JP2020070950A - Building cooling and heating system - Google Patents

Building cooling and heating system Download PDF

Info

Publication number
JP2020070950A
JP2020070950A JP2018203952A JP2018203952A JP2020070950A JP 2020070950 A JP2020070950 A JP 2020070950A JP 2018203952 A JP2018203952 A JP 2018203952A JP 2018203952 A JP2018203952 A JP 2018203952A JP 2020070950 A JP2020070950 A JP 2020070950A
Authority
JP
Japan
Prior art keywords
water
heat source
building
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018203952A
Other languages
Japanese (ja)
Other versions
JP6987731B2 (en
Inventor
小田根 昌弘
Masahiro Odane
昌弘 小田根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP2018203952A priority Critical patent/JP6987731B2/en
Publication of JP2020070950A publication Critical patent/JP2020070950A/en
Application granted granted Critical
Publication of JP6987731B2 publication Critical patent/JP6987731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To enable a water-cooled multiple packaged air conditioner to be installed in a building in a certain area subject to area-wide air conditioning.SOLUTION: A building 10 into which a building cooling and heating system is introduced has: a water-cooled multiple packaged air conditioner 11; a heat exchanger 12a which performs heat exchange between cold water (circulated water) for DHC sent from another building located in a certain area subject to area-wide air conditioning and heat source water of the water-cooled multiple packaged air conditioner 11; a heat exchanger 12b which performs heat exchange between hot water (circulated water) for DHC sent from another building and the heat source water of the water-cooled multiple packaged air conditioner 11; and a controller 18 which closes a hot water valve 13b and controls an opening of a cold water valve 13a, when a cooling load is larger than a heating load in the building 10, so that a temperature of the heat source water supplied to a heat source unit 111 becomes not less than 10 degrees and closes the cold water valve 13a and controls the opening of the hot water valve 13b, when the heating load is larger than the cooling load, so that the temperature of the heat source water supplied to the heat source unit 111 becomes not more than 45 degrees.SELECTED DRAWING: Figure 2

Description

本発明は、ビル用冷暖房システム、特に地域冷暖房の一定地域内にあるビルに適した冷暖房システムに関する。   The present invention relates to a building heating / cooling system, and more particularly to a cooling / heating system suitable for a building within a certain area of district cooling / heating.

従来から、中大規模のビル向けにビル用マルチエアコンが普及している。1台の熱源ユニットでビル全体を空調する、大規模のビルに適したセントラル空調とは異なり、ビル用マルチエアコンは、例えばフロア毎に設置した熱源ユニット(室外機)に複数の室内機を接続し、室内機毎(部屋毎)に温度調節ができ、また冷房・暖房を自由に設定できることから快適性を向上できる。   2. Description of the Related Art Conventionally, building multi-air conditioners have been popular for medium and large-scale buildings. Unlike central air conditioning, which is suitable for large-scale buildings, where one heat source unit is used to air-condition the entire building, multi-air conditioners for buildings connect multiple indoor units to heat source units (outdoor units) installed on each floor, for example. However, the temperature can be adjusted for each indoor unit (room), and the cooling and heating can be set freely, which improves comfort.

ところで、近年では、地域冷暖房が普及してきている。地域冷暖房は、一定地域内の多数のビルに熱供給設備(地域冷暖房プラント)から、冷水・温水・蒸気などの熱媒を、地域配管を通して供給し、冷房・暖房・給湯などを行うシステムである。つまり、地域冷暖房では、地域冷暖房プラントによって地域全体の熱源をまとめて製造し、供給するためセントラル空調が各ビルに採用される。   By the way, in recent years, district heating and cooling have become widespread. District heating and cooling is a system that supplies heat media such as cold water, hot water, and steam from a heat supply facility (regional heating and cooling plant) to a large number of buildings in a certain area through regional piping to perform cooling, heating, and hot water supply. .. In other words, in district heating and cooling, central air conditioning is adopted in each building in order to collectively manufacture and supply heat sources for the entire region by the district heating and cooling plant.

特開2012−42162号公報JP, 2012-42162, A 特開2006−266520号公報JP, 2006-266520, A 特開2005−140367号公報JP 2005-140367 A

地域冷暖房では、セントラル空調が採用されているため、地域冷暖房を導入したビルでは、部屋毎に冷房モードと暖房モードを切り替えることはできない。もちろん、地域冷暖房を導入せずにビル用マルチエアコンを単独で設置することは可能であるかもしれない。   Since central air conditioning is adopted in district heating and cooling, it is not possible to switch between cooling mode and heating mode for each room in a building where district cooling and heating is introduced. Of course, it may be possible to install a building multi-air conditioner independently without introducing district heating and cooling.

しかしながら、超大規模のビル、特に延床面積が10万平方メートルを超えるような超高層ビルでは顕著となるが、空冷式のビル用マルチエアコンを導入しようとすると、室外機の台数が1000台以上となり、室外機を屋上に設置できない場合がある。仮に物理的に設置できるとしても、室外機と室内機との高低差があるとマルチエアコンの仕様から実際には設置することはできない。   However, when it comes to introducing an air-cooled multi air conditioner for buildings, the number of outdoor units will exceed 1,000, which is especially noticeable in ultra-large-scale buildings, especially in skyscrapers with a total floor area exceeding 100,000 square meters. , In some cases, the outdoor unit cannot be installed on the roof. Even if it can be physically installed, it cannot be actually installed due to the specifications of the multi-air conditioner if there is a difference in height between the outdoor unit and the indoor unit.

また、各階のバルコニー等に室外機を設置する場合、上層階の室外機は下層階の室外機の排気熱の影響を受けて、効率的な運転ができなくなるおそれがある。   Further, when an outdoor unit is installed on a balcony or the like on each floor, the outdoor unit on the upper floor may be affected by the exhaust heat of the outdoor unit on the lower floor and may not be able to operate efficiently.

一方、水冷式のビル用マルチエアコンを導入しようとすると、冷却塔やボイラーの台数が多くなり、保守費用等コストの問題や空冷式と同様に設置面積の問題が生じてくる。   On the other hand, when trying to introduce a water-cooled multi air conditioner for buildings, the number of cooling towers and boilers increases, which causes cost problems such as maintenance costs and installation area problems similar to the air-cooled type.

本発明は、地域冷暖房の一定地域内におけるビルにおいても水冷式ビル用マルチエアコンを設置可能とすることを目的とする。   An object of the present invention is to make it possible to install a water-cooled multi air conditioner for a building even in a building within a certain area for district heating and cooling.

本発明に係るビル用冷暖房システムは、水冷式ビル用マルチエアコンと、地域冷暖房の一定地域内にある他のビルからの地域冷暖房プラントへの還水と、前記水冷式ビル用マルチエアコンの熱源水と、を熱交換する熱交換器と、前記ビルからの還水の温度を利用して前記水冷式ビル用マルチエアコンの熱源ユニットに供給する熱源水の温度を制御する制御手段と、を有することを特徴とする。   A building air-conditioning system according to the present invention includes a water-cooled multi-air conditioner for buildings, return water from another building within a certain area of district air-conditioning to a district air-conditioning plant, and heat source water for the water-cooled multi air conditioner for buildings. And a control means for controlling the temperature of the heat source water supplied to the heat source unit of the water-cooled multi-air conditioner for buildings by utilizing the temperature of the return water from the building. Is characterized by.

また、前記熱交換器は、前記他のビルからの冷水の還水と、前記熱源ユニットに供給する冷水用の熱源水と、を熱交換する冷水用熱交換器と、前記他のビルからの温水の還水と、前記熱源ユニットに供給する温水用の熱源水と、を熱交換する温水用熱交換器と、を有することを特徴とする。   Further, the heat exchanger, a cold water heat exchanger for exchanging heat between cold water returned from the other building and heat source water for cold water supplied to the heat source unit; and a heat exchanger for cooling water from the other building. It has a heat exchanger for hot water which exchanges heat between return water of hot water and heat source water for hot water supplied to the heat source unit.

また、前記制御手段は、前記水冷式ビル用マルチエアコンから取得した冷暖房にかかる負荷情報に基づき前記熱源ユニットに供給する熱源水の流路を制御することを特徴とする。   Further, the control means controls the flow path of the heat source water to be supplied to the heat source unit based on the load information on cooling and heating acquired from the water-cooled multi-air conditioner for buildings.

また、前記制御手段は、冷房負荷が暖房負荷より高い場合、前記冷水用熱交換器により熱交換された熱源水を前記熱源ユニットに供給するよう制御することを特徴とする。   Further, when the cooling load is higher than the heating load, the control means controls to supply the heat source water heat-exchanged by the cold water heat exchanger to the heat source unit.

また、前記制御手段は、暖房負荷が冷房負荷より高い場合、前記温水用熱交換器により熱交換された熱源水を前記熱源ユニットに供給するよう制御することを特徴とする。   Further, when the heating load is higher than the cooling load, the control means controls to supply the heat source water that has been heat-exchanged by the hot water heat exchanger to the heat source unit.

また、前記制御手段は、前記熱源ユニットに供給する熱源水の温度に基づき前記水冷式ビル用マルチエアコンへの流量を制御することを特徴とする。   Further, the control means controls the flow rate to the water-cooled building multi-air conditioner based on the temperature of the heat source water supplied to the heat source unit.

本発明によれば、地域冷暖房の一定地域内におけるビルにおいても水冷式ビル用マルチエアコンを設置することができる。   According to the present invention, it is possible to install a water-cooled multi air conditioner for a building even in a building within a certain area of district heating and cooling.

本実施の形態における地域冷暖房の地域配管の接続形態を示す概念図である。It is a conceptual diagram which shows the connection form of the regional piping of district heating and cooling in this Embodiment. 本発明に係るビル用冷暖房システムの一実施の形態を示す全体構成図である。1 is an overall configuration diagram showing an embodiment of a building cooling / heating system according to the present invention.

以下、図面に基づいて、本発明の好適な実施の形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

「地域冷暖房」というのは、前述したように一定地域内の多数のビルに熱供給設備(地域冷暖房プラント)から、冷水・温水・蒸気などの熱媒を、地域配管を通して供給し、冷房・暖房・給湯などを行うシステムのことをいうが、本実施の形態では、各ビルに熱源水(冷却水)を供給する地域冷暖房に適用する場合を例にして説明する。   "Regional cooling and heating" means, as mentioned above, that a large number of buildings within a certain area are supplied with heat medium such as chilled water, hot water and steam through regional piping from a heat supply facility (community cooling and heating plant) to cool and heat the building. This refers to a system for supplying hot water, but in the present embodiment, a case where it is applied to district heating and cooling that supplies heat source water (cooling water) to each building will be described as an example.

図1は、本実施の形態における地域冷暖房の地域配管の接続形態を示す概念図である。図1には、DHC(District Heating and Cooling)1と複数のビル2が示されている。DHC1は、地域冷暖房であり、本実施の形態では、特に各ビル2のセントラル空調向けに冷水と温水を熱源水として供給する地域冷暖房プラントを示している。ビル2は、地域冷暖房の一定地域内にある建物であり、DHC1から供給される熱源水を利用してセントラル空調方式にて空調を行う。DHC1と各ビル2の間には、DHC1が製造した冷水を各ビル2に供給するための地域配管3、DHC1が製造した温水を各ビル2に供給するための地域配管4、各ビル2がDHC1から供給され空調等に使用した後の冷水をDHC1に戻すための地域配管5、各ビル2がDHC1から供給され空調等に使用した後の温水をDHC1に戻すための地域配管6、がそれぞれ配設される。なお、DHC1が各ビル2に供給する冷水の温度は、地域冷暖房にもよるが、一般に7度程度、温水の温度は60度程度である。また、現状からして、各ビル2がDHC1に還す冷水の温度は12度程度、温水の温度は40度程度になることを想定している。   FIG. 1 is a conceptual diagram showing a connection form of regional pipes for district heating and cooling in the present embodiment. FIG. 1 shows a DHC (Distribution Heating and Cooling) 1 and a plurality of buildings 2. The DHC 1 is a district heating / cooling system, and in the present embodiment, a district heating / cooling plant that supplies cold water and hot water as heat source water particularly for central air conditioning of each building 2 is shown. The building 2 is a building located within a certain area for district heating and cooling, and uses the heat source water supplied from the DHC 1 to perform air conditioning by the central air conditioning system. Between the DHC 1 and each building 2, there are a regional pipe 3 for supplying the cold water produced by the DHC 1 to each building 2, a regional pipe 4 for supplying the hot water produced by the DHC 1 to each building 2, and each building 2. A regional pipe 5 for returning cold water supplied from the DHC1 to the DHC1 after being used for air conditioning, and a regional pipe 6 for returning the hot water supplied from the DHC1 to the DHC1 for use in the air conditioning to the DHC1. It is arranged. The temperature of the cold water supplied to each building 2 by the DHC 1 is generally about 7 degrees and the temperature of the hot water is about 60 degrees, although it depends on the district heating and cooling. Further, from the current situation, it is assumed that the temperature of the cold water returned to each building 2 to the DHC 1 is about 12 degrees, and the temperature of the hot water is about 40 degrees.

以降の説明において、DHC1が地域配管3を通して各ビル2に供給する冷水を「冷水(往水)」、DHC1が地域配管4を通して各ビル2に供給する温水を「温水(往水)」、各ビル2が地域配管5を通してDHC1に還す冷水を「冷水(還水)」、各ビル2が地域配管6を通してDHC1に還す温水を「温水(還水)」、と記載する。また、冷水(往水)及び温水(往水)を区別する必要がない場合は、「往水」と総称する。同様に、冷水(還水)及び温水(還水)を区別する必要がない場合は、「還水」と総称する。   In the following description, the cold water that the DHC 1 supplies to each building 2 through the regional piping 3 is “cold water (outgoing water)”, and the hot water that the DHC 1 supplies to each building 2 through the regional piping 4 is “warm water (outgoing water)”. The cold water that the building 2 returns to the DHC 1 through the regional pipe 5 is referred to as “cold water (return water)”, and the warm water that each building 2 returns to the DHC 1 through the regional pipe 6 is referred to as “warm water (return water)”. When it is not necessary to distinguish cold water (going water) and hot water (going water), they are collectively referred to as “going water”. Similarly, when it is not necessary to distinguish cold water (return water) and hot water (return water), they are collectively referred to as “return water”.

本実施の形態におけるビル用冷暖房システムを設置するビル10は、熱源水としてDHC1から往水の供給を受けずに、他のビル2が使用した熱源水、すなわち還水の温度を利用することを特徴としており、そのために、冷水用の熱交換器及び温水用の熱交換器をそれぞれ、他のビル2がDHC1に還水を還す地域配管5,6の取付位置7a,7bに設置する。なお、複数のビル2からの冷水(還水)及び温水(還水)の温度を利用するために設置位置8a,8bに設置してもよい。   The building 10 in which the building heating / cooling system according to the present embodiment is installed does not receive the incoming water supply from the DHC 1 as the heat source water and uses the temperature of the heat source water used by the other building 2, that is, the return water temperature. For this purpose, a heat exchanger for cold water and a heat exchanger for hot water are installed at the mounting positions 7a and 7b of the regional pipes 5 and 6 where the other building 2 returns the return water to the DHC 1, respectively. In addition, you may install in the installation position 8a, 8b in order to utilize the temperature of the cold water (return water) and warm water (return water) from the some building 2.

図2は、本発明に係るビル用冷暖房システムの一実施の形態を示す全体構成図である。図2には、セントラル空調方式の空調設備を備えるビル2とは異なり、本実施の形態におけるビル用冷暖房システムが適用されるビル10が示されている。ビル10は、水冷式ビル用マルチエアコン(水冷ビルマル)11を使用するビル用冷暖房システムを備えている。   FIG. 2 is an overall configuration diagram showing an embodiment of a building cooling / heating system according to the present invention. FIG. 2 shows a building 10 to which the building heating / cooling system according to the present embodiment is applied, unlike the building 2 having a central air conditioning system. The building 10 is equipped with a building heating / cooling system that uses a water-cooled multi-air conditioning system (water-cooled building) 11.

水冷式ビル用マルチエアコン11は、熱源ユニット(室外ユニット)111、分流コントローラ112及び室内機(室内ユニット)113を有している。室内機113は、例えば部屋に1乃至複数設置され、当該部屋に冷気又は暖気を供給する。室内機113は、運転モードや室温設定を個々に設定できる。熱源ユニット111は、熱源水によって冷気/暖気を生成する。分流コントローラ112は、各室内機113の運転モード等の設定に応じて熱源ユニット111が生成した冷気/暖気を各室内機113に供給する。水冷式ビル用マルチエアコン11は、従来から存在する室外ユニット、分流コントローラ及び室内ユニットから成る装置をそのまま利用してよい。   The water-cooled building multi-air conditioner 11 includes a heat source unit (outdoor unit) 111, a diversion controller 112, and an indoor unit (indoor unit) 113. For example, one to a plurality of indoor units 113 are installed in a room and supply cold air or warm air to the room. The indoor unit 113 can individually set the operation mode and the room temperature setting. The heat source unit 111 generates cold air / warm air from the heat source water. The diversion controller 112 supplies the cold air / warm air generated by the heat source unit 111 to each indoor unit 113 according to the setting of the operation mode of each indoor unit 113. The water-cooled building multi-air conditioner 11 may use the existing device including an outdoor unit, a diversion controller, and an indoor unit as it is.

本実施の形態では、熱源として他のビル2からの還水を利用し、冷水塔及びボイラーを必要としない。すなわち、水冷式ビル用マルチエアコン11は、冷水塔及びボイラーを含まない。なお、図2に示す水冷式ビル用マルチエアコン11の構成は、ビル10の各階ともに同じでよいので、図2では1組の構成のみ図示した。   In this embodiment, the return water from another building 2 is used as a heat source, and a cold water tower and a boiler are not required. That is, the water-cooled multi air conditioner 11 for a building does not include a cold water tower and a boiler. The structure of the water-cooled multi-air conditioner 11 for a building shown in FIG. 2 may be the same for each floor of the building 10, and therefore only one set of structures is shown in FIG.

ビル10には、更に他のビル2からの還水と、水冷式ビル用マルチエアコン11の熱源水と、を熱交換する熱交換器12が設置される。本実施の形態では、熱交換の効率性を考慮して冷水用と温水用それぞれに対応させて熱交換器12a,12bを設置するが、少なくとも一方のみで運用することは可能である。なお、2台の熱交換器12a,12bを区別する必要がない場合は、上記の通り「熱交換器12」と総称する。熱交換器12aは、図1に示す取付位置7aに接続され、他のビル2からの冷水(還水)と、水冷式ビル用マルチエアコン11の熱源水と、を熱交換する。熱交換器12bは、図1に示す取付位置7bに接続され、他のビル2からの温水(還水)と、水冷式ビル用マルチエアコン11の熱源水と、を熱交換する。   In the building 10, a heat exchanger 12 that exchanges heat between the return water from the other building 2 and the heat source water of the water-cooled multi air conditioning system 11 is installed. In the present embodiment, the heat exchangers 12a and 12b are installed for cold water and hot water in consideration of the efficiency of heat exchange, but it is possible to operate with at least one of them. When it is not necessary to distinguish between the two heat exchangers 12a and 12b, they are collectively referred to as the "heat exchanger 12" as described above. The heat exchanger 12a is connected to the mounting position 7a shown in FIG. 1 and exchanges heat between cold water (return water) from another building 2 and heat source water of the water-cooled multi air conditioning system 11 for a building. The heat exchanger 12b is connected to the mounting position 7b shown in FIG. 1 and exchanges heat between hot water (return water) from another building 2 and the heat source water of the water-cooled multi air conditioning system 11 for buildings.

水冷式ビル用マルチエアコン11と熱交換器12との間には、水冷式ビル用マルチエアコン11の熱源水を循環させる配管が図2に示すように設置される。熱交換器12aから出力される熱源水は、バルブ(冷水弁)13aを通り、更に温度計14、インバータ15により動作制御されるポンプ16を通って水冷式ビル用マルチエアコン11に供給可能なように配管が設置される。一方、熱交換器12bから出力される熱源水は、バルブ(温水弁)13bを通り、更に温度計14、ポンプ16を通って水冷式ビル用マルチエアコン11に供給可能なように配管が設置される。水冷式ビル用マルチエアコン11により使用された熱源水は、流量計17を通って熱交換器12に供給されるように配管が設置される。本実施の形態では、熱交換器12a又は熱交換器12bに切り替えて、すなわち排他的に熱源水が還される。   Between the water-cooled building multi-air conditioner 11 and the heat exchanger 12, a pipe for circulating the heat source water of the water-cooled building multi-air conditioner 11 is installed as shown in FIG. The heat source water output from the heat exchanger 12a can be supplied to the water-cooled building multi-air conditioner 11 through a valve (cold water valve) 13a, a thermometer 14, and a pump 16 whose operation is controlled by an inverter 15. Piping is installed at. On the other hand, piping is installed so that the heat source water output from the heat exchanger 12b can be supplied to the water-cooled multi air conditioning system 11 for the building through the valve (hot water valve) 13b, the thermometer 14 and the pump 16. It The piping is installed so that the heat source water used by the water-cooled multi air conditioner 11 for a building passes through the flow meter 17 and is supplied to the heat exchanger 12. In the present embodiment, the heat source water is returned by switching to the heat exchanger 12a or the heat exchanger 12b, that is, exclusively.

コントローラ18は、他のビル2からの還水の温度を利用して水冷式ビル用マルチエアコン11の熱源ユニット111に供給する熱源水の温度を制御する制御手段として機能する。熱源水の温度制御を行う際、温度計14及び流量計17の各計測値と水冷式ビル用マルチエアコン11から取得する冷暖房に係る負荷情報に基づきバルブ13a,13bの開閉制御並びにインバータ15の動作を制御して、ポンプ16からの流量を調整する。   The controller 18 functions as a control unit that controls the temperature of the heat source water supplied to the heat source unit 111 of the water-cooled multi-air conditioner 11 using the temperature of the return water from the other building 2. When controlling the temperature of the heat source water, the opening / closing control of the valves 13a and 13b and the operation of the inverter 15 are performed based on the measured values of the thermometer 14 and the flow meter 17 and the load information related to cooling and heating acquired from the water-cooled multi-air conditioner 11 for the building. To regulate the flow rate from the pump 16.

コントローラ18は、従前からある汎用的なハードウェア構成で実現できる。すなわち、コントローラ18は、CPU、ROM、RAMやハードディスクドライブ(HDD)等の記憶手段を内部バスに接続して構成される。また、必要により通信インタフェースやユーザインタフェースを持たせてもよい。後述するコントローラ18は、ハードウェアにより、あるいはCPUとCPUで動作するプログラムとの協調動作により実現してもよい。プログラムは、コントローラ18の設置時あるいは設置後にネットワーク等を経由してインストールしてもよい。   The controller 18 can be realized by a conventional general-purpose hardware configuration. That is, the controller 18 is configured by connecting storage means such as a CPU, a ROM, a RAM and a hard disk drive (HDD) to the internal bus. Moreover, you may provide a communication interface and a user interface as needed. The controller 18, which will be described later, may be realized by hardware or by a cooperative operation of the CPU and a program operating on the CPU. The program may be installed during or after the controller 18 is installed via a network or the like.

次に、本実施の形態における動作について説明する。   Next, the operation of this embodiment will be described.

コントローラ18は、水冷式ビル用マルチエアコン11から冷暖房に係る負荷情報を取得する。負荷情報には、ビル10全体で使用されている室内機113の運転台数、運転中の室内機113の運転モード(冷房運転、暖房運転の別)が含まれている。コントローラ18は、取得した負荷情報を解析することで現時点の冷房負荷及び暖房負荷を求める。冷房負荷は、例えば、冷房運転モードで稼働している室内機113の運転台数、冷房運転モードで稼働している室内機113全体の消費電力、熱源ユニット111における冷房出力、冷房運転において熱源水に必要な熱量、流量等である。冷房負荷は、従前からある手法を用いればよい。暖房負荷も冷房負荷と同様な方法にて求める。   The controller 18 obtains load information related to cooling and heating from the water-cooled building multi-air conditioner 11. The load information includes the number of operating indoor units 113 used in the entire building 10 and the operating mode of the operating indoor units 113 (whether cooling operation or heating operation). The controller 18 obtains the current cooling load and heating load by analyzing the acquired load information. The cooling load is, for example, the number of operating indoor units 113 operating in the cooling operation mode, the power consumption of the entire indoor unit 113 operating in the cooling operation mode, the cooling output of the heat source unit 111, and the heat source water in the cooling operation. Required heat quantity, flow rate, etc. For the cooling load, a conventional method may be used. The heating load is also calculated in the same way as the cooling load.

そして、冷房負荷が暖房負荷より大きい場合、コントローラ18は、温水弁13bを閉制御すると共に、熱源ユニット111に供給する熱源水の温度が10度以上になるよう冷水弁13aの開度を調整する。このように、コントローラ18は、熱源水が熱交換器12a、冷水弁13a、温度計14、ポンプ16を通って熱源ユニット111に供給されるよう流路を制御する。そして、熱源ユニット111から出力される熱源水は、流量計17を通って熱交換器12aに供給される。   When the cooling load is larger than the heating load, the controller 18 controls the closing of the hot water valve 13b and adjusts the opening degree of the cold water valve 13a so that the temperature of the heat source water supplied to the heat source unit 111 becomes 10 degrees or more. .. In this way, the controller 18 controls the flow path so that the heat source water is supplied to the heat source unit 111 through the heat exchanger 12a, the cold water valve 13a, the thermometer 14, and the pump 16. The heat source water output from the heat source unit 111 passes through the flow meter 17 and is supplied to the heat exchanger 12a.

ところで、現在の熱源ユニットの仕様から、熱源水の温度は10度から45度の間に調整する必要がある。そのため、コントローラ18は、熱交換器12aから出力され熱源ユニット111に供給する熱源水の温度が10度以上となるよう温度調整を行う。なお、熱源ユニット111に供給される熱源水の温度は、温度計14によって測定される。また、コントローラ18は、冷房負荷の大きさ、流量計17が測定した流量、熱源ユニット111の出力等に応じて熱源ユニット111に供給する熱源水の流量、熱量を制御するためにインバータ15の動作を制御して、ポンプ16の開閉度合いを調整する。   By the way, according to the current specifications of the heat source unit, it is necessary to adjust the temperature of the heat source water between 10 degrees and 45 degrees. Therefore, the controller 18 performs temperature adjustment so that the temperature of the heat source water output from the heat exchanger 12a and supplied to the heat source unit 111 becomes 10 degrees or more. The temperature of the heat source water supplied to the heat source unit 111 is measured by the thermometer 14. In addition, the controller 18 operates the inverter 15 to control the flow rate and heat quantity of the heat source water supplied to the heat source unit 111 according to the magnitude of the cooling load, the flow rate measured by the flow meter 17, the output of the heat source unit 111, and the like. Is controlled to adjust the opening / closing degree of the pump 16.

一方、暖房負荷が冷房負荷より大きい場合、コントローラ18は、冷水弁13aを閉制御すると共に、熱源ユニット111に供給する熱源水の温度が45度以下になるよう温水弁13bの開度を調整する。このように、コントローラ18は、熱源水が熱交換器12b、温水弁13b、温度計14、ポンプ16を通って熱源ユニット111に供給されるよう流路を制御する。そして、熱源ユニット111から出力される熱源水は、流量計17を通って熱交換器12bに供給される。   On the other hand, when the heating load is larger than the cooling load, the controller 18 controls the closing of the cold water valve 13a and adjusts the opening degree of the hot water valve 13b so that the temperature of the heat source water supplied to the heat source unit 111 becomes 45 degrees or lower. .. In this way, the controller 18 controls the flow path so that the heat source water is supplied to the heat source unit 111 through the heat exchanger 12b, the hot water valve 13b, the thermometer 14, and the pump 16. The heat source water output from the heat source unit 111 passes through the flow meter 17 and is supplied to the heat exchanger 12b.

熱源水の温度を45度以下とするのは、前述したように熱交換器の仕様に基づくものである。なお、今後、熱源ユニット111の仕様が変更されると、コントローラ18は、その仕様に適合するよう温度制御すればよい。また、コントローラ18は、暖房負荷の大きさ、流量計17が測定した流量、熱源ユニット111の出力等に応じて熱源ユニット111に供給する熱源水の流量、熱量を制御するためにインバータ15の動作を制御して、ポンプ16の開閉度合いを調整する。   The reason why the temperature of the heat source water is set to 45 degrees or lower is based on the specifications of the heat exchanger as described above. When the specifications of the heat source unit 111 are changed in the future, the controller 18 may control the temperature so as to meet the specifications. In addition, the controller 18 operates the inverter 15 to control the flow rate and heat quantity of the heat source water supplied to the heat source unit 111 according to the size of the heating load, the flow rate measured by the flow meter 17, the output of the heat source unit 111, and the like. Is controlled to adjust the opening / closing degree of the pump 16.

なお、冷房負荷と暖房負荷が同じ場合は、いずれかのバルブ13a,13bを閉制御して冷水又は温水を熱源ユニット111に供給するようにすればよい。   When the cooling load and the heating load are the same, either of the valves 13a and 13b may be controlled to be closed to supply cold water or hot water to the heat source unit 111.

以上説明したように、本実施の形態では、熱源ユニット111に供給される熱源水の温度が10度から45度の範囲となるようにバルブ13a,13bの開閉制御を行うが、冷房負荷が暖房負荷より大きい場合、コントローラ18は、冷房運転している室内機113の運転効率を優先させて温水弁13bを閉じるように制御する。一方、暖房負荷が冷房負荷より大きい場合、コントローラ18は、暖房運転している室内機113の運転効率を優先させて冷水弁13aを閉じるように制御する。このように、本実施の形態では、冷水又は温水の一方の熱源水のみを熱源ユニット111に供給するようにした。もちろん、冷水と温水を混合してもよいが、ミキシングロスを発生させないようにバルブ13a,13bを排他制御するようにした。なお、現時点の水冷式ビル用マルチエアコンは、熱源ユニットに供給される熱源水の温度が10度から45度の間であれば、冷房運転と暖房運転の双方とも運転可能であり、冷房運転と暖房運転の同時運転が可能である。   As described above, in the present embodiment, the opening / closing control of the valves 13a and 13b is performed so that the temperature of the heat source water supplied to the heat source unit 111 is in the range of 10 degrees to 45 degrees. When the load is larger than the load, the controller 18 controls to close the hot water valve 13b by giving priority to the operation efficiency of the indoor unit 113 that is performing the cooling operation. On the other hand, when the heating load is larger than the cooling load, the controller 18 controls to close the chilled water valve 13a by giving priority to the operation efficiency of the indoor unit 113 that is in the heating operation. As described above, in the present embodiment, only the heat source water of either cold water or hot water is supplied to the heat source unit 111. Of course, cold water and hot water may be mixed, but the valves 13a and 13b are exclusively controlled so as not to generate mixing loss. It should be noted that the present water-cooled multi air conditioner for buildings can be operated in both cooling operation and heating operation if the temperature of the heat source water supplied to the heat source unit is between 10 degrees and 45 degrees. Simultaneous heating operation is possible.

従来の水冷式ビル用マルチエアコンでは、熱源として冷却塔やボイラーを利用していたが、本実施の形態では、他のビル2からの還水の温度を利用するように構成したので、冷却塔やボイラーを必要としない。すなわち、冷却塔やボイラーの保守費用とのコストや設置面積の問題が発生しないので、冷暖房地域の一定地域内においてビル10に水冷式ビル用マルチエアコンを設置することが可能となる。これにより、巨大な規模のビル10においても部屋毎の快適性を向上させることが可能となる。   In the conventional water-cooled multi air conditioner for buildings, a cooling tower or a boiler was used as a heat source, but in the present embodiment, the temperature of return water from another building 2 is used. And does not need a boiler. That is, since there is no problem with the cost of the cooling tower or the maintenance cost of the boiler and the installation area, it is possible to install the water-cooled multi air conditioner for the building in the building 10 within a certain area of the heating and cooling area. This makes it possible to improve the comfort of each room even in a huge building 10.

ところで、本実施の形態におけるビル10に還水を供給するビル2は、従来通りセントラル空調方式により空調制御していることを想定している。ただ、そのビル2も、本実施の形態のビル用冷暖房システムに切り替えて、水冷式ビル用マルチエアコン11を導入する場合も考えられる。このように、ビル2が本実施の形態のビル用冷暖房システムに切り替えていった結果、地域冷暖房の一定地域内にある全てのビルが本実施の形態のビル用冷暖房システムを導入することも理論上、あり得る。そう考えると、現在では、セントラル空調向けに冷水(7度)と温水(60度)を供給している地域冷暖房プラントが、熱源ユニットの仕様に従って10度以上の冷水(往水)と45度以下の温水(往水)を供給するようにしてもよいように考えられる。そうすると、前述した本実施の形態のビル用冷暖房システムは、地域冷暖房プラントから熱源水(往水)を直接受けることも可能となる。また、熱源ユニット111に供給する熱源水の温度を10度以上45度以下に調整するための熱交換器12を使用しなくてすむ。また、DHC1では、熱源水を現状より冷暖する必要がないため、コストの削減にもつながる。   By the way, it is assumed that the building 2 that supplies the return water to the building 10 in the present embodiment is air-conditioned and controlled by the central air-conditioning method as in the conventional case. However, it may be considered that the building 2 is also switched to the building heating / cooling system of the present embodiment and the water-cooled building multi-air conditioner 11 is introduced. In this way, as a result of the building 2 switching to the building heating and cooling system of this embodiment, it is also theoretical that all buildings within a certain area of district heating and cooling will introduce the building heating and cooling system of this embodiment. Above, it is possible. Considering that, the district heating and cooling plant that is currently supplying cold water (7 degrees) and hot water (60 degrees) for central air conditioning uses cold water of 10 degrees or more (outgoing water) and 45 degrees or less according to the specifications of the heat source unit. It is conceivable that the warm water (outgoing water) may be supplied. Then, the building heating and cooling system of the present embodiment described above can also receive heat source water (outgoing water) directly from the district heating and cooling plant. Further, it is not necessary to use the heat exchanger 12 for adjusting the temperature of the heat source water supplied to the heat source unit 111 to 10 degrees or more and 45 degrees or less. Further, in the DHC1, it is not necessary to cool or heat the heat source water more than the current state, which leads to cost reduction.

1 DHC、2,10 ビル、3,4,5,6 地域配管、7a,7b,8a,8b 取付位置、11 水冷式ビル用マルチエアコン、12a,12b 熱交換器、13a バルブ(冷水弁)、13b バルブ(温水弁)、14 温度計、15 インバータ、16 ポンプ、17 流量計、18 コントローラ、111 熱源ユニット、112 分流コントローラ、113 室内機。
1 DHC, 2, 10 building, 3, 4, 5, 6 regional piping, 7a, 7b, 8a, 8b mounting position, 11 water-cooled multi air conditioner for building, 12a, 12b heat exchanger, 13a valve (cold water valve), 13b valve (hot water valve), 14 thermometer, 15 inverter, 16 pump, 17 flow meter, 18 controller, 111 heat source unit, 112 diversion controller, 113 indoor unit.

Claims (6)

水冷式ビル用マルチエアコンと、
地域冷暖房の一定地域内にある他のビルからの地域冷暖房プラントへの還水と、前記水冷式ビル用マルチエアコンの熱源水と、を熱交換する熱交換器と、
前記ビルからの還水の温度を利用して前記水冷式ビル用マルチエアコンの熱源ユニットに供給する熱源水の温度を制御する制御手段と、
を有することを特徴とするビル用冷暖房システム。
A water-cooled multi air conditioner for buildings,
A heat exchanger that exchanges heat with return water from another building within a certain area of district heating and cooling to a district heating and cooling plant, and heat source water of the water-cooled building multi-air conditioner,
Control means for controlling the temperature of the heat source water supplied to the heat source unit of the water-cooled multi-air conditioner for buildings using the temperature of the return water from the building,
An air conditioning system for buildings, characterized by having.
前記熱交換器は、
前記他のビルからの冷水の還水と、前記熱源ユニットに供給する冷水用の熱源水と、を熱交換する冷水用熱交換器と、
前記他のビルからの温水の還水と、前記熱源ユニットに供給する温水用の熱源水と、を熱交換する温水用熱交換器と、
を有することを特徴とする請求項1に記載のビル用冷暖房システム。
The heat exchanger is
A cold water heat exchanger for exchanging heat between cold water returned from the other building and heat source water for cold water supplied to the heat source unit,
A hot water heat exchanger for exchanging heat between hot water returned from the other building and heat source water for hot water supplied to the heat source unit;
The building cooling and heating system according to claim 1, further comprising:
前記制御手段は、前記水冷式ビル用マルチエアコンから取得した冷暖房にかかる負荷情報に基づき前記熱源ユニットに供給する熱源水の流路を制御することを特徴とする請求項2に記載のビル用冷暖房システム。   The cooling / heating for buildings according to claim 2, wherein the control unit controls a flow path of the heat source water to be supplied to the heat source unit based on load information on cooling and heating acquired from the water-cooled multi-air conditioner for buildings. system. 前記制御手段は、冷房負荷が暖房負荷より高い場合、前記冷水用熱交換器により熱交換された熱源水を前記熱源ユニットに供給するよう制御することを特徴とする請求項3に記載のビル用冷暖房システム。   4. The building according to claim 3, wherein the control unit controls to supply the heat source water, which has been heat-exchanged by the cold water heat exchanger, to the heat source unit when the cooling load is higher than the heating load. Air conditioning system. 前記制御手段は、暖房負荷が冷房負荷より高い場合、前記温水用熱交換器により熱交換された熱源水を前記熱源ユニットに供給するよう制御することを特徴とする請求項3に記載のビル用冷暖房システム。   4. The building according to claim 3, wherein the control unit controls to supply the heat source water that has been heat-exchanged by the hot water heat exchanger to the heat source unit when the heating load is higher than the cooling load. Air conditioning system. 前記制御手段は、前記熱源ユニットに供給する熱源水の温度に基づき前記水冷式ビル用マルチエアコンへの流量を制御することを特徴とする請求項1に記載のビル用冷暖房システム。
The building cooling and heating system according to claim 1, wherein the control unit controls the flow rate to the water-cooled multi-air conditioner for a building based on the temperature of the heat source water supplied to the heat source unit.
JP2018203952A 2018-10-30 2018-10-30 Building heating and cooling system Active JP6987731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018203952A JP6987731B2 (en) 2018-10-30 2018-10-30 Building heating and cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018203952A JP6987731B2 (en) 2018-10-30 2018-10-30 Building heating and cooling system

Publications (2)

Publication Number Publication Date
JP2020070950A true JP2020070950A (en) 2020-05-07
JP6987731B2 JP6987731B2 (en) 2022-01-05

Family

ID=70547537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203952A Active JP6987731B2 (en) 2018-10-30 2018-10-30 Building heating and cooling system

Country Status (1)

Country Link
JP (1) JP6987731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032133A1 (en) * 2021-09-02 2023-03-09 三菱電機ビルソリューションズ株式会社 Heating and cooling system for buildings

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169250A (en) * 1987-12-25 1989-07-04 Takenaka Komuten Co Ltd Air conditioner for buildings
JPH0554921U (en) * 1991-12-26 1993-07-23 三機工業株式会社 Cold / hot water supply device
JPH062891A (en) * 1992-06-22 1994-01-11 Takenaka Komuten Co Ltd District space cooling/heating system
JP2001215037A (en) * 2000-01-31 2001-08-10 Ryobi Ltd Air conditioning system and its operation control method
JP2005069552A (en) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd Water heat source heat pump unit
JP2005140367A (en) * 2003-11-05 2005-06-02 Yamatake Corp Method and device for controlling heat source supply water temperature
US20120193066A1 (en) * 2011-01-31 2012-08-02 Peter Quentin Lowther Fan coil air conditioning system, a fan coil unit, and a method of controlling a fan coil air conditioning syst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169250A (en) * 1987-12-25 1989-07-04 Takenaka Komuten Co Ltd Air conditioner for buildings
JPH0554921U (en) * 1991-12-26 1993-07-23 三機工業株式会社 Cold / hot water supply device
JPH062891A (en) * 1992-06-22 1994-01-11 Takenaka Komuten Co Ltd District space cooling/heating system
JP2001215037A (en) * 2000-01-31 2001-08-10 Ryobi Ltd Air conditioning system and its operation control method
JP2005069552A (en) * 2003-08-22 2005-03-17 Kimura Kohki Co Ltd Water heat source heat pump unit
JP2005140367A (en) * 2003-11-05 2005-06-02 Yamatake Corp Method and device for controlling heat source supply water temperature
US20120193066A1 (en) * 2011-01-31 2012-08-02 Peter Quentin Lowther Fan coil air conditioning system, a fan coil unit, and a method of controlling a fan coil air conditioning syst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032133A1 (en) * 2021-09-02 2023-03-09 三菱電機ビルソリューションズ株式会社 Heating and cooling system for buildings

Also Published As

Publication number Publication date
JP6987731B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
CN102607146B (en) Central air-conditioning system and control method thereof
US8141623B2 (en) Automatic switching two pipe hydronic system
CZ301374B6 (en) Air-conditioning system
JP5775185B2 (en) Heat exchange coil and air conditioner
JP6987731B2 (en) Building heating and cooling system
Zhuang et al. Optimal design of multi-zone air-conditioning systems for buildings requiring strict humidity control
CN1243936C (en) Variable capacity one-driving-many control technique
CN112503636A (en) Double-fan dynamic balance air conditioning system for room of subway station equipment personnel
JP5096803B2 (en) Air conditioning system
JP2009138997A (en) Outside air cold recovery control system and outside air cold recovery control method
CN115654617A (en) Residential fifth-constant method based on central heating
JP5062555B2 (en) Energy saving air conditioning control system
JP2015007484A (en) Air conditioning system
JP2000111105A (en) Air-conditioning system for office building
CN214751538U (en) Device system for stabilizing water supply balance flow
JP4661135B2 (en) Air conditioning system, air conditioning control device, air control method
JP2013245861A (en) Water-cooled air conditioning system
Jain et al. Feasibility of Chilled Beam Systems in Building Industry
Nassif Chilled-Water VAV System Configuration And Design.
JP2006234343A (en) Heating control unit for floor heating system
JP2017180876A (en) Cold/hot water conversion unit and air conditioning system
JP2023049068A (en) hybrid air conditioning system
Smith et al. A novel concept for energy-efficient floor heating systems with minimal hot water return temperatures
KR20180032814A (en) Air conditioning apparatus
Nabil Nassif PHD Chilled-Water VAV System Configuration And Design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211201

R150 Certificate of patent or registration of utility model

Ref document number: 6987731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350