (en) Integrated space conditioning and water heating/cooling systems and methods thereto
JP6105933B2 (en) Air conditioner using direct expansion coil
WO2023032133A1 (en) Heating and cooling system for buildings
US10794612B2 (en) Heat source integrated air conditioner
KR100712857B1 (en) Refrigerants Control Method For Dual Type Unitary Air Conditioner
JP6747920B2 (en) Air conditioning system
JP6134511B2 (en) Air conditioner using direct expansion coil
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP6370425B2 (en) Air conditioner using direct expansion coil
WO2023047456A1 (en) Cooling/heating system
WO2024060836A1 (en) Control method for fresh air device, and fresh air device and storage medium
JP2018109468A (en) Air Conditioning System
JP2022126422A (en) Air conditioning system and air conditioning method
WO2020012847A1 (en) Air conditioner
WO2020016928A1 (en) Heat exchange unit, air conditioning device, and air conditioning system
KR20160074227A (en) Cooling and heating system
CN117606090A (en) Air conditioner and air conditioner control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544921

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180101855.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE