JPH0117008Y2 - - Google Patents

Info

Publication number
JPH0117008Y2
JPH0117008Y2 JP1983108044U JP10804483U JPH0117008Y2 JP H0117008 Y2 JPH0117008 Y2 JP H0117008Y2 JP 1983108044 U JP1983108044 U JP 1983108044U JP 10804483 U JP10804483 U JP 10804483U JP H0117008 Y2 JPH0117008 Y2 JP H0117008Y2
Authority
JP
Japan
Prior art keywords
temperature
proportional control
control valve
main engine
slave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983108044U
Other languages
Japanese (ja)
Other versions
JPS6016974U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10804483U priority Critical patent/JPS6016974U/en
Publication of JPS6016974U publication Critical patent/JPS6016974U/en
Application granted granted Critical
Publication of JPH0117008Y2 publication Critical patent/JPH0117008Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 本考案は、複数台の吸収式冷温水機を使用して
冷暖房を行う際の運転制御装置に関するもので、
詳しくは、一台の冷温水機については比例制御方
式を採用し、他の冷温水機については二位置又は
三位置制御方式を採用し、小さな負荷変動につい
ては比例制御方式を採用した一台が追従し、大き
な負荷変動に対しては他の二位置又は三位置制御
方式を採用した冷温水機が順次追従するように構
成したものである。
[Detailed description of the invention] The present invention relates to an operation control device when performing air conditioning and heating using multiple absorption type water chiller/heaters.
In detail, one chiller/heater uses a proportional control system, the other chillers/heaters use a two-position or three-position control system, and one unit uses a proportional control system for small load fluctuations. In response to large load fluctuations, other water cooler/hot water machines employing two-position or three-position control systems are configured to follow in sequence.

従来における複数台の吸収式冷温水機の運転制
御方式は、第1図に示すように、冷温水ヘツダー
に取り付けた温度検出端01により検出された温
度と、あらかじめ設定された複数の設定温度とを
比較器02で比較し、この比較値に基づいて夫々
の冷温水機03,04,05,06に対して
ON、OFF信号を送り、変動する負荷に対応する
ものであつた。このため、負荷変動時には全体の
冷温水機がON、OFFを繰り返すこととなり、機
器の耐久性を短縮すると共に効率が低下するとい
う欠点があつた。又、この欠点を改善するため
に、制御温度の巾を大きく設定すると、供給冷温
水温度の変動が大きくなり、理想的な冷暖房は行
ないにくいという欠点があつた。そこで、最近は
複数台を個別にON、OFF制御して追従させる方
式とか全体の台数について比例制御を行う方式も
提案されているが、前者の場合には依然として冷
温水温度の変動が大きく、追従性に欠点があり、
又後者の場合には機器のコストが高くつき、大型
の装置の場合はとにかく、小型の装置には適用し
にくいという難点があつた。
As shown in Fig. 1, the conventional operation control system for multiple absorption type water chillers/heaters is based on the temperature detected by the temperature detection end 01 attached to the chiller/hot water header and a plurality of preset temperatures. are compared with the comparator 02, and based on this comparison value, the
It sent ON and OFF signals to respond to changing loads. As a result, when the load fluctuates, the entire water chiller/heater repeatedly turns on and off, which shortens the durability of the equipment and reduces efficiency. Furthermore, if the width of the control temperature is set to be large in order to improve this drawback, fluctuations in the supply cold/hot water temperature become large, making it difficult to perform ideal heating and cooling. Therefore, recently, methods have been proposed in which multiple units are individually controlled on and off to follow each other, and the total number of units is controlled proportionally, but in the former case, there are still large fluctuations in cold and hot water temperature, and tracking is not possible. There are flaws in gender,
Moreover, in the latter case, the cost of the equipment is high, and in the case of a large-sized device, it is difficult to apply it to a small-sized device.

本考案は斯かる点に鑑みて提案されるもので、
追従性に優れ、小型の冷暖房装置用吸収式冷温水
機の運転制御に適用すると有効な制御装置を案す
るのが目的である。
This invention is proposed in view of these points,
The purpose of this study is to develop a control device that has excellent followability and is effective when applied to the operation control of a small-sized absorption-type water chiller/heater for use in air-conditioning equipment.

以下本考案の構成を詳記すると、その構成要旨
はガスの供給路中に比例制御弁を取り付けると共
に溶液回路中に比例制御溶液ポンプを取り付け、
冷温水戻り配管中に取り付けた温度検出素子によ
り戻り温度を検出し、この戻り温度と設定温度と
を比較し、この比較結果に基づいて前記比例制御
弁及び溶液ポンプに対して制御信号を送る温度調
節器を取り付けて成る比例制御される主機と、ガ
スの供給路中に二位置又は三位置制御弁を取り付
け、前記主機側の温度調節器からの信号により二
位置又は三位置制御せられる従機と、によつて冷
暖房装置を構成し、負荷変動が小さい場合には主
機により比例制御を行いながら追従させ、負荷変
動が大きい場合には従機をこれに追従させるよう
にしたものである。
The configuration of the present invention will be described in detail below.The gist of the configuration is that a proportional control valve is installed in the gas supply path, and a proportional control solution pump is installed in the solution circuit.
The return temperature is detected by a temperature detection element installed in the cold and hot water return pipe, the return temperature is compared with a set temperature, and a control signal is sent to the proportional control valve and the solution pump based on the comparison result. A main engine that is proportionally controlled and equipped with a regulator, and a slave engine that has a two-position or three-position control valve installed in the gas supply path and that is controlled in two or three positions by a signal from a temperature controller on the main engine side. A heating and cooling system is constructed by the following: When the load fluctuation is small, the main engine follows it while performing proportional control, and when the load fluctuation is large, the slave engine follows it.

第2図は上記構成から成る本考案の実施例を示
し、1は第3図に示すようにガス供給路2内に比
例制御弁3を取り付けると共に溶液回路4中に溶
液ポンプ5を取り付け、冷温水戻り配管6中に取
り付けた温度検出素子7により戻り温度を検出
し、この戻り温度と設定温度とを比較し、この比
較結果に基づいて前記比例制御弁3及び溶液ポン
プ5に対して制御信号を送る温度調節器8を取り
付けて成る主機である。
FIG. 2 shows an embodiment of the present invention having the above-mentioned configuration, and 1 is a system in which a proportional control valve 3 is installed in the gas supply path 2 and a solution pump 5 is installed in the solution circuit 4, as shown in FIG. The return temperature is detected by a temperature detection element 7 installed in the water return pipe 6, the return temperature is compared with a set temperature, and a control signal is sent to the proportional control valve 3 and the solution pump 5 based on the comparison result. This is the main engine equipped with a temperature controller 8 that sends water.

9,10,11はガス供給路12,13,14
に対して夫々三位置制御弁(又は二位置制御弁)
15,16,17を取り付けて成る従機にして、
この従機9,10,11の各制御弁15,16,
17に対しては、前記温度調節器8から次のよう
な条件で制御信号が送られて来る。
9, 10, 11 are gas supply paths 12, 13, 14
3-position control valve (or 2-position control valve) respectively for
15, 16, and 17 are attached to the slave machine,
Each control valve 15, 16 of this slave machine 9, 10, 11,
17, a control signal is sent from the temperature regulator 8 under the following conditions.

先ず、この従機9,10,11が作動する条件
は、主機1では追従しきれない負荷変動の場合で
ある。すなわち、負荷が主機1で追従する範囲を
超えた場合に先ず従機の9をHigh又はLow運転
に制御し、更にこれでも追従しきれない場合には
従機10を同じように運転制御し、以下従機11
と移る。夫々の従機9,10,11が停止する条
件も上記と同じである。
First, the conditions under which the slave machines 9, 10, and 11 operate are when there is a load fluctuation that the main machine 1 cannot follow. That is, when the load exceeds the range that can be followed by the main machine 1, first the slave machine 9 is controlled to High or Low operation, and if the load cannot be followed even with this, the slave machine 10 is controlled in the same way, Following slave machine 11
and move on. The conditions for stopping each slave device 9, 10, 11 are also the same as above.

次に上記構成から成る実施例について、その作
用を詳記する。先ず冷房時について説明すると、
始動時は負荷が大きいため、始動台数を4台とす
ると、主機1及び従機9,10,11の全台数が
運転を始め、燃料消費量は100%である。そして、
その後負荷が小さくなり、予め温度調節器8で設
定された温度より温度検出素子7で検出された温
度が低くなると、温度調節器8からの信号により
主機1の溶液ポンプ5の溶液循環量が少なくな
る。同時に比例制御弁3が絞られ、ガスの消費量
が少なくなる。これにより主機1を負荷変動に追
従させるものである。又、負荷が大きくなつた場
合には冷水戻り温度を温度検出素子7が検出し、
前記とは反対に温度調節器8が主機1の比例制御
弁3を開き、溶液ポンプ5の循環量を増す。
Next, the operation of the embodiment having the above configuration will be described in detail. First, let me explain about cooling.
Since the load is large at the time of startup, if the number of starting machines is set to four, all of the main machines 1 and slave machines 9, 10, and 11 start operating, and the fuel consumption is 100%. and,
After that, when the load becomes smaller and the temperature detected by the temperature detection element 7 becomes lower than the temperature set in advance by the temperature controller 8, a signal from the temperature controller 8 causes the solution pump 5 of the main engine 1 to reduce the amount of solution circulated. Become. At the same time, the proportional control valve 3 is throttled, reducing gas consumption. This allows the main engine 1 to follow load fluctuations. In addition, when the load increases, the temperature detection element 7 detects the cold water return temperature,
In contrast to the above, the temperature regulator 8 opens the proportional control valve 3 of the main engine 1 and increases the circulation rate of the solution pump 5.

負荷変動が小さい場合には以上の作用により主
機1が追従するが、負荷変動が主機1の追従範囲
を超えると、従機9をHigh又はLow運転とした
状態で主機1を同じように運転させ、以下順次こ
のような条件のもとに従機10,11を運転す
る。そして、負荷が従機9,10,11の停止条
件になつたときには夫々が順次停止し、最後は主
機1のみの運転となり、主機1の停止条件となつ
て最後に主機1が停止する。
If the load fluctuation is small, the main engine 1 will follow the above action, but if the load fluctuation exceeds the follow-up range of the main engine 1, the main engine 1 will be operated in the same way with the slave engine 9 in High or Low operation. , and thereafter, the slave machines 10 and 11 are sequentially operated under such conditions. Then, when the load reaches the stop condition for the slave machines 9, 10, and 11, each of them is stopped in sequence, and finally only the main machine 1 is operated, and when the stop condition for the main machine 1 is reached, the main machine 1 is finally stopped.

次に負荷が増加する場合にあつては、主機1の
容量では不足と温度調節器8が判定した場合、従
機11に対して運転開始指令又はLowをHigh運
転に切り替える信号を出し、それでも不足な場合
に従機10に同じような信号を出し、順次これを
行ない、負荷の増加に追従させる。
Next, when the load increases, if the temperature controller 8 determines that the capacity of the main engine 1 is insufficient, it issues an operation start command to the slave unit 11 or a signal to switch from Low to High operation, and if the capacity is still insufficient. In such a case, a similar signal is sent to the slave unit 10, and this is done sequentially to follow the increase in load.

本考案は以上のように、複数台の吸収式冷温水
機を使用して冷暖房を行う装置に於いて、その中
の一台については比例制御方式を採用し、他のも
のについては二位置又は三位置制御を行うように
したので、次のような効果を期待することができ
る。
As described above, the present invention is a device that performs heating and cooling using multiple absorption type water chillers/heaters, in which one of them adopts a proportional control method, and the other ones adopt a two-position or two-position control method. Since three-position control is performed, the following effects can be expected.

負荷変動が小さい場合には、比例制御方式を
採用した主機1のみにより追従させることがで
きるので、冷温水機を効率よく運転することが
できる。
When the load fluctuation is small, it can be followed only by the main engine 1 that employs the proportional control method, so the water chiller/heater can be operated efficiently.

比例制御方式を採用した主機1と、二位置又
は三位置制御方式を採用した従機との組み合わ
せにより、非常に広範囲での運転制御を行うこ
とができるので、冷温水温度を安定させ、理想
的な冷暖房を行うことができる。
The combination of the main engine 1, which uses a proportional control system, and the slave engine, which uses a two-position or three-position control system, enables operation control over a very wide range, which stabilizes the temperature of cold and hot water, making it ideal for It can be used for heating and cooling.

主機1のみに比例制御方式を採用したので、
冷暖房中間期における冷暖房を経済的に、効率
よく行うことができる。
Since we adopted a proportional control method only for main engine 1,
Heating and cooling during the intermediate period of heating and cooling can be performed economically and efficiently.

通常の負荷変動時においては起動、停止を繰
り返すことはないので、起動、停止による熱損
失はなくなる。
Since starting and stopping are not repeated during normal load fluctuations, there is no heat loss due to starting and stopping.

比例制御方式を複数台の中一台についてのみ
取り付けたので、制御装置は安価で済み、小型
の冷暖房装置に適用することができる。
Since the proportional control system is installed on only one of the multiple units, the control device is inexpensive and can be applied to small-sized air-conditioning equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における運転制御の一例を示す説
明図、第2図は本考案に係る運転制御装置の説明
図、第3図は比例制御方式を採用した主機の説明
図である。 1……主機、2……ガス供給路、3……比例制
御弁、4……溶液回路、5……溶液ポンプ、7…
…温度検出素子、8……温度調節器、9,10,
11……従機。
FIG. 1 is an explanatory diagram showing an example of conventional operation control, FIG. 2 is an explanatory diagram of an operation control device according to the present invention, and FIG. 3 is an explanatory diagram of a main engine employing a proportional control method. 1... Main engine, 2... Gas supply path, 3... Proportional control valve, 4... Solution circuit, 5... Solution pump, 7...
...Temperature detection element, 8...Temperature regulator, 9, 10,
11...Slave machine.

Claims (1)

【実用新案登録請求の範囲】 ガスの供給路中に比例制御弁を取り付けると共
に溶液回路中に比例制御溶液ポンプを取り付け、
冷温水戻り配管中に取り付けた温度検出素子によ
り戻り温度を検出し、この戻り温度と設定温度と
を比較し、この比較結果に基づいて前記比例制御
弁及び溶液ポンプに対して制御信号を送る温度調
節器を取り付けて成る比例制御される主機と、 ガスの供給路中に二位置又は三位置制御弁を取
り付け、前記主機側の温度調節器からの信号によ
り二位置又は三位置制御せられる従機と、 から成る複数台の吸収式冷温水機の運転制御装
置。
[Scope of claim for utility model registration] A proportional control valve is installed in the gas supply path, and a proportional control solution pump is installed in the solution circuit,
The return temperature is detected by a temperature detection element installed in the cold and hot water return pipe, the return temperature is compared with a set temperature, and a control signal is sent to the proportional control valve and the solution pump based on the comparison result. A main engine that is proportionally controlled and equipped with a regulator, and a slave engine that has a two-position or three-position control valve installed in the gas supply path and that is controlled two-position or three-position by a signal from the temperature controller on the main engine side. An operation control device for multiple absorption chiller/heater machines consisting of and.
JP10804483U 1983-07-12 1983-07-12 Operation control device for multiple absorption chiller/heater machines Granted JPS6016974U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10804483U JPS6016974U (en) 1983-07-12 1983-07-12 Operation control device for multiple absorption chiller/heater machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10804483U JPS6016974U (en) 1983-07-12 1983-07-12 Operation control device for multiple absorption chiller/heater machines

Publications (2)

Publication Number Publication Date
JPS6016974U JPS6016974U (en) 1985-02-05
JPH0117008Y2 true JPH0117008Y2 (en) 1989-05-18

Family

ID=30252224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10804483U Granted JPS6016974U (en) 1983-07-12 1983-07-12 Operation control device for multiple absorption chiller/heater machines

Country Status (1)

Country Link
JP (1) JPS6016974U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530187Y2 (en) * 1988-11-22 1993-08-02

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145153A (en) * 1975-06-09 1976-12-13 Hitachi Ltd Method of adjusting the capacity of a freezer
JPS576958B2 (en) * 1977-10-27 1982-02-08

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021719Y2 (en) * 1980-06-13 1985-06-28 東京瓦斯株式会社 Number control device for small absorption chiller/heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145153A (en) * 1975-06-09 1976-12-13 Hitachi Ltd Method of adjusting the capacity of a freezer
JPS576958B2 (en) * 1977-10-27 1982-02-08

Also Published As

Publication number Publication date
JPS6016974U (en) 1985-02-05

Similar Documents

Publication Publication Date Title
US4046532A (en) Refrigeration load shedding control device
JPH0222309B2 (en)
US4246956A (en) Control scheme for a solar assisted heat pump
US5259202A (en) Absorption air-conditioning system
JPH0117008Y2 (en)
JPH07218016A (en) Absorption type chilled and warm water machine
JP2904242B2 (en) Operation control method in central heating system combined with floor heating device
JPH0377430B2 (en)
JPS61128043A (en) Air conditioner having heat accumulating circuit
JPS594614B2 (en) How to control the number of hot and cold water machines
JPS6129649A (en) Heat-pump hot-water supply device
JPS5916749Y2 (en) Water chiller/heater operation controller
JP2806491B2 (en) Absorption refrigerator and its operation control method
JPS6138060Y2 (en)
JPH026424B2 (en)
JPS6138061Y2 (en)
JPS5919257B2 (en) How to control the flow rate of a water cooler/heater pump
JPS5827342Y2 (en) air conditioner
SU611084A1 (en) Air conditioning system
JPS6210535A (en) Air-conditioning heat pump
JPH05133662A (en) Cold water supply device
JPH0221499B2 (en)
JPS6246790B2 (en)
JPS60243450A (en) Hot-water supply and air-conditioning heat pump device
JPH11118282A (en) Cold/hot water supply device