JPH06145119A - 光学活性なβ−アミノ酸エステルの製造法 - Google Patents

光学活性なβ−アミノ酸エステルの製造法

Info

Publication number
JPH06145119A
JPH06145119A JP4295184A JP29518492A JPH06145119A JP H06145119 A JPH06145119 A JP H06145119A JP 4295184 A JP4295184 A JP 4295184A JP 29518492 A JP29518492 A JP 29518492A JP H06145119 A JPH06145119 A JP H06145119A
Authority
JP
Japan
Prior art keywords
compound
optically active
group
amino acid
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4295184A
Other languages
English (en)
Inventor
Takashi Yamamoto
尚 山本
Koji Hattori
浩二 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujisawa Pharmaceutical Co Ltd
Original Assignee
Fujisawa Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujisawa Pharmaceutical Co Ltd filed Critical Fujisawa Pharmaceutical Co Ltd
Priority to JP4295184A priority Critical patent/JPH06145119A/ja
Publication of JPH06145119A publication Critical patent/JPH06145119A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

(57)【要約】 (修正有) 【目的】 反応時の立体選択性を高めて光学活性なβ−
アミノ酸エステルとする方法を提供する。 【構成】 一般式1の光学活性なイミン化合物に、一般
式2のケテンシリルアセタール化合物を反応させて不斉
アルドール反応により一般式3のβ−アミノ酸エステル
を製造するに当たり、反応系中にトリフェノキシボラ
ン、並びに(S)−ビナフトールもしくは(R)−ビナ
フトールの一種以上を共存させる。 (Rはアリール基、Rは低級アルキル基、アリール
基、シクロ(低級)アルキル(低級)アルキル基、トリ
(低級)アルキルシリルエチニル基または保護されたヒ
ドロキシ(低級)アルキル基を意味する) (RとRは水素原子、低級アルキル基、トリ(低
級)アルキルシリルオキシ基または保護されたヒドロキ
シ(低級)アルキル基、Rは低級アルキル基、R
低級アルキル基を意味する) (R.R.R.RおよびRは前と同じ)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は特異な立体選択性を利
用することによって、希望する立体配置のものが主体と
なった光学活性を有するβ−アミノ酸エステルを製造す
る方法に関し、詳細には不斉炭素原子を有する光学活性
なイミン化合物を原料物質とし、該イミン化合物の立体
配置を利用することによって目的物質の立体配置を特異
的に選択することを骨子とする光学活性なβ−アミノ酸
エステルを製造する方法であって、ここに得られた光学
活性なβ−アミノ酸エステルは、医薬として有用な光学
活性物質を製造するための有用な中間体となるものであ
る。
【0002】
【従来の技術】例えば式:
【0003】
【化4】 で示される化合物(A)に、TiCl4 の存在下塩化メ
チレン中で、式:
【0004】
【化5】 で示される化合物(B)を反応させて、式:
【0005】
【化6】
【0006】で示されるアミノ酸エステル類(C)を得
ることは、Tetrahedron Letters Vol.21, pp2077-2080
に記載されている様に、それ自身公知である。上記化合
物(C)は2つの不斉炭素原子を有しているが、上記公
知反応によるときは立体選択性が必ずしも高いものでは
なく、得られた化合物(C)についての立体特異性も十
分に高いものではない。
【0007】
【発明が解決しようとする課題】この発明は上記従来技
術を改善して一層立体選択性の優れた反応方法を検討し
た結果なされたものであって、上記化合物(C)または
その類縁化合物を優れた立体特異性を有する物質として
製造できる方法の確立を目的とするものである。
【0008】
【課題を解決するための手段】上記目的を達成すること
のできた本発明の方法とは、式:
【0009】
【化7】
【0010】(式中、R1 はアリール基、R2 は低級ア
ルキル基、アリール基、シクロ(低級)アルキル(低
級)アルキル基、トリ(低級)アルキルシリルエチニル
基または保護されたヒドロキシ(低級)アルキル基を意
味する)で示される光学活性なイミン化合物に対し、ト
リフェノキシボランと、(R)−ビナフトールまたは
(S)−ビナフトールのいずれか一方の共存下、式:
【0011】
【化8】
【0012】(式中、R3 およびR4 は夫々同一または
異なって水素原子、低級アルキル基、トリ(低級)アル
キルシリルオキシ基または保護されたヒドロキシ(低
級)アルキル基、R5 は低級アルキル基、R6 は低級ア
ルキル基を意味する)で示されるケテンシリルアセター
ル化合物を反応させることにより、式:
【0013】
【化9】
【0014】(式中、R1 ,R2 ,R3 ,R4 およびR
5 は夫々前と同じ意味)で示される光学活性なβ−アミ
ノ酸エステルを製造することを要点とするものである。
【0015】
【発明の構成の説明】この発明で用いられる置換基の各
種定義について説明すれば下記の通りである。尚この明
細書における「低級」の語は、特にことわらない限り炭
素数1〜6であるものを示す。
【0016】好適なアリール基としてはフェニル、1−
ナフチル、2−ナフチル等が挙げられる。好適な低級ア
ルキル基としては、メチル、エチル、プロピル、イソプ
ロピル、ブチル、イソブチル、第3級ブチル、ペンチ
ル、ヘキシル等が挙げられる。好適なシクロ(低級)ア
ルキル(低級)アルキル基としては、シクロプロピルメ
チル、シクロプロピルエチル、シクロプロピルブチル、
シクロペンチルメチル、シクロペンチルエチル、シクロ
ヘキシルメチル、シクロヘキシルエチル、シクロヘキシ
ルプロピル等が挙げられる。
【0017】好適なトリ(低級)アルキルシリルエチニ
ル基としては、トリメチルシリル、トリエチルシリル、
トリブチルシリル、第3級ブチルジメチルシリル等が挙
げられる。好適な「保護されたヒドロキシ(低級)アル
キル基」としては、常用のヒドロキシ保護基、好ましく
は低級アルケニルオキシカルボニル基およびフェニル
(またはニトロフェニル)(低級)アルコキシカルボニ
ル基;およびさらに例えばベンジル、ベンズヒドリル、
トリチル等のモノ−またはジ−またはトリフェニル(低
級)アルキル基のようなC6 −C10アル(低級)アルキ
ル基等;例えばトリメチルシリル、トリエチルシリル、
イソプロピルジメチルシリル、第3級ブチルジメチルシ
リル、ジイソプロピルメチルシリル等のトリ(低級)ア
ルキルシリル基;例えばトリフェニルシリル等のトリ
(C6 −C10)アリールシリル基;トリス[(C6 −C
10)アル(低級)アルキル]シリル基{その例としては
例えばトリベンジルシリル等のトリス[フェニル(低
級)アルキル]シリル等}のようなトリ置換シリル基に
よってヒドロキシ基が保護された前記ヒドロキシ(低
級)アルキル基が挙げられる。
【0018】このような意味における「保護されたヒド
ロキシ(低級)アルキル基」の更に好ましい例として
は、{フェニル(またはニトロフェニル)(C1 −C
4 )アルコキシ}カルボニルオキシ(C1 −C4 )アル
キル基、C2 −C4 アルケニルオキシカルボニルオキシ
(C1 −C4 )アルキル基および{トリ(C1 −C4
アルキルシリル}オキシ(C1 −C4 )アルキル基が挙
げられ、最も好ましいものとしては、1−トリメチルシ
リルオキシエチル基および1−第3級ブチルジメチルシ
リルオキシエチル基が挙げられる。
【0019】本発明の反応は光学活性なイミン化合物と
ケテンシリルアセタール化合物を反応させることによっ
て行なわれるが、該イミン化合物の不斉炭素における立
体配置(R配位かS配位か)の如何によって目的物質β
−アミノ酸エステルの特に3位の不斉炭素における立体
配置が大きく左右される。本発明における立体選択性の
高さは、反応系に共存せしめられる(R)−または
(S)−ビナフトールのいずれか一方並びにトリフェノ
キシボランの共同作用に基づくものであり、特に(R)
−または(S)ビナフトールによる影響は大きい。後記
実施例にも見られるように、トリフェノキシボラン単独
によっても立体選択性を受けることができる。この際立
体選択性の方向については必ずしも特定されておらず、
原料物質における置換基の種類等によっても相違するの
で、一概に断定することはできない。従ってその都度学
習・検討することが必要な場合もある。
【0020】尚β−アミノ酸エステルが2位にも不斉炭
素原子を有する場合は、2位と前記3位の各々の立体配
置のみならず、2位と3位の間の立体配座にも立体選択
性を示すことを確認している。
【0021】反応は塩化メチレン、テトラヒドロフラン
等、この反応の進行に悪影響を与えない有機溶媒中、冷
却乃至室温下に行なうことができる。
【0022】この発明によって製造されるβ−アミノ酸
エステルは立体選択性に基づいて光学活性を有する特定
配置の構造を有するものとして与えられるので、医薬と
して有用な種々の化合物を製造する為の中間体として利
用価値が高い。その様な中間体としての利用態様の一例
は追って参考例を挙げて示すが、代表的なものとしては
チエナマイシンを始めとするβ−ラクタム構造を有する
医薬品への合成が例示される。
【0023】
【実施例】以下実施例に基づいて本発明を説明するが、
該説明中で用いる各記号の意味は夫々下記の通りであ
る。 B(OPh)3 :トリフェノキシボラン Me:メチル基 Et:エチル基t Bu:第3級ブチル基i Bu:イソブチル基 TBDM:(第3級ブチル)(ジメチル) TBDMS:(第3級ブチル)(ジメチル)シリル Ph:フェニル基 2−naph:2−ナフチル基 Py:ピリジン−2−イル基 4AMS:モレキュラーシーブス4A 実施例1
【0024】
【化10】
【0025】(A)反応系中にB(OPh)3 の他に
(R)−ビナフトールまたは(S)−ビナフトールを共
存させる場合:4AMSの粉末(1.0g)を塩化メチ
レン(10ml)中に分散させた懸濁液に、(R)−ビ
ナフトール(100mg:0.35mmol)と(S)
−ビナフトール(同量)のいずれか一方とB(OPh)
3 (101mg:0.35mmol)の2種の組合せか
らなる試薬を、アルゴン雰囲気中、室温下に夫々加え
た。1時間混合した後、それらを別々に0℃まで冷却
し、各液にイミン化合物(1)(80mg:0.35m
mol)の塩化メチレン(1ml)溶液を加えた。更に
同温度で1時間撹拌した後、−78℃に冷却し、ケトン
シリルアセタール化合物(2)(180mg:0.70
mmol)の塩化メチレン(1ml)溶液を滴下した。
各反応液を数時間撹拌した後、各反応混合物を、水,炭
酸水素ナトリウム飽和水溶液で夫々洗浄し、無水硫酸マ
グネシウムで乾燥した。溶媒を留去しシリカゲルカラム
クロマトグラフに展開してヘキサン/エーテル混液(1
0/1−8/1)で溶出すると、いずれの反応系からも
β−アミノ酸エステル化合物(3)が得られた。収率は
(R)−ビナフトールを共存させた系(A−1):9
7.8mg,75%、(S)−ビナフトールを共存させ
た系(A−2):101mg,78%であった。
【0026】(B)反応系中にB(OPh)3 を共存さ
せるが、(R)−ビナフトールや(S)−ビナフトール
は共存させない場合:(R)−ビナフトールや(S)−
ビナフトールを併用しない他は、(A)と同様に実施
し、β−アミノ酸エステル化合物(3)を得た(93.
9mg,72%)。
【0027】上記(A),(B)で得られた立体異性体
の混合物である夫々の化合物(3)を、立体特異性によ
って分離精製し、夫々の物理特性を測定したところ下記
の通りであった。 (2R,3S)−2−エチル−3−[(S)−1−メチ
ルベンジルアミノ]−5−トリメチルシリル−4−ペン
チン酸第3級ブチル [α]D 24 −180.6°(c1,CHCl3 ) FABMS M+ +1=3741 H−NMR(CDCl3 )δ 0.17(9H,s),0.86(3H,t,
J=7.4Hz),1.31(3H,d,J=6.6Hz),1.47(9H,s),1.4-1.8(2H,
m),2.22(1H,m),3.14(1H,d,J=9.0Hz),4.12(1H,q,J=6.6H
z),7.2-7.4(5H,m) IR(neat) 2162,1717cm-1 (2S,3R)異性体 1H−NMR(CDCl3 )δ
3.59(1H,d,J=9.0Hz) (2S,3S)異性体 1H−NMR(CDCl3 )δ
3.14(1H,d,J=6.6Hz) (2R,3R)異性体 1H−NMR(CDCl3 )δ
3.58(1H,d,J=6.8Hz) 上記反応(A−1),(A−2),(B)の各ケースの
反応で得られた化合物(3)(立体異性体の混合物)の
立体特性は下表の通りであった。
【0028】
【表1】
【0029】表中のアンチ比率はβ−アミノ酸エステル
化合物(3)における2位の不斉炭素[前記反応式では
(R)で示した]と3位の不斉炭素[前記反応式では
(S)で示した]における(2R,3S)体(化学式で
示したもの)と(2S,3R)体(化学式で示していな
もの)との比率で表わした。このことから明らかである
様にイミン化合物(1)における不斉炭素の立体配置が
(S)であるときは、本発明の方法によって得られるβ
−アミノ酸エステル化合物(3)は(2R,3S)が圧
倒的に多く生成し、この実施例ではイミン化合物(1)
が(R)体であるときはβ−アミノ酸エステル化合物
(3)が(2R,3S)体を多く生成しており、原料化
合物の立体配置によって目的物質の立体配置に特異性が
与えられるという点において立体選択性の高い反応特性
を示すことが明らかになっている。
【0030】もっとも(B)の反応ではアンチ/シン比
率が50/50となっており、β−アミノ酸エステル化
合物の2位と3位間の立体配座についての特異性は(A
−1)の98/2,(A−2)の63/37に比べて低
い。従って本実施例において立体配座を含めて考察すれ
ば、(R)−ビナフトールや(S)−ビナフトールのい
ずれか一方を共存[特に(R)−ビナフトールを共存]
させることが立体選択性において最良の結果を与え、B
(OPh)3 単独の場合は立体選択性がやや低下すると
の評価が与えられる。 実施例2
【0031】
【化11】
【0032】化合物(1)と化合物(2’)を実施例1
の方法に準じて製造した。なお反応試薬の共存形態につ
いても実施例1に倣って下記の通りとした。 (A−1) B(OPh)3 と(R)−ビナフトールを
共存させたとき (A−2) B(OPh)3 と(S)−ビナフトールを
共存させたとき (B) B(OPh)3 のみを存在させたとき 得られた化合物(4),(5)の物理特性を測定したと
ころ下記の通りであった。
【0033】化合物(4) (2S,3R)−3−[(S)−1−メチルベンジルア
ミノ]−2−[(R)−1−トリエチルシリルオキシエ
チル]−5−トリメチルシリル−4−ペンチン酸メチル [α]D 24 −25.46°(c1,CHCl3 ) FABMS M+ +1=4621 H−NMR(CDCl3 )δ 0.14(9H,s),0.55(6H,q,
J=7.8Hz),0.91(9H,t,J=7.8Hz),1.23(3H,d,J=5.8Hz),1.3
0(3H,d,J=6.6Hz),2.74(1H,dd,J=5.6,8.2Hz),3.69(3H,
s),3.93(1H,d,J=5.6Hz),4.05(1H,q,J=6.6Hz),4.22(1H,d
q,J=8.2,5.8Hz),7.2-7.4(5H,m) IR(neat) 2166,1742cm-1
【0034】化合物(5) (2R,3S)−3−[(S)−1−メチルベンジルア
ミノ]−2−[(R)−1−トリエチルシリルオキシエ
チル]−5−トリメチルシリル−4−ペンチル酸メチル [α]D 24 −126.84°(c1,CHCl
3 ) FABMS M+ +1=4621 H−NMR(CDCl3 )δ 0.17(9H,s),0.53(6H,q,
J=8.2Hz),0.91(9H,t,J=8.2Hz),1.15(3H,d,J=6.2Hz),1.3
4(3H,d,J=6.6Hz),2.68(1H,t,J=6.0Hz),3.36(1H,d,J=6.0
Hz),3.68(3H,s),4.10(1H,q,J=6.6Hz),4.26(1H,dq,J=6.
0,6.2Hz),7.2-7.4(5H,m) IR(neat) 2164,1742cm-1 上記反応(A−1),(A−2),(B)の各ケースの
反応で得られた化合物(4)および(5)の量的比率は
下記の通りであった。
【0035】
【表2】
【0036】表中のシン比率はβ−アミノ酸エステル化
合物のうち化合物(5)と化合物(4)の比率を示すも
のであって、本実施例の場合はB(OPh)3と(S)−
ビナフトールを併用した(A−2)のケースに相当し、
化合物(4)の生成が圧倒的に多い。一方B(OPh)
3 のみを存在せしめたケース(B)では、逆に化合物
(5)の生成が圧倒的に多くなっている。但し(B)の
ケースは(A−1),(A−2)の両ケースがアンチ/
シン比率=0/100であるのに対しアンチ/シン比率
が2/98であり、立体配座の面では(B)のケースよ
り(A−1),(A−2)の両ケース[(R)−または
(S)−ビナフトール共存のケース]の方が優れた立体
特異性を示している。尚(A−1)と(A−2)の対比
では、シン比率の面で(A−2)のケースが圧倒的に優
れた立体特異性を示している。従って総合的に考えれば
本実施例2では(A−2)のケースが立体特異性の選択
という点で最優秀の結果を与えていることが分かる。 実施例3〜12 上記実施例1,2と実質的に同様の反応を行なうことに
より下記の化合物を得ることができた。
【0037】
【表3】
【0038】上記した表3に示す実施例3〜12の幾つ
かについて、反応系にB(OPh)3と(R)−または
(S)−ビナフトールを共存させた場合、あるいはB
(OPh)3のみを存在させた場合における各反応の立体
選択性を調査したところ、表4に示す通りであった。表
中のdeは( )に示した立体配置のものが他のものに
比べてどの程度多いか(両者の%値の差)を示すもので
ある。従ってその数値が高い程立体選択性が高いことを
示す。
【0039】
【表4】
【0040】表3に示した化合物の物理特性は下記の通
りであった。 (実施例3) (R)−3−フェニル−3−[(S)−1−メチルベン
ジルアミノ]プロピオン酸第3級ブチル1 H−NMR(CDCl3 )δ 1.31(3H,d,J=6.6Hz),1.
35(9H,s),1.74(1H,br.s),2.57(2H,m),3.63(1H,q,J=6.6H
z),4.14(1H,dd,J=6.4,7.6Hz),7.1-7.4(10H,m) IR(CHCl3 ) 3030,1717cm-1
【0041】(実施例4) (2R,3R)−2−メチル−3−フェニル−3−
[(S)−1−メチルベンジルアミノ]プロピオン酸第
3級ブチル1 H−NMR(CDCl3 )δ 0.87(3H,d,J=7.0Hz),1.
27(3H,d,J=6.4Hz),1.51(9H,s),2.49(1H,dq,J=7.0,10.0H
z),3.50(1H,q,J=6.4Hz),3.84(1H,d,J=10.0Hz),7.1-7.3
(10H,m) IR(CHCl3 ) 1719cm-1 (実施例5)実施例4と同一の化合物が得られた。
【0042】(実施例6) (3R)−2,2−ジメチル−3−フェニル−3−
[(S)−1−メチルベンジルアミノ]プロピオン酸メ
チルエステル1 H−NMR(CDCl3 )δ 1.08(6H,s),1.22(3H,d,
J=6.4Hz),3.48(1H,q,J=6.4Hz),3.74(3H,s),4.15(1H,s),
7.1-7.3(10H,m) IR(CHCl3 ) 1723cm-1
【0043】(実施例7) (S)−3−[(S)−1−メチルベンジルアミノ]ヘ
キサン酸第3級ブチル1H−NMR(CDCl3 )δ
1.1-1.6(4H,m),1.33(3H,d,J=6.6Hz),1.43(9H,s),1.77(3
H,br.s),2.33(2H,m),2.74(1H,m),3.96(1H,q,J=6.6Hz),
7.1-7.5(5H,m) IR(CHCl3 ) 1717cm-1
【0044】(実施例8) (R)−3−(2−ナフチル)−3−[(S)−1−メ
チルベンジルアミノ]プロピオン酸第3級ブチル1 H−NMR(CDCl3 )δ 1.33(9H,s),1.42(3H,d,
J=6.6Hz),2.57(2H,m),3.71(1H,q,J=6.6Hz),4.39(1H,t,J
=7.0Hz),7.1-7.9(12H,m) IR(CHCl3 ) 2928,1717cm-1
【0045】(実施例9) (2R,3S)−2−トリエチルシリルオキシ−3−フ
ェニル−3−[(S)−1−メチルベンジルアミノ]プ
ロピオン酸メチル TBAFでトリエチルシリルオキシ基をヒドロキシ基に
変換させたものについてのNMR等は下記の通り。1 H−NMR(CDCl3 )δ 1.27(3H,d,J=6.4Hz),3.
65(1H,q,J=6.4Hz),3.78(3H,s),4.15(1H,d,J=3.4Hz),4.2
8(1H,d,J=3.4Hz),7.1-7.4(10H,m) IR(Nujol) 3650,1726cm-1
【0046】(実施例10) (2R,3S)−2−トリエチルシリルオキシ−5−メ
チル−3−[(S)−1−メチルベンジルアミノ]ヘキ
サン酸メチル TBAFでトリエチルシリルオキシ基をヒドロキシ基に
変換させたものについてのNMR等は下記の通り。1 H−NMR(CDCl3 )δ 0.65(3H,d,J=6.6Hz),0.
78(3H,d,J=6.6Hz),1.1-1.7(3H,m),1.25(3H,d,J=6.6Hz),
2.91(1H,dt,J=1.6,7.0Hz),3.60(1H,q,J=6.6Hz),3.78(3
H,s),3.96(1H,d,J=1.6Hz),7.1-7.4(5H,m)
【0047】(実施例11) (2R,3S)−2−トリエチルシリルオキシ−4−シ
クロヘキシル−3−[(S)−1−メチルベンジルアミ
ノ]酪酸メチル TBAFでトリエチルシリルオキシ基をヒドロキシ基に
変換させたものについてのNMR等は下記の通り。1 H−NMR(CDCl3 )δ 0.6-1.8(13H,m),1.28(3
H,d,J=6.6Hz),2.97(1H,dt,J=1.6,8.8Hz),3.59(1H,q,J=
6.6Hz),3.81(3H,s),3.97(1H,d,J=1.6Hz),7.1-7.4(5H,m)
【0048】(実施例12) (2S,3S)−2−トリエチルシリルオキシ−3−フ
ェニル−3−[(S)−1−メチルベンジルアミノ]プ
ロピオン酸メチル TBAFでトリエチルシリルオキシ基をヒドロキシ基に
変換させたものについてのNMR等は下記の通り。1 H−NMR(CDCl3 )δ 1.33(3H,d,J=6.6Hz),3.
67(3H,s),3.76(1H,q,J=6.6Hz),4.09(1H,d,J=4.0Hz),4.5
8(1H,d,J=4.0Hz),7.1-7.4(10H,m) 上記の様にして製造した化合物は、医薬として有用な化
合物を製造する為の中間体となるものであるが、これを
基にして更に先のステップへ進んだ中間体を製造する方
法の代表例を参考例として示す。
【0049】参考例1 実施例1で製造した(2R,3S)−2−エチル−3−
[(S)−1−メチルベンジルアミノ]−5−トリメチ
ルシリル−4−ペンチン酸第3級ブチル(200mg)
の塩化メチレン(10ml)溶液に、室温下トリフルオ
ロ酢酸(8ml)を加えた。3時間の撹拌を行なった
後、減圧下に溶媒を留去し、残渣をアセトニトリル(5
ml)に溶解した。この溶液に、トリエチルアミン
(0.15ml)、トリフェニルホスフィン(0.30
g)および2,2’−ジピリジルジスルフィド(0.2
5g)を加え、この混合物を60℃で12時間撹拌した
後、溶媒を留去した。粗製物をシリカゲルカラムクロマ
トグラフィに展開し、ヘキサン/エーテル混液で溶出す
ると、(3R,4S)−3−エチル−N−[(S)−1
−メチルベンジル]−4−トリメチルシリルエチニル−
2−アゼチジノン(120mg,70%)が得られた。
【0050】[α]D 24 −60.14°(c0.
5,CHCl3 ) FABMS M+ +1=3001 H−NMR(CDCl3 )δ 0.13(9H,s),1.00(3H,t,
J=7.4Hz),1.73(3H,d,J=7.2Hz),1.6-1.9(2H,m),3.11(1H,
ddd,J=2.2,6.2,8.0Hz),3.71(1H,d,J=2.2Hz),4.66(1H,q,
J=7.2Hz),7.2-7.4(5H,m) IR(neat) 2177,1750cm-1 (3S,4R)異性体 1H−NMR(CDCl3 )δ
3.55(1H,d,J=2.4Hz),5.04(1H,J=7.4Hz) (3S,4S)異性体 1H−NMR(CDCl3 )δ
3.99(1H,d,J=5.4Hz),4.65(1H,J=7.4Hz) (3R,4R)異性体 1H−NMR(CDCl3 )δ
4.01(1H,d,J=5.4Hz),5.00(1H,J=7.4Hz)
【0051】参考例2 実施例2で得られた(2R,3R)−3[(S)−1−
メチルベンジルアミノ]−2−[(R)−1−トリエチ
ルシリルオキシエチル]−5−トリメチルシリル−4−
ペンチン酸メチル(100mg)のエーテル(50m
l)溶液に臭化フェニルマグネシウム(2Mエーテル溶
液:0.16ml)をアルゴン雰囲気下、0℃で加え
た。2時間の撹拌を行なった後、反応液に飽和アンモニ
ア水を加えた。水および食塩水で順次洗浄した後、溶媒
を乾燥し留去した。得られた残渣をシリカゲルカラムク
ロマトグラフィ(展開液:ヘキサン/エーテル=4/
1)で精製して(3S,4R)−N−[(S)−1−メ
チルベンジル]−3−[(1R)−1−トリエチルシリ
ルオキシエチル]−4−トリメチルシリルエチニル−2
−アゼチジノン(55mg,59%)を得た。
【0052】[α]D 24 +8.11°(c1,C
HCl3 ) FABMS M+ +1=4301 H−NMR(CDCl3 )δ 0.19(9H,s),0.6-0.7(6
H,m),0.80-1.00(9H,m),1.40(3H,d,J=6.2Hz),1.70(3H,d,
J=7.2Hz),3.14(1H,dd,J=5.4,8.0Hz),4.07(1H,d,J=5.4H
z),4.34(1H,dq,J=8.0,6.2Hz),5.05(1H,q,J=7.2Hz),7.2-
7.4(5H,m) IR(neat) 2220,1740cm-1
【0053】参考例3 実施例2で得られた(2R,3S)−3−[(S)−1
−メチルベンジルアミノシリルオキシエチル]−5−ト
リメチルシリル−4−ペンチン酸メチルを用い、参考例
2と同様に処理すると、(3R,4S)−N−[(S)
−1−メチルベンジル]−3−[(1R)−1−トリエ
チルシリルオキシエチル]−4−トリメチルシリルエチ
ニル−2−アゼチジノンが得られた。 [α]D 24 −51.55°(c1,CHCl3 ) FABMS M+ +1=4301 H−NMR(CDCl3 )δ 0.12(9H,s),0.63(6H,q,
J=8.2Hz),0.94(9H,t,J=8.2Hz),1.30(3H,d,J=6.0Hz),1.7
2(3H,d,J=7.2Hz),3.16(1H,dd,J=5.4,7.8Hz),4.15(1H,d,
J=5.4Hz),4.29(1H,dq,J=6.0,7.8Hz),4.68(1H,q,J=7.2H
z),7.2-7.4(5H,m) IR(neat) 2170,1760cm-1
【0054】参考例4 参考例2で得られた(3S,4R)−N−[(S)−1
−メチルベンジル]−3−[(1R)−1−トリエチル
シリルオキシエチル]−4−トリメチルシリルエチニル
−2−アゼチジノン(80mg)のテトラヒドロフラン
(10ml)溶液に弗化テトラブチルアンモニウム(1
M、テトラヒドロフラン溶液:1.3ml)を室温下に
加えた。1時間撹拌した後、混合物をエーテルで希釈
し、更に水、1N塩酸、炭酸水素ナトリウム飽和水溶
液、更に食塩水を用いて順次洗浄した。溶液を乾燥した
後、溶媒を留去し、残渣をジメチルホルムアミド(3m
l)に溶解した。この溶液にイミダゾール(70mg)
と第3級ブチルジメチルシリルクロリド(0.13g)
を室温下に加え、3時間撹拌した後、エーテルで希釈し
た。これを水,食塩水で順次洗浄し、乾燥後溶媒を留去
した。残渣をシリカゲルカラムクロマトグラフィ(展開
液:ヘキサン/エーテル=2/1)で精製すると、(3
S,4R)−3−[(1R)−1−第3級ブチルジメチ
ルシリルオキシエチル]−4−エチニル−N−[(S)
−1−メチルベンジル]−2−アゼチジノン(18m
g,90%)が得られた。 FABMS M+ +1=3581 H−NMR(CDCl3 )δ 0.10(6H,s),0.91(9H,
s),1.36(3H,d,J=6.4Hz),1.70(3H,d,J=7.2Hz),2.45(1H,
d,J=2.4Hz),3.15(1H,dd,J=5.2,7.4Hz),4.02(1H,dd,J=2.
4,5.2Hz),4.36(1H,m),5.08(1H,q,J=7.2Hz),7.36(5H,m) IR(neat) 1743cm-1
【0055】参考例5 参考例3で得られた(3R,4S)−N−[(S)−1
−メチルベンジル]−3−[(1R)−1−トリエチル
シリルオキシエチル]−4−トリメチルシリルエチニル
−2−アゼチジノンを用い、参考例4と同様に処理する
と、(3R,4S)−3−[(1R)−1−第3級ブチ
ルジメチルシリルオキシエチル]−4−エチニル−N−
[(S)−1−メチルベンジル]−2−アゼチジノンが
得られた。 FABMS M+ +1=3581 H−NMR(CDCl3 )δ 0.09,0.11(6H,each s),
0.91(9H,s),1.32(3H,d,J=6.2Hz),1.77(3H,d,J=7.2Hz),
2.40(1H,d,J=2.2Hz),3.17(1H,dd,J=5.4,6.8Hz),4.07(1
H,dd,J=2.2,5.4Hz),4.29(1H,m),4.60(1H,q,J=7.2Hz),7.
2-7.4(5H,m) IR(neat) 1755cm-1
【0056】参考例6 参考例4で得られた(3S,4R)−3−[(1R)−
1−第3級ブチルジメチルシリルオキシエチル]−4−
エチニル−N−[(S)−1−メチルベンジル]−2−
アゼチジノン(20mg)の塩化メチレン(2ml)溶
液にトリエチルアミン(0.046ml)とトリフルオ
ロメタンスルホン酸トリメチルシリル(0.064m
l)を室温下に加えた。2日間撹拌した後、反応液を炭
酸水素ナトリウム飽和水溶液、食塩水の順に洗浄し、乾
燥後、溶媒を留去した。残渣をカラムクロマトグラフィ
(展開液:ヘキサン/エーテル=2/1)で精製する
と、(3R,4R)−3−[(1R)−1−第3級ブチ
ルジメチルシリルオキシエチル]−4−エチニル−N−
[(S)−1−メチルベンジル]−2−アゼチジノン
(30mg,94%)が得られた。 FABMS M+ +1=3581 H−NMR(CDCl3 )δ 0.07,0.09(6H,each s),
0.78(9H,s),1.15(3H,d,J=6.2Hz),1.66(3H,d,J=7.4Hz),
2.39(1H,d,J=2.0Hz),3.25(1H,dd,J=2.6,5.4Hz),3.84(1
H,t,J=2.6Hz),4.09(1H,m),5.01(1H,q,J=7.4Hz),7.2-7.5
(5H,m) IR(neat) 1757cm-1
【0057】参考例7 参考例5で得られた(3R,4S)−3−[(1R)−
1−第3級ブチルジメチルシリルオキシエチル]−4−
エチニル−N−[(S)−1−メチルベンジル]−2−
アゼチジノンを用い、参考例6同様に処理すると、(3
S,4S)−3−[(1R)−1−第3級ブチルジメチ
ルシリルオキシエチル]−4−エチニル−N−[(S)
−1−メチルベンジル]−2−アゼチジノンが得られ
た。 FABMS M+ +1=3581 H−NMR(CDCl3 )δ 0.07,0.08(6H,each s),
0.87(9H,s),1.21(3H,d,J=6.2Hz),1.72(3H,d,J=7.4Hz),
2.35(1H,d,J=2.0Hz),3.17(1H,m),4.18(1H,t,J=2.0Hz),
4.23(1H,m),4.69(1H,q,J=7.4Hz),7.2-7.5(5H,m) IR(neat) 1759cm-1
【0058】参考例8 参考例7で得られた(3S,4S)−3−[(1R)−
1−第3級ブチルジメチルシリルオキシエチル]−4−
エチニル−N−[(S)−1−メチルベンジル]−2−
アゼチジノン(45mg)のエーテル(1ml)溶液
に、金属ナトリウム(15mg)を含む液体アンモニア
(10ml)溶液を−78℃で加え、同温度で1時間撹
拌した。この溶液に塩化アンモニウム飽和水溶液を加
え、室温に戻して液体アンモニアを留去した。残渣をエ
ーテルに溶解し硫酸マグネシウムで乾燥した後、濃縮し
た。残渣をカラムクロマトグラフィ(展開液:ヘキサン
/エーテル=2/1−1/1)で精製すると、(3S,
4S)−3−[(1R)−1−第3級ブチルジメチルシ
リルオキシエチル]−4−エチニル−2−アゼチジノン
(30mg,94%)が得られた。 FABMS M+ +1=2541 H−NMR(CDCl3 )δ 0.07,0.08(6H,each s),
0.87(9H,s),1.24(3H,d,J=6.2Hz),2.43(1H,d,J=2.2Hz),
3.31(1H,m),4.24(1H,m),4.34(1H,t,J=2.2Hz),6.16(1H,b
r.s) IR(neat) 3250−3200,2250,1
759cm-1
【0059】参考例9 参考例8で得られた(3S,4S)−3−[(1R)−
1−第3級ブチルジメチルシリルオキシエチル]−4−
エチニル−2−アゼチジノン(20mg)をトルエン
(5ml)とヘキサン(10ml)に溶解させ、これに
リンドラー触媒(0.5mg)を加え、水素ガス気流
下、常温で4時間撹拌した。濾過し、濾液から溶媒を減
圧留去した。残渣をシリカゲルカラムクロマログラフィ
(展開液:ヘキサン/エーテル=2/1)で精製する
と、(3S,4R)−3−[(1R)−1−第3級ブチ
ルジメチルシリルオキシエチル]−4−ビニル−2−ア
ゼチジノン(17mg,84%)が得られた。本品の各
種スペクトルデータはTetrahedron Letters (1989) 45
PP5767の記載と一致した。
【0060】参考例10 実施例3で得られた(R)−3−フェニル−3−
[(S)−1−メチルベンジルアミノ]プロピオン酸第
3級ブチルを用い、参考例2と同様に処理すると、(4
R)−4−フェニル−2−[(S)−1−メチルベンジ
ル]−2−アゼチジノンが得られた。 [α]D 23 +45.8°(c1.1,CHCl
31 H−NMR(CDCl3 )δ 1.29(3H,d,J=7.2Hz),2.
83(1H,dd,J=2.4,14.6Hz),3.24(1H,dd,J=5.4,14.6Hz),4.
29(1H,dd,J=2.4,5.4Hz),5.04(1H,q,J=7.2Hz),7.1-7.4(1
0H,m) IR(CHCl3 ) 1736cm-1
【0061】参考例11 実施例4で得られた(2R,3R)−2−メチル−3−
フェニル−3−[(S)−1−メチルベンジルアミノ]
プロピオン酸第3級ブチルを用い、参考例2と同様に処
理すると、(3S,4R)−3−メチル−4−フェニル
−1−[(S)−1−メチルベンジル]−2−アゼチジ
ノンが得られた。 [α]D 23 +3.3°(c0.96,CHCl
31 H−NMR(CDCl3 )δ 1.24(3H,d,J=7.4Hz),1.
29(3H,d,J=7.2Hz),3.01(1H,dq,J=2.0,7.4Hz),3.81(1H,
d,J=2.0Hz),5.06(1H,q,J=7.2Hz),7.0-7.4(10H,m) IR(CHCl3 ) 1732cm-1
【0062】参考例12 実施例6で得られた(3R)−2,2−ジメチル−3−
フェニル−3−[(S)−1−メチルベンジルアミノ]
プロピオン酸メチルを用い、参考例2と同様に処理する
と、(4R)−3,3−ジメチル−4−フェニル−1−
[(S)−1−メチルベンジル]−2−アゼチジノンが
得られた。 [α]D 25 +94.7°(c1.23,CHCl
31 H−NMR(CDCl3 )δ 0.76(3H,s),1.22(3H,
s),1.48(3H,d,J=7.2Hz),4.03(1H,s),5.02(1H,q,J=7.2H
z),7.1-7.4(10H,m) IR(CHCl3 ) 1732cm-1
【0063】参考例13 実施例9で得られた(2R,3S)−2−トリエチルシ
リルオキシ−3−フェニル−3−[(S)−1−メチル
ベンジルアミノ]プロピオン酸メチルのトリエチルシリ
ルオキシ基をTBAF処理によってヒドロキシ基に変換
した化合物を原料とし、該原料化合物(300mg)の
メタノール(30ml)溶液にパラジウム炭素(50m
g)を加え、室温下、水素気流中で24時間撹拌した。
反応終了後濾過し、濾液から溶媒を減圧留去した。残渣
をテトラヒドロフラン(20ml)とH2 O(20m
l)の混液に溶解し、0℃に冷却した。この溶液に、1
N水酸化ナトリウム水溶液でpH9−10に調整しつつ
安息香酸クロライド(0.17ml)を加えた。反応混
合物をエーテルで希釈し、有機層を水、炭酸水素ナトリ
ウム飽和水溶液、食塩水で順次洗浄した。溶液を乾燥し
た後、溶媒を留去し、残渣をシリカゲルカラムクロマト
グラフィ(展開液:塩化メチレン/エーテル=9/1)
で精製すると、(2R,3S)−N−ベンゾイル−3−
フェニルイソセリンメチル(206mg,68.3%)
が得られた。本品のスペクトルデータおよび[D]D
はJ.Org.Chem.(1990)55 1957
の記載と一致した。本品はタキソールの製造原料として
有用なものである。
【0064】参考例14 実施例11で得られた(2R,3S)−2−トリエチル
シリルオキシ−4−シクロヘキシル−3−[(S)−1
−メチルベンジルアミノ]酪酸メチルのトリエチルシリ
ルオキシ基をTBAF処理によってヒドロキシ基に変換
した化合物を原料とし、該原料化合物(230mg)を
パラジウム炭素(30mg)のメタノール(30ml)
溶液によって12時間処理し、粗製還元生成物を6N塩
酸に溶解した後、6時間加熱還流した。反応液を濃縮
し、トルエンで再結晶すると(2R,3S)−シクロヘ
キシルノルスタチン塩酸塩(150mg,87.8%)
が得られた。本品のスペクトルデータおよび[α]D
はTetrahedron Letters (1992) 48 1853の記載と一致し
た。本品はヒトレニン阻害剤として有用である。
【0065】
【発明の効果】この発明は上記の様に構成されているの
で、不斉炭素原子を有する光学活性なイミン化合物にケ
テンシリルアセタール化合物を反応させて不斉アルドー
ル縮合反応によってβ−アミノ酸エステルを製造するに
際し、上記イミン化合物の立体配置に基づいて優れた立
体選択性を発揮することが可能となった。こうして得ら
れた立体特異性の高い光学活性なβ−アミノ酸エステル
は光学活性を有することの多い各種医薬品を製造する為
の有用な中間体となるものである。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 227/12 229/22 8930−4H 229/28 8930−4H 229/34 8930−4H C07F 7/10 A 8018−4H // C07B 61/00 300 C07F 7/18 A 8018−4H

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 式: 【化1】 (式中、R1 はアリール基、R2 は低級アルキル基、ア
    リール基、シクロ(低級)アルキル(低級)アルキル
    基、トリ(低級)アルキルシリルエチニル基または保護
    されたヒドロキシ(低級)アルキル基を意味する)で示
    される光学活性なイミン化合物に対し、トリフェノキシ
    ボランと、(R)−ビナフトールまたは(S)−ビナフ
    トールのいずれか一方の共存下、式: 【化2】 (式中、R3 およびR4 は夫々同一または異なって水素
    原子、低級アルキル基、トリ(低級)アルキルシリルオ
    キシ基または保護されたヒドロキシ(低級)アルキル
    基、R5 は低級アルキル基、R6 は低級アルキル基を意
    味する)で示されるケテンシリルアセタール化合物を反
    応させることを特徴とする、式: 【化3】 (式中、R1 ,R2 ,R3 ,R4 およびR5 は夫々前と
    同じ意味)で示される光学活性なβ−アミノ酸エステル
    を製造する方法。
JP4295184A 1992-11-04 1992-11-04 光学活性なβ−アミノ酸エステルの製造法 Withdrawn JPH06145119A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4295184A JPH06145119A (ja) 1992-11-04 1992-11-04 光学活性なβ−アミノ酸エステルの製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4295184A JPH06145119A (ja) 1992-11-04 1992-11-04 光学活性なβ−アミノ酸エステルの製造法

Publications (1)

Publication Number Publication Date
JPH06145119A true JPH06145119A (ja) 1994-05-24

Family

ID=17817302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4295184A Withdrawn JPH06145119A (ja) 1992-11-04 1992-11-04 光学活性なβ−アミノ酸エステルの製造法

Country Status (1)

Country Link
JP (1) JPH06145119A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523863A (ja) * 2010-04-15 2013-06-17 インデナ エッセ ピ ア イソセリン誘導体の調製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523863A (ja) * 2010-04-15 2013-06-17 インデナ エッセ ピ ア イソセリン誘導体の調製方法
KR101875169B1 (ko) * 2010-04-15 2018-07-06 인데나 에스.피.에이 이소세린 유도체의 제조 방법

Similar Documents

Publication Publication Date Title
JP2640986B2 (ja) (1′r,3s)―3―(1′―ヒドロキシエチル)―アゼチジン―2―オン又はその誘導体の製造法
EP0247378A1 (en) Process for preparing 4-acetoxy-3-hydroxyethylazetidin-2-one derivatives
JP2007538041A (ja) ジフェニルアゼチジノン誘導体の製造方法
JPS6054358A (ja) アゼチジノン類の製法
WO2009140932A2 (en) Method of producing (3r,4s)-l-(4-fluorophenyl)-3-[(3s)-3-(4-fluorophenyl)- hydroxypropyl)]-4-(4-hydroxyphenyl)-2-azetidinone
EP0167154B1 (en) Process for preparing 4-acetoxy-3-hydroxyethylazetizin-2-one derivatives
JPH01275588A (ja) キラル3‐ベータ水素(3r)4‐アロイロキシアゼチジノンの合成方法
JPH06145119A (ja) 光学活性なβ−アミノ酸エステルの製造法
JPS63170357A (ja) キラルなアゼチジノンの製造方法
JPWO2004043961A1 (ja) 経口投与用カルバペネム化合物の製造方法
JP3224412B2 (ja) 4−置換アゼチジノン誘導体の製造方法
AU637109B2 (en) Improved synthesis of beta-lactams using a metal compound
JPH0479333B2 (ja)
JP3388874B2 (ja) β−ラクタム化合物の製造方法
WO2004103966A1 (en) Chiral 2-azetidinone compounds, process and use thereof
JPH0931054A (ja) アゼチジノン化合物及びその製造方法
JPS63246363A (ja) アゼチジノンの製法
IE60564B1 (en) Process for preparing 4-acetoxy-3-hydroxyethylazetidin-2-one derivatives
JP2652047B2 (ja) 4−ベンゾイルオキシ−3−ヒドロキシエチルアゼチジン−2−オン誘導体の製造方法
KR100283608B1 (ko) 1-베타메틸-2-포르밀카바페넴유도체의제조방법
JPH05239020A (ja) 3−[(r)−1−(置換オキシカルボニルオキシ)エチル−4−置換−2−アゼチジノンの製造法
JP2003261577A (ja) シラノール類とその中間体及びその製造方法並びにアルコール類の製造方法
JPS6334147B2 (ja)
EP0204440A1 (en) Azetidine derivatives production
JPH07242608A (ja) 3−アミノペンタノアート誘導体及びその製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104