JPS6062609A - Cold-heat power generating plant - Google Patents

Cold-heat power generating plant

Info

Publication number
JPS6062609A
JPS6062609A JP15756384A JP15756384A JPS6062609A JP S6062609 A JPS6062609 A JP S6062609A JP 15756384 A JP15756384 A JP 15756384A JP 15756384 A JP15756384 A JP 15756384A JP S6062609 A JPS6062609 A JP S6062609A
Authority
JP
Japan
Prior art keywords
heat medium
tank
evaporator
turbine
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15756384A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sasaki
佐々木 亀代司
Yoshio Okabayashi
岡林 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15756384A priority Critical patent/JPS6062609A/en
Publication of JPS6062609A publication Critical patent/JPS6062609A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/02Arrangements of feed-water pumps
    • F22D11/06Arrangements of feed-water pumps for returning condensate to boiler

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the reliability of a plant by providing both a pressure equalizing system communicating a turbine inlet-side piping with each pressure equalizing storage tank which is positioned higher than an evaporator and another system communicating a turbine outlet-side piping with the tank and installing a condensor at a higher level than the tanks. CONSTITUTION:Each of tanks 10a and 10b is installed higher than an evaporator 2 and furthermore, a condensor 1 is installed higher than the tanks 10a and 10b. There are independently provided a pressure equalizing system which communicates the inlet piping 13 of a turbine 3 with both the tanks 10a and 10b and is equipped with valves 14a and 14b and another pressure equalizing system which communicates the inlet piping 15 of the turbine 3 with the tanks 10a and 10b and is equipped with valves 14c and 14d. When the valve 14c is opened to equalize the inner pressure of the tank 10a to that of the turbine's outlet piping 15, the liquefied heat medium from the condensor 1 is stored in the tank 10a. On the other hand, when the valve 14b is opened to equalize the inner pressure of the tank 10b to that of the piping 13, the liquefied heat medium inside the tank 10b is forcedly sent to the evaporator 2 due to the head difference.

Description

【発明の詳細な説明】 〔発明の利用分野1 本発明はLNG等の低温液化ガスが保有する冷熱を電気
エネルギに変換し取出すために用いられる冷熱発電装置
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention 1] The present invention relates to an improvement in a cold power generation device used to convert and extract cold energy contained in low-temperature liquefied gas such as LNG into electrical energy.

〔発明の背景J 従来技術による冷熱発電設備例を第1図により説明する
。第1図で、1は熱媒体凝縮器(以下、凝縮器と略)、
2は熱媒体蒸発器(以下、蒸発器と略)、3は熱媒体膨
張タービン(以下、タービンと略)、4aはLNG等の
低温液化ガス(以下、低温液化ガスと略)を凝縮器1に
送給する配管、4bは凝縮器1で加熱、気化したガスを
系外へ送出する配管、5は凝縮器1と蒸発器2を連絡す
る配管6途中に設けられた熱媒体昇圧ポンプ(以下、ポ
ンプと略)、7は蒸発器2とタービン3を連絡する配管
、8はタービン3に連設された発電機、9はタービン3
と凝縮器1を連絡する配管である。
[Background of the Invention J An example of a conventional cold power generation facility will be explained with reference to FIG. In Fig. 1, 1 is a heat medium condenser (hereinafter abbreviated as condenser);
2 is a heat medium evaporator (hereinafter abbreviated as evaporator), 3 is a heat medium expansion turbine (hereinafter abbreviated as turbine), and 4a is a condenser 1 that converts low-temperature liquefied gas such as LNG (hereinafter abbreviated as low-temperature liquefied gas). 4b is a pipe that sends the gas heated and vaporized by the condenser 1 to the outside of the system; 5 is a heat medium boost pump (hereinafter referred to as , pump), 7 is a pipe connecting the evaporator 2 and the turbine 3, 8 is a generator connected to the turbine 3, 9 is the turbine 3
This is a pipe that connects the condenser 1 and the condenser 1.

このような構成では、まず、配管9から凝縮器1に送給
された気化熱媒体は、凝縮器1で配管4aから送給され
た低温液化ガスと熱交換し冷却液化される。低温液化ガ
スは熱媒体により加熱、気化されて配管4bから発電用
ボイラ(図示省略)等使用先へ送出される。液化熱媒体
は配管6を通りポンプ5で所定圧力まで昇圧された後に
蒸発器2に供給される。供給された液化熱媒体は蒸発器
2で海水等の加熱源により加熱、気化し、気化熱媒体は
配管7を通りタービン3に送給される。送給された気化
熱媒体はタービン3で膨張し、この時、熱媒体が保有し
ている冷熱は機械的エネルギに、更に発電機8で電気エ
ネルギに変換される。この結果、温度、圧力共像下した
気化熱媒体は配管9を通り再び凝縮器1に送給される。
In such a configuration, first, the vaporized heat medium fed from the pipe 9 to the condenser 1 is cooled and liquefied by exchanging heat with the low-temperature liquefied gas fed from the pipe 4a in the condenser 1. The low-temperature liquefied gas is heated and vaporized by a heat medium, and then sent out from the pipe 4b to a place of use such as a power generation boiler (not shown). The liquefied heat medium passes through piping 6 and is increased in pressure to a predetermined pressure by pump 5, and then supplied to evaporator 2. The supplied liquefied heat medium is heated and vaporized by a heating source such as seawater in the evaporator 2, and the vaporized heat medium is sent to the turbine 3 through a pipe 7. The supplied vaporized heat medium is expanded by the turbine 3, and at this time, the cold heat held by the heat medium is converted into mechanical energy, and further converted into electrical energy by the generator 8. As a result, the vaporized heat medium whose temperature and pressure have decreased is sent to the condenser 1 again through the pipe 9.

なお、実際の運転では、上記サイクルが繰返し継続され
る。
Note that in actual operation, the above cycle is repeated and continued.

上記の従来技術による冷熱発電装置では、凝縮器1で液
化した熱媒体を蒸発器2に送給するには、蒸発器2の入
口圧口をタービン3の入口圧力よりも高くする必要があ
り、その手段としてポンプ5が用いられている。し示し
、ポンプの使用は、冷熱発電設備の規模にもよるが、ポ
ンプによる消費動力が冷熱発電量の数チと比較的大きく
不経済であり、運転費が高くなる欠点があった。また、
この場合のポンプは、熱媒体が液化ガスであるため液化
ガスポンプが使用されるが、しかし、液化ガスポンプは
高価であるため設備費が高く、また、実績が少なく信頼
性の面で不安があるため故障時を想定して予備の液化ガ
スポンプを設置する場合も多く、この場合は更に設備費
が高くなる欠点があった。
In the conventional cryogenic power generation device described above, in order to feed the heat medium liquefied in the condenser 1 to the evaporator 2, it is necessary to make the inlet pressure of the evaporator 2 higher than the inlet pressure of the turbine 3. A pump 5 is used as a means for this purpose. However, the use of pumps has the disadvantage that, although it depends on the scale of the cold power generation equipment, the power consumption by the pump is relatively large and uneconomical, as the amount of power consumed by the pump is several inches compared to the amount of cold power generation, and the operating costs are high. Also,
In this case, a liquefied gas pump is used because the heat medium is liquefied gas.However, liquefied gas pumps are expensive and require high equipment costs, and there is also a lack of track record and there are concerns about reliability. In many cases, a backup liquefied gas pump is installed in case of failure, which has the disadvantage of further increasing equipment costs.

〔発明の目的] 本発明の目的は、信頼性の高い冷熱発電装置を提供する
ものである。
[Object of the Invention] An object of the present invention is to provide a highly reliable cold-thermal power generation device.

〔発明の概要J 本発明は、熱媒体膨張タービン出口から熱媒体凝縮器内
を通る配管と熱媒体蒸発器への熱媒体供給用配管の接続
途中に複数基の液化熱媒体貯蔵タンクを熱媒体蒸発器よ
りも高い位置に設置し、熱媒体膨張タービン入口配管と
液化熱媒体貯蔵タンクを連絡する均圧用系統および熱媒
体膨張タービン出口配管と液化熱媒体貯蔵タンクを連絡
する均圧用系統をおのおの別個に設け、さらに、熱媒体
凝縮器を液化熱媒体貯蔵タンクよりも高い位置に設置し
たことを特徴とする。
[Summary of the Invention J The present invention provides a heat medium storage tank that connects a plurality of liquefied heat medium storage tanks between a heat medium expansion turbine outlet, a heat medium condenser pipe, and a heat medium supply pipe to a heat medium evaporator. Installed at a higher position than the evaporator, there is a separate pressure equalization system that connects the heat medium expansion turbine inlet piping and the liquefied heat medium storage tank, and a pressure equalization system that connects the heat medium expansion turbine outlet piping and the liquefied heat medium storage tank. , and further characterized in that the heat medium condenser is installed at a higher position than the liquefied heat medium storage tank.

〔発明の実施例」 以下、本発明を具体的実施例である第2図に基づき詳細
に説明する。第2図において、第1図と同じ符号の付さ
れた装置等は、第1図に示されたものと同様の装置等で
あり、これらについての説明は省略する。10a、10
bは配管6途中に設置された液化熱媒体貯蔵タンク(以
下、タンクと略)で、おのおの液面計11a、llbが
、また、出入口側にはおのおの逆止弁12a〜12dが
取付けられている。これらのタンク10a、10bは蒸
発器2よりも高い位置に設置され、凝縮器1はこれらの
タンク10a、10bよりも更に高い位置に設置されて
いる。また、タービン3人口配管13とタンク10a。
[Embodiments of the Invention] Hereinafter, the present invention will be described in detail based on FIG. 2, which is a specific embodiment. In FIG. 2, devices with the same reference numerals as those in FIG. 1 are the same devices as shown in FIG. 1, and explanations thereof will be omitted. 10a, 10
b is a liquefied heat medium storage tank (hereinafter abbreviated as tank) installed in the middle of the pipe 6, in which liquid level gauges 11a and llb are installed, and check valves 12a to 12d are installed on the entrance and exit sides. . These tanks 10a, 10b are installed at a higher position than the evaporator 2, and the condenser 1 is installed at an even higher position than these tanks 10a, 10b. Moreover, the turbine 3 artificial piping 13 and the tank 10a.

10bを連絡し、弁14a、14bを取付けた均圧用系
統と、タービン3出口配管15とタンク10a、10b
を連絡し、弁14c、14dを取付けた均圧用系統がお
のおの別個に設けられている。このような構成によれば
、凝縮器1からの液化熱媒体は、配管6を通り逆止弁1
2cを介しタンク10aに貯蔵される。
10b, a pressure equalization system with valves 14a and 14b installed, turbine 3 outlet piping 15, and tanks 10a and 10b.
A separate pressure equalization system with valves 14c and 14d is provided. According to such a configuration, the liquefied heat medium from the condenser 1 passes through the pipe 6 and reaches the check valve 1.
2c and stored in tank 10a.

この時、弁14cを開きタンク10aの内圧とタービン
出口配管15の内圧を均圧にし、タンク10aへ液化熱
媒体を確実に送給させる。また、この場合は、配管6の
蒸発器2人口側の内圧よりもタンク10aの内圧は低い
ため、逆止弁12aが閉止して蒸発器2人口側からの液
化熱媒体の逆流は防止される。
At this time, the valve 14c is opened to equalize the internal pressure of the tank 10a and the internal pressure of the turbine outlet pipe 15, thereby ensuring that the liquefied heat medium is fed to the tank 10a. Furthermore, in this case, since the internal pressure of the tank 10a is lower than the internal pressure of the pipe 6 on the evaporator 2 side, the check valve 12a closes to prevent the liquefied heat medium from flowing back from the evaporator 2 side. .

一方、タンク10b内の液化熱媒体は、弁14bを開き
タンク10bの内圧とタービン入口配管13の内圧を均
圧にすることにより、また、タンク10bと蒸発器2と
のヘッド差により逆止弁12be介し、配管6を通って
蒸発器2に送給される。なお、その後は従来技術による
冷熱発電設備と同一経路を通り、同一作用をなして1サ
イクルが完了する。上記サイクルがしばらく繰発し継続
されると、タンク10aの液面は上昇し、一方、タンク
10bの液面は低下するため、液面計11a又はllb
にてタンク10a、10bどちらかの液面が上限又は下
限に達したことを確認された時点で、弁14cを閉じ、
弁14a′(I−開くと同時に弁14bを閉じ、弁14
dを開きタンク10a、10bの切換えを行う。この切
換えにより、タンク10aの内圧はタービン入口配管1
3の内圧になるため、タンク10aに貯蔵されている液
化熱媒体は、逆止弁12a′(il−介し配管6を通っ
て蒸発器2に送給されるようになる。一方、タンク10
bの内圧はタービン出口配管15の内圧と均圧になるた
め、凝縮器1からの液化熱媒体は、配管6を通り逆止弁
12dを介しタンク10bに確実に送給され貯蔵される
。以上のように、タンク10a、10bを交互に適宜切
換えて使用することにより良好に連続運転が可能となる
On the other hand, the liquefied heat transfer medium in the tank 10b is controlled by opening the valve 14b and equalizing the internal pressure of the tank 10b and the internal pressure of the turbine inlet pipe 13, and by using the check valve due to the head difference between the tank 10b and the evaporator 2. 12be, and is fed to the evaporator 2 through the pipe 6. Note that after that, one cycle is completed by passing through the same route and performing the same actions as in the conventional cold power generation equipment. When the above cycle is repeated and continued for a while, the liquid level in the tank 10a rises, and on the other hand, the liquid level in the tank 10b decreases.
When it is confirmed that the liquid level in either tank 10a or 10b has reached the upper or lower limit, close the valve 14c,
Valve 14a' (I-open and close valve 14b at the same time, valve 14
d to switch between tanks 10a and 10b. By this switching, the internal pressure of the tank 10a is changed to the turbine inlet pipe 1.
3, the liquefied heat medium stored in the tank 10a is supplied to the evaporator 2 through the check valve 12a' (il-) and the piping 6.
Since the internal pressure of b is equal to the internal pressure of the turbine outlet pipe 15, the liquefied heat medium from the condenser 1 is reliably delivered to the tank 10b through the pipe 6 and the check valve 12d and stored therein. As described above, good continuous operation is possible by alternately and appropriately switching between the tanks 10a and 10b.

なお、実施例としてタンクを2基設置した場合について
説明したが、それ以上の基数タンクを設置しても特に問
題はない。また、タンクの切換え時点の確認を本実施例
では液面計で行うようにしているが、その他、例えば、
タイマー等により一定時間ごとにタンクの切換えを行う
ことも適用可能である。
Although the case where two tanks are installed has been described as an example, there is no particular problem even if more tanks are installed. In addition, although the tank switching point is checked using a liquid level gauge in this embodiment, other methods such as
It is also applicable to switch tanks at regular intervals using a timer or the like.

〔発明の効果J 本発明は、以上説明したように液化熱媒体貯蔵タンクを
設け、その設置高さを熱媒体蒸発器よりも高くすること
で熱媒体凝縮器からの液化熱媒体を良好に熱媒体蒸発器
に送給できるので、熱媒体°昇圧ポンプである液化ガス
ポンプの設置が不要であるため運転費、設備費を大幅に
低減できると共に信頼性が向上する効果がある。
[Effects of the Invention J] As explained above, the present invention provides a liquefied heat medium storage tank and makes its installation height higher than the heat medium evaporator, thereby effectively heating the liquefied heat medium from the heat medium condenser. Since it can be fed to the medium evaporator, there is no need to install a liquefied gas pump, which is a heat medium pressure boost pump, and this has the effect of significantly reducing operating and equipment costs and improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による冷熱発電設備の一例を示す系統
図、第2図は本発明になる冷熱発電設備の一実施例を示
す系統図である。 1・・・熱媒体凝縮器、2・・・熱媒体蒸発器、3・・
・熱媒体膨張タービン、5・・・熱媒体昇圧ポンプ、8
・・・発電機、10a、10b・・・液化熱媒体貯蔵タ
ンク、11a 、 1lb−液面計、12a 、 12
b 、 12c 、 12d −逆止弁、13−・・タ
ービン入口配管、14a 、 14b 、 14c 。 14d・・・弁、15・・・タービン出ロ配管オ1図 デ2図
FIG. 1 is a system diagram showing an example of a conventional cold power generation facility, and FIG. 2 is a system diagram showing an embodiment of the cold power power generation facility according to the present invention. 1... Heat medium condenser, 2... Heat medium evaporator, 3...
- Heat medium expansion turbine, 5... Heat medium boost pump, 8
... Generator, 10a, 10b ... Liquefied heat medium storage tank, 11a, 1lb-Liquid level gauge, 12a, 12
b, 12c, 12d - check valve, 13-... turbine inlet piping, 14a, 14b, 14c. 14d... Valve, 15... Turbine outlet piping Figure 1 and Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、熱媒体蒸発器、熱媒体膨張タービン、発電機および
熱媒体凝縮器を備えた冷熱発電装置において、前記熱媒
体膨張タービン出口から前記熱媒体凝縮器内を通る配管
と前記熱媒体蒸発器への熱媒体供給用配管の接続途中に
複数基の液化熱媒体貯蔵タンクを前記熱媒体蒸発器より
も高い位置に設置し、前記熱媒体膨張タービン入口配管
と前記液化熱媒体貯蔵タンクを連絡する均圧用系統およ
び前記熱媒体膨張タービン出口配管と前記液化熱媒体貯
蔵タンクを連絡する均圧用系統をおのおの別個に設け、
さらに、前記熱媒体凝縮器を前記液化熱媒体貯蔵タンク
よりも高い位置に設置したことを特徴とする冷熱発電装
置。
1. In a cold-thermal power generation device including a heat medium evaporator, a heat medium expansion turbine, a generator, and a heat medium condenser, from the outlet of the heat medium expansion turbine to a pipe passing through the heat medium condenser and to the heat medium evaporator. A plurality of liquefied heat medium storage tanks are installed at a position higher than the heat medium evaporator in the middle of the connection of the heat medium supply piping, and a plurality of liquefied heat medium storage tanks are installed at a position higher than the heat medium evaporator, and an equalizer connecting the heat medium expansion turbine inlet pipe and the liquefied heat medium storage tank is installed. A pressure system and a pressure equalization system connecting the heat medium expansion turbine outlet piping and the liquefied heat medium storage tank are each provided separately,
Furthermore, the cold-thermal power generation device is characterized in that the heat medium condenser is installed at a higher position than the liquefied heat medium storage tank.
JP15756384A 1984-07-30 1984-07-30 Cold-heat power generating plant Pending JPS6062609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15756384A JPS6062609A (en) 1984-07-30 1984-07-30 Cold-heat power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15756384A JPS6062609A (en) 1984-07-30 1984-07-30 Cold-heat power generating plant

Publications (1)

Publication Number Publication Date
JPS6062609A true JPS6062609A (en) 1985-04-10

Family

ID=15652412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15756384A Pending JPS6062609A (en) 1984-07-30 1984-07-30 Cold-heat power generating plant

Country Status (1)

Country Link
JP (1) JPS6062609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034780A2 (en) * 2008-09-24 2010-04-01 Wuerz Raimund Heat engine, and method for the operation thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334039A (en) * 1976-09-13 1978-03-30 Mitsubishi Heavy Ind Ltd Thermal cycle device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334039A (en) * 1976-09-13 1978-03-30 Mitsubishi Heavy Ind Ltd Thermal cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034780A2 (en) * 2008-09-24 2010-04-01 Wuerz Raimund Heat engine, and method for the operation thereof
WO2010034780A3 (en) * 2008-09-24 2010-08-05 Wuerz Raimund Heat engine, and method for the operation thereof

Similar Documents

Publication Publication Date Title
US20210104912A1 (en) Compressed air energy storage power generation device
CN110446839A (en) Compressed-air energy storage power generator
US20200232652A1 (en) Local thermal energy consumer assembly and a local thermal energy generator assembly for a district thermal energy distribution system
US3726101A (en) Method of continuously vaporizing and superheating liquefied cryogenic fluid
JPS639889A (en) Nuclear power device
JPS6213490B2 (en)
JPS6062609A (en) Cold-heat power generating plant
JP2001081484A (en) Liquefied-gas evaporation apparatus with cold-heat generation function
JPS63183346A (en) Solar system for generating steam
KR101876973B1 (en) Fuel Gas Supply System and Method for Vessel
JP2615043B2 (en) Liquefied natural gas cold energy utilization
JPS62141398A (en) Method of raising temperature of low temperature lpg and apparatus thereof
US4328674A (en) Power station
JPH05302504A (en) Low temperature power generating device using liquefied natural gas
JP2020148210A (en) Lng cold recovery system
CN219530811U (en) Energy storage and heat supply device
JPS61128043A (en) Air conditioner having heat accumulating circuit
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
CN215809322U (en) Heat storage system applied to H-level gas turbine
JPH0233568A (en) Method of recovering and utilizing waste heat
RU2170885C1 (en) Heat and power supply system
CN206522948U (en) A kind of cold and hot wetting system of pressure chamber ring control
CN117738858A (en) Rankine cycle-based temperature difference energy power generation system and power generation amount adjusting method thereof
JPS6140763Y2 (en)
CN112050015A (en) Natural gas pressure regulating back heat exchange heating device