JPH06144998A - Production of indium antimonide single crystal - Google Patents

Production of indium antimonide single crystal

Info

Publication number
JPH06144998A
JPH06144998A JP29419092A JP29419092A JPH06144998A JP H06144998 A JPH06144998 A JP H06144998A JP 29419092 A JP29419092 A JP 29419092A JP 29419092 A JP29419092 A JP 29419092A JP H06144998 A JPH06144998 A JP H06144998A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
polycrystal
pits
insb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29419092A
Other languages
Japanese (ja)
Inventor
Shinichi Nagata
伸一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29419092A priority Critical patent/JPH06144998A/en
Publication of JPH06144998A publication Critical patent/JPH06144998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To reduce all of crystal defects including dislocation and to obtain a single crystal in a high yield by synthesizing an InSb polycrystal in an atmosphere of a specified doping gas, adding elemental Ga or a Ga compd. to a melt of the polycrystal and carrying out single crystallization. CONSTITUTION:An InSb polycrystal is synthesized in an atmosphere of a gas of an element which becomes an electrically neutral impurity in a crystal, e.g. gaseous N2, Ga or a compd. of Ga with a group V element, e.g. GaSb is added to a melt of the InSb polycrystal and single crystallization is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はインジウムアンチモン単
結晶の製造方法に係り、特にチョコラルスキー法による
インジウムアンチモン単結晶引上方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an indium antimony single crystal, and more particularly to a method for pulling an indium antimony single crystal by the Czochralski method.

【0002】[0002]

【従来の技術】近年、結晶欠陥がデバイス特性に与える
影響が明確になり、結晶欠陥を減少させることが重要な
問題となっている。例えば半導体単結晶内の転位密度が
大になると結晶内に形成されたP/N接合の逆方向リー
ク電流が増加するなど半導体素子特性が低下するととも
に信頼性にも悪影響を及ぼすことが知られている。最近
では半導体素子の高集積化にともなって半導体単結晶の
転位や微少欠陥の低減化の要求がますます強くなりつつ
ある。
2. Description of the Related Art In recent years, the influence of crystal defects on device characteristics has become clear, and reducing crystal defects has become an important issue. For example, it is known that when the dislocation density in a semiconductor single crystal becomes large, the reverse leakage current of the P / N junction formed in the crystal increases and the semiconductor device characteristics are deteriorated and the reliability is adversely affected. There is. Recently, the demand for reduction of dislocations and microscopic defects in semiconductor single crystals has become stronger with higher integration of semiconductor devices.

【0003】従来、結晶欠陥低減化の有効な方法として
電気的に中性である不純物を添加する方法がある。この
方法は添加すべき不純物と引上げるべき原料とをるつぼ
に入れ、その後、加熱溶融して融液を形成し、単結晶を
引上げる方法である。InSb結晶においては不純物と
してV族元素の窒素を窒化インジウム(InN,粉末
状)として添加すると有効であることが特開昭54−1
22681号で報告されている。
Conventionally, there has been a method of adding an electrically neutral impurity as an effective method of reducing crystal defects. This method is a method in which impurities to be added and raw materials to be pulled are put in a crucible and then heated and melted to form a melt, and a single crystal is pulled. In the InSb crystal, it is effective to add nitrogen of the group V element as indium nitride (InN, powder) as an impurity.
22681.

【0004】しかし、InNでは次のような問題点があ
る。確かにInNの添加は微少欠陥に対応するS−pi
ts(Saucer−like−pits)、及び不純
物の析出あるいは欠陥があってこれを中心に〔110〕
方向にS−pitsが発生したP−pits(Punc
hing−out−pits)に対しては顕著な低減効
果を示すが、転位に対応するD−pits(Dislo
cation−pits)に関しては残念ながら低減効
果は全く認められない。従って半導体素子特性及び信頼
性の向上には前記のS−pits,P−pitsのみな
らずD−pitsをも同時低減させる方法を見出すこと
が重要な問題となる。
However, InN has the following problems. Certainly, the addition of InN corresponds to the S-pi that corresponds to the minute defects.
ts (Saucer-like-pits) and precipitation or defects of impurities, which are mainly [110]
P-pits (Punc) in which S-pits are generated in the direction
Hing-out-pits) is significantly reduced, but D-pits (Dislo) corresponding to dislocations are shown.
Unfortunately, no reduction effect is observed for the (cation-pits). Therefore, in order to improve the characteristics and reliability of the semiconductor device, it is an important problem to find a method for simultaneously reducing not only the above S-pits and P-pits but also D-pits.

【0005】[0005]

【発明が解決しようとする課題】以上、述べたように電
気的に中性であるInN(粉末状)添加法は転位(D−
pits)以外の結晶欠陥低減化に有効な方法である
が、転位の低減化には全く無力と云う問題点があった。
As described above, the electrically neutral InN (powdered) addition method is dislocation (D-
Other than the pits), it is an effective method for reducing crystal defects, but it has a problem that it is completely useless for reducing dislocations.

【0006】本発明の目的は上記の欠点を除去するもの
で、転位を含めて全ての結晶欠陥を低減し、かつ単結晶
を高い歩留りで製造する方法を提供するものである。
The object of the present invention is to eliminate the above-mentioned defects, and to provide a method for reducing all crystal defects including dislocations and producing a single crystal with a high yield.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明のInSb単結晶の製造方法ではダブルドーピ
ング法を採用する。すなわち転位(D−pits)以外
の結晶欠陥(S−pits,P−pits)低減には従
来から有効な方法である窒素(N)を添加する。但し、
窒素添加方法としてInN(粉末状)としてではなく、
InSb多結晶合成の際に雰囲気ガスとしてN2ガスを
用いることによりガスによるNドーピングを行なう。一
方、転位の低減化に関してはガリウム(Ga)単体,あ
るいはガリウムアンチモン(GaSb)等のようにV族
元素をガリウムの化合物としてInSb融液中に添加し
てInSb単結晶を引上げるものである。
In order to achieve the above object, a double doping method is adopted in the method for producing an InSb single crystal of the present invention. That is, nitrogen (N), which is a conventionally effective method for reducing crystal defects (S-pits, P-pits) other than dislocations (D-pits), is added. However,
As a nitrogen addition method, not as InN (powder),
N 2 doping by gas is performed by using N 2 gas as an atmospheric gas during the synthesis of InSb polycrystal. On the other hand, in order to reduce dislocations, a group V element such as gallium (Ga) alone or gallium antimony (GaSb) is added as a gallium compound into the InSb melt to pull up the InSb single crystal.

【0008】要するに本発明に係るインジウムアンチモ
ン単結晶の製造方法は、結晶中で電気的に中性な不純物
となる元素で構成されたガスの雰囲気中でインジウムア
ンチモン多結晶体を合成する工程と、前記インジウムア
ンチモン多結晶融液にガリウムまたはガリウムとV族元
素との化合物を添加して単結晶化する工程を含む特徴を
有する。
In summary, the method for producing an indium antimony single crystal according to the present invention comprises a step of synthesizing an indium antimony polycrystalline body in an atmosphere of a gas composed of an element which becomes an electrically neutral impurity in the crystal, The method is characterized by including a step of adding gallium or a compound of gallium and a group V element to the indium antimony polycrystal melt to obtain a single crystal.

【0009】[0009]

【作用】結晶欠陥低減のためにNとGa(含むGaS
b)のダブルドーピング法を採用しているのは、上記の
ようにNのみの添加では転位は減少しないためである。
一方、Gaのみの添加では転位は顕著に減少するが、他
のピット(S−pits,P−pits)は減少しな
い。
Function: N and Ga (including GaS) are included to reduce crystal defects.
The reason for adopting the double doping method of b) is that dislocations are not reduced by adding only N as described above.
On the other hand, when only Ga is added, dislocations are significantly reduced, but other pits (S-pits, P-pits) are not reduced.

【0010】以上の結果からダブルドーピングを行なう
ことにより、これらのピットを減少させることが可能に
なり、このダブルドーピング法により極端に結晶欠陥の
少ない単結晶が得られる。
From the above results, it is possible to reduce these pits by performing double doping, and by this double doping method, a single crystal having extremely few crystal defects can be obtained.

【0011】なお、上記製造方法では窒素の添加方法と
してInNの粉末ではなく、ガスによるNドーピングを
採用している。この理由は二点ある。
In the above manufacturing method, N doping by gas is adopted as a method of adding nitrogen instead of InN powder. There are two reasons for this.

【0012】その一つはGaとInN(粉末)のダブル
ドーピングを試みると引上げた単結晶表面に上記添加不
純物が析出するためである。そして、固溶しないので、
結晶欠陥低減効果は認められない。しかし、ガスドーピ
ング法ではこの点は回避される。
One of them is that when the double doping of Ga and InN (powder) is attempted, the above-mentioned added impurities are deposited on the surface of the pulled single crystal. And because it does not form a solid solution,
No crystal defect reducing effect is recognized. However, the gas doping method avoids this point.

【0013】他の一つの粉末状のInNを用いることで
融液中での溶融を容易にし、秤量の精度を上げる等のメ
リットがあるが、バルクに比し表面積が大になるので自
然酸化膜が形成され易い。このため、融液中でInNが
分解したのち融液面上に酸化物のスカム(scum)を
形成し、単結晶引上げに種々の悪影響を及ぼす。例え
ば、種付けや、結晶成長を阻害し、また、双晶発生の原
因の一つでもある。一方、ガスによるドーピング法で
は、ドーパントに自然酸化膜は形成されない。この結
果、融液面上に酸化物のスカムが発生せず、スカムの影
響を受けずに単結晶の引上げができ、単結晶化率が著る
しく向上するという利点がある。
The use of the other powdery InN has the advantages of facilitating the melting in the melt and increasing the accuracy of weighing, but since it has a larger surface area than the bulk, it has a natural oxide film. Are easily formed. Therefore, after InN is decomposed in the melt, oxide scum is formed on the surface of the melt, which has various adverse effects on pulling of the single crystal. For example, it impedes seeding and crystal growth, and is one of the causes of twinning. On the other hand, in the gas doping method, the natural oxide film is not formed on the dopant. As a result, there is an advantage that scum of the oxide is not generated on the melt surface, the single crystal can be pulled up without being affected by the scum, and the single crystallization rate is remarkably improved.

【0014】[0014]

【実施例】以下、本発明の一つの実施例について図面を
参照して説明する。図1(a)に本実施例に使用した多
結晶合成炉(ノーマルフリージング炉)の断面図を示
す。多結晶合成に用いる高純度のIn原料200gとS
b原料220g(純度はそれぞれ99.9999%)を
石英ボート1に入れ、反応管2にセットする。次に反応
管2内を真空度10-7Torrになるまで排気する。そ
の後、反応管2を取り囲むヒータ3で750℃まで加熱
し、In,Sb原料を融解してInSbの融液4を形成
する。形成後、この状態(真空中、750℃)で1時間
保持する。この理由は高温真空中でZn(亜鉛),Cd
(カドミウム)等のP型不純物を融液4から蒸発させて
除去するためである。その後、純度99.9999%の
高純度N2(窒素)ガスで反応管2を満たし、ヒータ3
を12mm/hのスピードで移動させInSb多結晶を
ノーマルフリージング法(融液の一端からゆっくりと固
化させる方法)で形成する。ちなみに多結晶合成に要す
る時間は約24時間で、この間に流すN2ガスの流量は
0.5 l/minである。この工程でNがInSb多
結晶にドーピングされる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1A shows a cross-sectional view of a polycrystalline synthesis furnace (normal freezing furnace) used in this example. 200 g of high-purity In raw material used for polycrystal synthesis and S
b Raw material 220 g (purity is 99.9999% each) is put in the quartz boat 1 and set in the reaction tube 2. Next, the inside of the reaction tube 2 is evacuated to a vacuum degree of 10 −7 Torr. Then, the heater 3 surrounding the reaction tube 2 is heated to 750 ° C. to melt the In and Sb raw materials to form an InSb melt 4. After the formation, this state (in vacuum, 750 ° C.) is maintained for 1 hour. The reason for this is that in high temperature vacuum, Zn (zinc), Cd
This is because the P-type impurities such as (cadmium) are evaporated and removed from the melt 4. After that, the reaction tube 2 was filled with high-purity N 2 (nitrogen) gas having a purity of 99.9999%, and the heater 3
Is moved at a speed of 12 mm / h to form an InSb polycrystal by a normal freezing method (a method of slowly solidifying from one end of the melt). Incidentally, the time required for polycrystal synthesis is about 24 hours, and the flow rate of N 2 gas flown during this time is 0.5 l / min. In this step, InSb polycrystal is doped with N.

【0015】図1(b)に本実施例に使用した引上げ装
置の断面図を示す。InSb単結晶の引上げに用いる前
記高純度InSb多結晶を例えば700gと高純度Ga
(純度99.99999%)60mgをチャンバ5内の
石英るつぼ6に入れ、そして〈211〉方位に切り出し
た種子結晶7を種子結晶取付け治具8に取付け、チャン
バ5で密封する。次にこの密封されたチャンバ5内を真
空度10-4Torrまで排気して窒素90%と水素10
%からなるフォーミングガスで満たす。続いて上記るつ
ぼ6を取り囲むヒータ9で600℃に加熱し、InSb
多結晶を融解してInSb融液10を作る。前記融液1
0面上には本発明のN2ガスによるドーピングを試みて
いるので、粉末状InNを用いる場合と異なって酸化物
のスカムは存在していない。その後図1(b)に示すよ
うに例えば引上げ速度10mm/h,回転数10rp
m,融液温度555℃で引上げを施してInSb単結晶
体11を製造する。
FIG. 1 (b) is a sectional view of the pulling device used in this embodiment. The high-purity InSb polycrystal used for pulling the InSb single crystal is, for example, 700 g and high-purity Ga.
60 mg (purity 99.99999%) is put into a quartz crucible 6 in the chamber 5, and the seed crystal 7 cut out in the <211> direction is attached to the seed crystal attachment jig 8 and sealed in the chamber 5. Next, the inside of the sealed chamber 5 is evacuated to a vacuum degree of 10 −4 Torr, and 90% of nitrogen and 10% of hydrogen are discharged.
% Forming gas. Subsequently, the heater 9 surrounding the crucible 6 is heated to 600 ° C.
The InSb melt 10 is prepared by melting the polycrystal. The melt 1
Since the doping with the N 2 gas of the present invention is attempted on the 0 plane, oxide scum does not exist unlike the case where powdery InN is used. Thereafter, as shown in FIG. 1B, for example, a pulling speed of 10 mm / h and a rotation speed of 10 rp
m, and a melt temperature of 555 ° C. is applied to produce an InSb single crystal body 11.

【0016】次に本発明においては窒素の添加方法とし
てガスによるN2ドーピングを行なっているが、このよ
うにガスによるドーピング方法でも結晶欠陥(S−pi
ts,P−pits)低減効果があるかどうか、又転位
(D−pits)の低減にはGaの添加が有効かどうか
チェックする為、本発明法により引上げられたInSb
単結晶の結晶欠陥評価を以下の手順で行なった。この評
価はエッチング法を用い、まず〈211〉方向に成長さ
せたInSb単結晶インゴットから(111)面のウエ
ハを切り出し、この(111)In面を粒径16μmの
Al23粉末から0.05μmに至るまで順次研磨して
鏡面に仕上げた。次に研磨傷を取り除くために、組成比
がCH3CH(OH)COOH:HNO3=6:1のエッ
チング液を用いて20℃で5分間エッチングを施した。
その後、さらにエッチピットを検出するために組成比が
49%HF:35%H22:H2O=1:2:2のエッ
チング液を用いて20℃で1分間エッチングを施した。
Next, in the present invention, N 2 doping with gas is carried out as a method of adding nitrogen, but the crystal defects (S-pi) are also formed by such a gas doping method.
ts, P-pits) reduction effect and whether Ga addition is effective in reducing dislocations (D-pits).
The crystal defect evaluation of the single crystal was performed by the following procedure. In this evaluation, an etching method is used. First, a (111) plane wafer is cut out from an InSb single crystal ingot grown in the <211> direction, and the (111) In plane is cut from an Al 2 O 3 powder having a particle diameter of 16 μm to 0.2. It was polished to a mirror surface by sequentially polishing to a thickness of 05 μm. Next, in order to remove polishing scratches, etching was performed at 20 ° C. for 5 minutes using an etching solution having a composition ratio of CH 3 CH (OH) COOH: HNO 3 = 6: 1.
Then, in order to detect further etch pits, etching was performed at 20 ° C. for 1 minute using an etching solution having a composition ratio of 49% HF: 35% H 2 O 2 : H 2 O = 1: 2: 2.

【0017】その結果、まず微少欠陥に対応するS−p
its,及び中心となる部分に不純物の析出あるいは欠
陥があって、これを中心に〔110〕方向にS−pit
sが発生したP−pitsは観察されず、ガスによるN
ドーピングが有効であることがわかった。次に転位に対
応するD−pitsが従来の転位密度103cm-2オー
ダから100cm-2オーダと顕著に減少し、Gaドープ
が低転位に有効なドーパントであることが判明した。
As a result, the S-p corresponding to the minute defect is firstly detected.
Its and the central portion have precipitation or defects of impurities, and the S-pit in the [110] direction around this is the center.
S-generated P-pits were not observed, and gas-induced N-
It turns out that the doping is effective. Next, D-pits corresponding to dislocations was remarkably reduced from the conventional dislocation density of the order of 10 3 cm -2 to the order of 10 0 cm -2, and it was found that Ga doping is an effective dopant for low dislocations.

【0018】以上の結果から本発明のダブルドーピング
法は転位を含めて全てのピットをゼロあるいは減少させ
る効果があり、InSb単結晶引上げには本発明は極め
て有効な方法であることがわかった。
From the above results, it was found that the double doping method of the present invention has an effect of reducing or reducing all pits including dislocations, and that the present invention is an extremely effective method for pulling InSb single crystal.

【0019】上記実施例では転位の低減化の手段として
Ga単体を添加する場合について述べたがGa単体に限
定する必要はなく、例えばGaSb等のようにGaとの
V族元素化合物を添加する場合にも有効である。
In the above embodiments, the case where Ga simple substance is added as a means for reducing dislocations has been described. However, it is not necessary to limit to Ga simple substance, and for example, when a group V element compound with Ga such as GaSb is added. It is also effective.

【0020】[0020]

【発明の効果】以上述べたように本発明のNとGaのダ
ブルドーピング法を用いることにより、初めて転位を含
め全ての結晶欠陥を低減させることが出来た(転位密度
は従来法の103cm-2オーダから100cm-2オーダと
激減し、転位以外のS−pits,P−pitsは存在
しない)。又、ガスによるNドーピング法を採用した結
果、NとGaのダブルドーピングが初めて可能になると
ともに、InN(粉末)に基因する酸化物のスカムが融
液面上に存在しないため、種付けや、結晶成長が容易に
なり、その結果、双晶発生が抑制され単結晶化率(双晶
なしで引上がる歩留り)が従来の20%から80%と大
幅に向上した。
As described above, by using the double doping method of N and Ga of the present invention, all crystal defects including dislocations can be reduced for the first time (dislocation density is 10 3 cm of the conventional method). -2 depleted from the order and 10 0 cm -2 order, S-pits other than dislocation, P-pits are absent). Moreover, as a result of adopting the N doping method by gas, double doping of N and Ga is possible for the first time, and since the scum of the oxide derived from InN (powder) does not exist on the melt surface, seeding and crystallization are performed. The growth was facilitated, and as a result, twinning was suppressed and the single crystallization rate (yield of pulling up without twinning) was significantly improved from the conventional 20% to 80%.

【0021】叙上の如く本発明により低結晶欠陥の単結
晶を歩留りよく製造することが可能になり、経済的効果
が著しく増大する。
As described above, according to the present invention, it becomes possible to produce a single crystal having a low crystal defect with a high yield, and the economic effect is remarkably increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に使用される、(a)は多結晶
合成炉(ノーマルフリージング炉)を説明するための断
面図、(b)は単結晶引上装置の断面図。
FIG. 1A is a sectional view for explaining a polycrystal synthesis furnace (normal freezing furnace) used in an embodiment of the present invention, and FIG. 1B is a sectional view of a single crystal pulling apparatus.

【符号の説明】[Explanation of symbols]

1 石英ボート 2 反応管 3 ヒータ 4 融液 5 チャンバ 6 石英るつぼ 7 種子結晶 8 種子結晶取付け治具 9 ヒータ 10 融液 11 InSb単結晶 1 Quartz Boat 2 Reaction Tube 3 Heater 4 Melt 5 Chamber 6 Quartz Crucible 7 Seed Crystal 8 Seed Crystal Attachment Jig 9 Heater 10 Melt 11 InSb Single Crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 結晶中で電気的に中性な不純物となる元
素で構成されたガスの雰囲気中でインジウムアンチモン
多結晶体を合成する工程と、前記インジウムアンチモン
多結晶融液にガリウムまたはガリウムとV族元素との化
合物を添加して単結晶化する工程を含むインジウムアン
チモン単結晶の製造方法。
1. A step of synthesizing an indium antimony polycrystal in an atmosphere of a gas composed of an element which becomes an electrically neutral impurity in the crystal, and gallium or gallium in the indium antimony polycrystal melt. A method for producing an indium antimony single crystal, comprising the step of adding a compound with a Group V element to perform single crystallization.
JP29419092A 1992-11-02 1992-11-02 Production of indium antimonide single crystal Pending JPH06144998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29419092A JPH06144998A (en) 1992-11-02 1992-11-02 Production of indium antimonide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29419092A JPH06144998A (en) 1992-11-02 1992-11-02 Production of indium antimonide single crystal

Publications (1)

Publication Number Publication Date
JPH06144998A true JPH06144998A (en) 1994-05-24

Family

ID=17804484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29419092A Pending JPH06144998A (en) 1992-11-02 1992-11-02 Production of indium antimonide single crystal

Country Status (1)

Country Link
JP (1) JPH06144998A (en)

Similar Documents

Publication Publication Date Title
JPH11189495A (en) Silicon single crystal and its production
KR20160019495A (en) Oxygen precipitation in heavily doped silicon wafers sliced from ingots grown by the czochralski method
US5895527A (en) Single crystal pulling apparatus
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
US4447393A (en) Oxide-free CdTe synthesis
JPH06144998A (en) Production of indium antimonide single crystal
JPH08319197A (en) Production of indium antimony single crystal
JPH0733582A (en) Production of semiconductor single crystal
JPH11292699A (en) Production of indium-antimony single crystal
JP3237408B2 (en) Method for manufacturing compound semiconductor crystal
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JPH08165189A (en) Production of semiconductor single crystal
JPH061700A (en) Production of indium antimonide single crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
FR2548689A1 (en) METHOD FOR MANUFACTURING BISMUTH GERMANATE MONOCRYSTALS WITH HIGH SCINTILLATION EFFICIENCY
JPH09255497A (en) Production of indium antimony single crystal
JPH05121319A (en) Manufacture of semiconductor device
JP3560180B2 (en) Method for producing ZnSe homoepitaxial single crystal film
JPH0660401B2 (en) Silicon thin film manufacturing method
JPH08756B2 (en) Inorganic compound single crystal growth method
US6428618B2 (en) Method for forming a solid solution alloy crystal
JPS63236787A (en) Production of semiconductor single crystal
JPH0517196B2 (en)