JP2615043B2 - Liquefied natural gas cold energy utilization - Google Patents

Liquefied natural gas cold energy utilization

Info

Publication number
JP2615043B2
JP2615043B2 JP10815087A JP10815087A JP2615043B2 JP 2615043 B2 JP2615043 B2 JP 2615043B2 JP 10815087 A JP10815087 A JP 10815087A JP 10815087 A JP10815087 A JP 10815087A JP 2615043 B2 JP2615043 B2 JP 2615043B2
Authority
JP
Japan
Prior art keywords
heat medium
heat exchanger
intermediate heat
cold
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10815087A
Other languages
Japanese (ja)
Other versions
JPS63275897A (en
Inventor
次彦 侘美
幸一郎 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP10815087A priority Critical patent/JP2615043B2/en
Publication of JPS63275897A publication Critical patent/JPS63275897A/en
Application granted granted Critical
Publication of JP2615043B2 publication Critical patent/JP2615043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液化天然ガス(以下「LNG」と称す)の冷
熱を中間熱媒体に移行させ、この中間熱媒体を冷熱利用
施設において利用する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention transfers cold energy of liquefied natural gas (hereinafter referred to as "LNG") to an intermediate heat medium, and uses the intermediate heat medium in a cold heat utilization facility. It is about the method.

[従来技術とその問題点] LNGが保有する冷熱の利用方式としてはLNGを直接冷熱
源として利用する方式と、LNGの保有する冷熱を一旦ハ
ロゲン化炭化水素、窒素等の中間熱媒体に移行させ、こ
の中間熱媒体を熱源として例えば空気の分離、冷凍倉
庫、液化炭酸製造、ドライアイス製造等の施設に利用す
る間接利用方式とが知られており、本発明は後者の間接
利用方式に属するものである。
[Prior art and its problems] There are two methods of using the cold energy possessed by LNG: direct utilization of LNG as a cold heat source, and temporary transfer of cold energy possessed by LNG to an intermediate heat medium such as halogenated hydrocarbons and nitrogen. It is known that the intermediate heat medium is used as a heat source, for example, in an indirect use system in which facilities such as air separation, freezing warehouses, liquefied carbonic acid production, and dry ice production are used, and the present invention belongs to the latter indirect use system. It is.

第3図は上記間接利用方式の一例を示し、この間接利
用方式においては冷熱利用施設における冷熱負荷が01、
02、03と複数ある場合には、LNGタンク04からLNGポンプ
05により汲み出されたLNGは冷熱負荷数に一致するライ
ン06、07、08に分割され、夫々のライン06、07、08に熱
交換器09、010、011を取り付け、この熱交換器09、01
0、011と冷熱負荷01、02、03とを中間熱媒体循環系路01
2、013、014にて接続し、負荷変動に対する冷熱の制御
は、ライン06、07、08における熱交換器09、010、011の
入口側に取り付けた制御弁015、016、017を中間熱媒体
循環系路012、013、014における熱交換器09、010、011
の出口側に取り付けた中間熱媒体の出口温度検出器01
8、019、020にて検出された温度により行い、循環ポン
プ012′、013′、014′により循環する中間熱媒体(中
間熱媒体循環系路012、013、014)の流量は負荷変動に
係りなく一定に保つのが普通である。図3において02
1、022、023は加熱器、024はスチームラインである。こ
のため、従来の冷熱利用方法においては次のような問題
があった。
FIG. 3 shows an example of the above-mentioned indirect use method. In this indirect use method, the cold load in the cold heat utilization facility is 01,
If there are two or more 02 and 03, LNG pump from LNG tank 04
The LNG pumped out by 05 is divided into lines 06, 07, 08 corresponding to the number of cooling loads, and heat exchangers 09, 010, 011 are attached to the respective lines 06, 07, 08, and this heat exchanger 09, 01
0,011 and the cooling loads 01,02,03
2, 013, 014, the control of cold heat against load fluctuation, the control valves 015, 016, 017 attached to the inlet side of the heat exchangers 09, 010, 011 in the lines 06, 07, 08 are intermediate heat medium Heat exchangers 09, 010, 011 in circulation paths 012, 013, 014
Temperature detector for the intermediate heat medium attached to the outlet side
The flow rate of the intermediate heat medium (intermediate heat medium circulation paths 012, 013, and 014) circulated by the circulation pumps 012 ', 013', and 014 'depends on the temperature detected at 8, 019, and 020. It is normal to keep it constant. In FIG. 3, 02
1, 022 and 023 are heaters, and 024 is a steam line. For this reason, the conventional method using cold energy has the following problems.

a.冷熱負荷ごとに熱交換器及び加熱器が存在するために
設備費が嵩み且つ設備が大型化する。
a. Since a heat exchanger and a heater are provided for each cooling load, equipment costs are increased and the equipment is enlarged.

b.前記a.の問題を無くするために一基の熱交換器で複数
の冷熱負荷に対応した場合には100%〜約30%程度しか
冷熱負荷変動に対応できず、運転効率が極端に悪化す
る。
b. In order to eliminate the problem of a. above, if a single heat exchanger supports multiple cooling loads, only 100% to about 30% can respond to cooling load fluctuations, resulting in extremely low operating efficiency. Getting worse.

c.冷熱負荷が停止して再起動する場合、熱交換器が大気
温近くまで温度上昇するため、これを1分間に1℃程度
低下させるというように徐々に冷却してから再起動しな
いと熱応力で熱交換器が破壊してしまう心配があり、因
って急激な負荷変動に対応できないと共に再起動までに
時間がかかる。又、このような心配を無くするために熱
交換器内に少量のLNGを流しておき、停止中であっても
熱交換器を冷却しておく方法の提案もあるが、このよう
にするとランニングコストが嵩む。
c. When the cooling load is stopped and restarted, the heat exchanger rises to near ambient temperature, so it is necessary to gradually cool it down by about 1 ° C per minute and then restart it. There is a concern that the heat exchanger may be destroyed by stress, so that it is not possible to cope with a sudden load change and it takes time to restart. In order to eliminate such a concern, there is a method of flowing a small amount of LNG into the heat exchanger and cooling the heat exchanger even during shutdown. Cost increases.

d.運転効率が悪いために加熱器で消費するスチーム量が
増大する。
d. The amount of steam consumed by the heater increases due to poor operation efficiency.

[本発明の目的] 本発明は上記a〜dに記載した問題を生じない液化天
然ガスの利用方法を提案するのが目的である。
[Object of the present invention] An object of the present invention is to propose a method of using liquefied natural gas which does not cause the problems described in the above items a to d.

[本発明の構成及びその作用] 本発明は上記目的を達成するため、液化天然ガスの冷
熱利用方法において、次の如き構成を提案する。
[Configuration of the present invention and its operation] In order to achieve the above object, the present invention proposes the following configuration in a method for utilizing liquefied natural gas cold energy.

液化天然ガスの冷熱を熱交換器を介して中間熱媒体に
移行させ、この中間熱媒体を冷熱利用施設に導いて利用
する液化天然ガスの冷熱利用方法において、 前記熱交換器には、少なくとも3層以上から成る多層
構造のプレートフィン型熱交換器が使用されているこ
と、 前記中間熱媒体の循環系路には、インバータで回転数
が制御される循環ポンプが取り付けられていること、 前記多層から成る熱交換器は、液化天然ガスが流れる
冷熱層の間に中間熱媒体が流れる受熱層が配置されてい
ること、 前記中間熱媒体の冷熱を利用する施設において負荷変
動があった場合には、この負荷変動に応じてインバータ
を制御して循環ポンプの回転数を制御することにより、
中間熱媒体の循環量を制御する場合と、この制御に併せ
て前記熱交換器の冷熱層を流れる液化天然ガスを1層お
きに制御すること、 を特徴とする液化天然ガスの冷熱利用方法。
In the method for transferring the cold heat of liquefied natural gas to an intermediate heat medium via a heat exchanger and guiding the intermediate heat medium to a cold heat utilization facility for use, the heat exchanger includes at least 3 A plate-fin type heat exchanger having a multilayer structure composed of at least two layers is used; a circulation pump whose rotation speed is controlled by an inverter is attached to the circulation path of the intermediate heat medium; In the heat exchanger consisting of, a heat receiving layer in which the intermediate heat medium flows is disposed between the cold heat layers in which the liquefied natural gas flows, and when there is a load change in a facility utilizing the cold heat of the intermediate heat medium. By controlling the inverter according to the load fluctuation to control the rotation speed of the circulation pump,
A method for controlling the amount of circulation of the intermediate heat medium, and controlling every other layer of the liquefied natural gas flowing through the chilled layer of the heat exchanger in accordance with the control.

[実施例及びその作用] 第1図は上記した本発明の最も好ましい一実施例を示
したもので、1はLNGタンク、2はこのLNGタンク1内か
ら汲み出したLNGをLNGライン3側に送り出すためのLNG
ポンプ、4はLNGライン3に取り付けられたプレートフ
ィン型熱交換器にして、この熱交換器4は第2図に示す
ように複層構造となっており、中間熱媒体が流れる受熱
層4−aの両側にはLNGが流れる冷熱層4−bを配列し
た一体構造である。なお、この複層構造は受熱層4−a
の両側に冷熱層を配列する限り、何層構造であってもよ
い。
FIG. 1 shows a most preferred embodiment of the present invention described above. Reference numeral 1 denotes an LNG tank, and reference numeral 2 denotes an LNG pumped out of the LNG tank 1 to an LNG line 3 side. LNG for
The pump 4 is a plate-fin type heat exchanger attached to the LNG line 3, and this heat exchanger 4 has a multilayer structure as shown in FIG. It has an integrated structure in which cooling and heating layers 4-b through which LNG flows are arranged on both sides of a. In addition, this multilayer structure has a heat receiving layer 4-a.
Any number of layers may be used as long as the cooling and heating layers are arranged on both sides.

5、5′は冷熱負荷6−a、6−b、6−cを並列に
配置した中間熱媒体の循環系路にして、この循環系路
5、5′は中間熱媒体(ハロゲン化炭化水素)を強制的
に循環させるためのインバーター8付の循環ポンプ7が
取り付けられている。
5 and 5 'are circulation paths for the intermediate heat medium in which the cooling loads 6-a, 6-b and 6-c are arranged in parallel, and the circulation paths 5 and 5' are intermediate heat mediums (halogenated hydrocarbons). A circulating pump 7 with an inverter 8 for forcibly circulating is provided.

9−a及び9−bは分岐ライン3−a、3−bにおい
て熱交換器4の入口側に夫々取り付けられた流量制御弁
にして、この流量制御弁9−a、9−bは循環経路5、
5′において、熱交換器4の出口側に取り付けられた中
間熱媒体温度検出器10により検出される中間熱媒体の温
度が常に設定温度になるようにLNG分岐ライン3−a、
3−bを経由して熱交換器46内に流れるLNGの量を制御
する。
9-a and 9-b are flow control valves attached to the inlet side of the heat exchanger 4 in the branch lines 3-a and 3-b, respectively, and the flow control valves 9-a and 9-b are circulation paths. 5,
At 5 ′, the LNG branch line 3-a is set so that the temperature of the intermediate heat medium detected by the intermediate heat medium temperature detector 10 attached to the outlet side of the heat exchanger 4 always becomes the set temperature.
The amount of LNG flowing into the heat exchanger 46 via 3-b is controlled.

11は中間熱媒体循環系路5、5′において、熱交換器
4の入口側に取り付けられた中間熱媒体温度検出器にし
て、この温度検出器11により検出された中間熱媒体の温
度と設定温度の差を制御信号としてインバーター8に送
り、中間熱媒体の熱交換器4の入口の温度が一定になる
ように前記循環ポンプ7の回転数を制御するものであ
る。
Reference numeral 11 denotes an intermediate heat medium temperature detector attached to the inlet side of the heat exchanger 4 in the intermediate heat medium circulation systems 5, 5 ', and sets the temperature of the intermediate heat medium detected by the temperature detector 11 The difference in temperature is sent to the inverter 8 as a control signal, and the rotation speed of the circulation pump 7 is controlled so that the temperature of the intermediate heat medium at the inlet of the heat exchanger 4 becomes constant.

12は加熱器にして、熱交換器4から出たLNGはこの加
熱器12によりスチームライン13から送り込まれたスチー
ムの熱を受けて完全に気化し、消費側へ送出される。
Reference numeral 12 denotes a heater, and the LNG discharged from the heat exchanger 4 is completely vaporized by the heat of the steam sent from the steam line 13 by the heater 12, and is sent to the consuming side.

上記構成の冷熱利用装置について、その運転例を次に
説明する。
An operation example of the cold heat utilization device having the above configuration will be described below.

a.全負荷運転 冷熱負荷6−a、6−b、6−cに全負荷がかかって
いる場合、熱交換器4の冷熱層4−bには夫々最大が流
量が流れ、受熱層4−a内を夫々流れる中間熱媒体に最
大の冷熱を移行させる。
a. Full load operation When the full load is applied to the cooling loads 6-a, 6-b and 6-c, the maximum flow rate flows through the cooling layer 4-b of the heat exchanger 4, respectively. The maximum cold heat is transferred to the intermediate heat medium flowing in each of a.

b.一部負荷運転その1 冷熱負荷のうち例えば6−aがその運転を停止した場
合、冷熱の利用が減少するため、中間熱媒体の熱交換器
4の入側の温度が低下する。この温度が低下すると中間
熱媒体温度検出器11がこの低下した温度を検出し、この
温度が設定温度になるようにインバーター8に信号を送
り、循環ポンプ7の回転数を制御(減少)する。同時に
熱交換器4の出口側の温度を温度検出器10が検出し、こ
の温度が一定になるように流量制御弁9に信号を送って
熱交換器4内に流れるLNGの量を制御する。
b. Partial load operation 1 When, for example, 6-a of the cold load stops its operation, the use of cold heat decreases, and the temperature of the intermediate heat medium on the inlet side of the heat exchanger 4 decreases. When this temperature decreases, the intermediate heat medium temperature detector 11 detects this decreased temperature, sends a signal to the inverter 8 so that this temperature becomes the set temperature, and controls (reduces) the rotation speed of the circulation pump 7. At the same time, the temperature detector 10 detects the temperature at the outlet side of the heat exchanger 4 and sends a signal to the flow control valve 9 to control the amount of LNG flowing into the heat exchanger 4 so that the temperature becomes constant.

c.一部負荷運転その2 冷熱負荷のうち例えば6−aと6−bの運転を停止し
た場合、中間熱媒体温度検出器11で検出される中間熱媒
体の温度が更に低下するので、この信号に基づいてイン
バーター8に信号を送り、循環ポンプ7の回転数を制御
(減少)する。同時に熱交換器4の出口側の温度も極端
に低下するので、この温度を温度検出器10が検出し、分
岐ライン3−a、3−bのうち一方の流量制御弁例えば
9−a側を閉止する。この流量制御弁9−aが閉止され
ると、熱交換器4の冷熱層4−bには交互にLNGが流れ
なくなる。但し、この流れない冷熱層4−bは隣接の受
熱層4−a内の入管熱媒体からの冷熱を受けて常時冷却
されている。
c. Partial load operation 2 When the operation of, for example, 6-a and 6-b of the cold load is stopped, the temperature of the intermediate heat medium detected by the intermediate heat medium temperature detector 11 further decreases. A signal is sent to the inverter 8 based on the signal to control (decrease) the rotation speed of the circulation pump 7. At the same time, the temperature at the outlet side of the heat exchanger 4 also drops extremely, so that this temperature is detected by the temperature detector 10, and one of the branch lines 3-a and 3-b is connected to one of the flow control valves, for example, the 9-a side. Close. When the flow control valve 9-a is closed, LNG does not flow alternately through the cooling layer 4-b of the heat exchanger 4. However, the non-flowing cooling layer 4-b is constantly cooled by receiving cold from the inlet heat medium in the adjacent heat receiving layer 4-a.

[本発明の効果] 本発明は以上のようにLNGの冷熱利用方法において、
熱交換器にプレートフィン型であって三層以上のものを
使用し、冷熱負荷に応じて熱交換器内に流れるLNGを制
御しながら中間熱媒体に冷熱移行させるようにしたの
で、次の如き効果がある。
[Effects of the present invention] The present invention provides a method for utilizing LNG
The heat exchanger used was a plate fin type with three or more layers, and the heat was transferred to the intermediate heat medium while controlling the LNG flowing in the heat exchanger according to the cooling load. effective.

a.冷熱負荷に応じて熱交換器内を流れるLNGの量を制御
したり一部停止したりすることにより、従来型に比較し
て冷熱負荷変動に対する対応巾を大きくとることができ
る(100%〜約10%程度)。
a. By controlling or partially stopping the amount of LNG flowing in the heat exchanger in accordance with the cooling load, it is possible to increase the range of responding to changes in cooling load compared to the conventional type (100% ~ About 10%).

b.負荷変動に対応して熱交換器内の冷熱層を流れるLNG
を一部停止しても、これに接する受熱層内を流れる中間
熱媒体の冷熱により常時冷却されているため急激な冷熱
負荷変動により再起動を行う際に、直ちにこれに追従で
きる。
b. LNG flowing through the cold layer in the heat exchanger in response to load fluctuations
Even if a part is stopped, it is always cooled by the cold heat of the intermediate heat medium flowing in the heat receiving layer which is in contact with it, so that when restarting due to a sudden change in cooling load, it can immediately follow this.

c.負荷に応じて加熱器での加熱量が変り、かつ中間熱媒
体の循環流量をインバーター制御するため、効率のよい
運転を行うことができ、ランニングコストを従来型に比
較して低減できる。
c. The amount of heating in the heater changes according to the load, and the circulation flow rate of the intermediate heat medium is controlled by the inverter, so that efficient operation can be performed and the running cost can be reduced as compared with the conventional type.

d.冷熱負荷が複数の場合でも一基の熱交換器を利用する
ため、従来型に比較して設備が小型化すると共に設備費
が安い。
d. Since a single heat exchanger is used even when there are multiple cooling loads, the equipment is smaller and the equipment cost is lower than in the conventional type.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る冷熱利用方法を実施した装置の説
明図、第2図はプレートフィン型熱交換器の実施例図、
第3図は従来の冷熱利用方法の説明図である。 1……LNGタンク 2……LNGポンプ 3……LNGライン 3−a、3−b……分岐ライン 4……熱交換器 4−a……受熱層 4−b……冷熱層 5、5′……中間熱媒体循環系路 6−a、6−b、6−c……冷熱負荷 7……循環ポンプ 8……インバーター 9−a、9−b……流量制御弁 10、11……温度検出器 12……加熱器 13……スチームライン
FIG. 1 is an explanatory view of an apparatus implementing a method for utilizing cold energy according to the present invention, FIG. 2 is an embodiment of a plate-fin heat exchanger,
FIG. 3 is an explanatory view of a conventional method for utilizing cold heat. 1 LNG tank 2 LNG pump 3 LNG line 3-a, 3-b Branch line 4 Heat exchanger 4-a Heat receiving layer 4-b Cooling layer 5, 5 ' ... intermediate heat medium circulation system passage 6-a, 6-b, 6-c ... cooling load 7 ... circulation pump 8 ... inverter 9-a, 9-b ... flow control valves 10, 11 ... temperature Detector 12 Heater 13 Steam line

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液化天然ガスの冷熱を熱交換器を介して中
間熱媒体に移行させ、この中間熱媒体を冷熱利用施設に
導いて利用する液化天然ガスの冷熱利用方法において、 前記熱交換器には、少なくとも3層以上から成る多層構
造のプレートフィン型熱交換器が使用されていること、 前記中間熱媒体の循環系路には、インバータで回転数が
制御される循環ポンプが取り付けられていること、 前記多層から成る熱交換器は、液化天然ガスが流れる冷
熱層の間に中間熱媒体が流れる受熱層が配置されている
こと、 前記中間熱媒体の冷熱を利用する施設において負荷変動
があった場合には、この負荷変動に応じてインバータを
制御して循環ポンプの回転数を制御することにより、中
間熱媒体の循環量を制御する場合と、この制御に併せて
前記熱交換器の冷熱層を流れる液化天然ガスを1層おき
に制御すること、 を特徴とする液化天然ガスの冷熱利用方法。
1. A method for utilizing liquefied natural gas cold energy wherein cold energy of liquefied natural gas is transferred to an intermediate heat medium via a heat exchanger, and the intermediate heat medium is guided to a cold heat utilization facility for use. A multi-layer plate fin heat exchanger having at least three layers is used. A circulation pump whose rotation speed is controlled by an inverter is attached to the circulation path of the intermediate heat medium. That the heat exchanger composed of multiple layers has a heat receiving layer in which an intermediate heat medium flows between cold layers in which liquefied natural gas flows, and that a load fluctuation occurs in a facility utilizing the cold heat of the intermediate heat medium. If there is, the inverter is controlled in accordance with the load fluctuation to control the rotation speed of the circulation pump, thereby controlling the circulation amount of the intermediate heat medium. Controlling the liquefied natural gas flowing in the cryogenic layer every other layer.
JP10815087A 1987-04-30 1987-04-30 Liquefied natural gas cold energy utilization Expired - Fee Related JP2615043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10815087A JP2615043B2 (en) 1987-04-30 1987-04-30 Liquefied natural gas cold energy utilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10815087A JP2615043B2 (en) 1987-04-30 1987-04-30 Liquefied natural gas cold energy utilization

Publications (2)

Publication Number Publication Date
JPS63275897A JPS63275897A (en) 1988-11-14
JP2615043B2 true JP2615043B2 (en) 1997-05-28

Family

ID=14477212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10815087A Expired - Fee Related JP2615043B2 (en) 1987-04-30 1987-04-30 Liquefied natural gas cold energy utilization

Country Status (1)

Country Link
JP (1) JP2615043B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157778A (en) * 1995-11-30 2000-12-05 Komatsu Ltd. Multi-temperature control system and fluid temperature control device applicable to the same system
SE509081C2 (en) 1997-02-14 1998-11-30 Aga Ab Method and apparatus for cooling a product using condensed gas
EP2309165A1 (en) * 2009-10-09 2011-04-13 Cryostar SAS Conversion of liquefied natural gas
JP5409440B2 (en) * 2010-02-26 2014-02-05 株式会社ダイキンアプライドシステムズ Refrigeration refrigerant manufacturing method using intermediate medium vaporizer and refrigeration refrigerant supply facility
JP6022810B2 (en) * 2011-06-30 2016-11-09 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer and low temperature liquefied gas vaporization method
CN110243125B (en) * 2019-06-18 2024-03-15 烟台睿加节能科技有限公司 Cascade storage and utilization device of LNG cold energy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252261A (en) * 1975-10-24 1977-04-26 Hitachi Zosen Corp Heat exchange for utilizing cold energy of liquefied natural gas
JPS5939638B2 (en) * 1981-07-01 1984-09-25 千代田化工建設株式会社 Power recovery method from liquefied natural gas for low load stability

Also Published As

Publication number Publication date
JPS63275897A (en) 1988-11-14

Similar Documents

Publication Publication Date Title
CN111263562B (en) Diversified integrated cooling system of data center and control method
JP2615043B2 (en) Liquefied natural gas cold energy utilization
JP3304010B2 (en) Ice storage refrigerator and operation method
CN216744683U (en) Air conditioning equipment and air conditioning system
JP2003130428A (en) Connection type cold/hot water device
JPH04113139A (en) District cooling/heating system
JPS5815705B2 (en) Heat recovery method in power generation equipment
JPH06159741A (en) Heat-medium transporting control method and apparatus for district cooling/heating
CN213237801U (en) Cold accumulation system of water chilling unit
JPS61128043A (en) Air conditioner having heat accumulating circuit
JPS61153360A (en) Ice heat accumulation type base rock inside ccold storage
JPS5896960A (en) Waste-heat recovery refrigerator
JP2000146357A (en) Cooling system
JPS60251606A (en) Cooling water system of magnet coil
JPS60101458A (en) Double effect absorption type refrigerator
CN117202651A (en) Data center cooling system based on load regulation and control
JPH0117008Y2 (en)
US20050121187A1 (en) Coolant system with regenerative heat exchanger
JPH06313644A (en) Controlling method for very low temperature refrigerating plant
CN118328571A (en) Cross-redundancy grouping heat exchange system
JPS6062609A (en) Cold-heat power generating plant
JPS60117069A (en) Refrigerator with double bundle type condenser
LIPTÁK 8.13 Chiller Optimization
JPS6152566A (en) Heat exchange system
JPS6176283U (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees