JP3560180B2 - Method for producing ZnSe homoepitaxial single crystal film - Google Patents

Method for producing ZnSe homoepitaxial single crystal film Download PDF

Info

Publication number
JP3560180B2
JP3560180B2 JP4923495A JP4923495A JP3560180B2 JP 3560180 B2 JP3560180 B2 JP 3560180B2 JP 4923495 A JP4923495 A JP 4923495A JP 4923495 A JP4923495 A JP 4923495A JP 3560180 B2 JP3560180 B2 JP 3560180B2
Authority
JP
Japan
Prior art keywords
znse
single crystal
substrate
epitaxial
crystal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4923495A
Other languages
Japanese (ja)
Other versions
JPH08217599A (en
Inventor
長寿 永田
一之 梅津
徹 佐川
勇 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP4923495A priority Critical patent/JP3560180B2/en
Publication of JPH08217599A publication Critical patent/JPH08217599A/en
Application granted granted Critical
Publication of JP3560180B2 publication Critical patent/JP3560180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は半導体レーザや発光ダイオード等の青色、青緑色および緑色系発光素子を構築するための基板を用いたZnSeホモエピタキシャル単結晶膜の製造法に関する。
【0002】
【従来の技術】
従来、発光ダイオードを製造する方法としてLPE法、MOCVD法またはMBE法が知られているが、これらの製造法においては、III −V族化合物のGaAs単結晶基板を用い、該基板上にZnSe系II−VI族化合物をエピタキシャル成長させるいわゆるヘテロエピタキシャル成長法が試みられていた。
【0003】
しかしながら近年、エピタキシャル基板とエピタキシャル膜との物性の違い、特に格子定数と熱膨張係数の差に起因する転位や、基板中のGaがエピタキシャル膜へ拡散する等のヘテロ界面での欠陥がデバイスの寿命や信頼性を悪くしていることの問題点が指摘されるようになった。
【0004】
この問題を解決するために、従来のエピタキシャル基板のGaAs単結晶基板に代えて、ZnSe単結晶基板を用いるホモエピタキシャル成長法が試みられるようになった。この一例としてSPVT(Seeded Physical Vaper Transport)法等の、いわゆる気相法で成長させたZnSe単結晶基板を用いて、ホモエピタキシャル成長させる方法がある。
【0005】
しかしながら上記ZnSe単結晶基板を用いてホモエピタキシャル成長させる方法としてのLPE法では、溶媒の融点や原料となるZnSeの溶解度の理由から、少なくとも600℃以上の温度で成長させる必要があるため、ZnSe基板をエピタキシャル温度まで加熱すると、該基板表面が熱ダメージを受け、これが欠陥としてエピタキシャル層に伝搬して、良質の膜を得られなかった。
【0006】
またMOCVD法やMBE法においては、用いたZnSe単結晶基板表面の吸着物や酸化層の除去等を目的とする表面清浄化のため約500℃以上の真空中でサーマルクリーニングを施すが、この場合、基板表面がダメージを受けることが多く、これが欠陥としてエピタキシャル層に伝搬することによって、デバイスの寿命、信頼性を悪くする原因となっていた。
【0007】
【発明が解決しようとする課題】
上述のように気相成長法で得たZnSe単結晶基板を用いてLPE法、MOCVD法またはMBE法等でホモエピタキシャル成長させても、いずれもエピタキシャル成長前にZnSe単結晶基板がいわゆる高温プロセスを経る際に受けるダメージを避けることができなかった。
【0008】
本発明は上記LPE法、MOCVD法またはMBE法において使用できるZnSe単結晶基板およびその利用を開発することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者等は斯かる課題を解決するために鋭意研究したところ、基板として用いるZnSe単結晶体としては、ZnSeをその融点前後で結晶化させる融液成長法で得たものが、その後のホモエピタキシャル成長法に好都合に使用できることを見い出し本発明法を提供することができた。
【0010】
すなわち本発明法は、LPE法、MOCVD法またはMBE法によりZnSeバルク単結晶基板上にZnSe単結晶膜をホモエピタキシャル成長させる方法において、上記ZnSeバルク単結晶基板としてZnSeの融点前後で育成したZnSe単結晶体から切り出した[100]方位のウェハをラッピング処理し、さらにポリッシュ処理し、その後ブロムメタノールでエッチングしてエピタキシャル基板と成したものを用いることによって該[100]方位に表面を有する基板上に(400)X線ロッキングカーブの半価巾が該基板と同等のZnSe単結晶膜をホモエピタキシャル成長させることを特徴とするZnSeホモエピタキシャル単結晶膜の製造法である。
【0011】
【作用】
本発明法において使用するZnSe単結晶基板は、垂直ブリッジマン炉(VB炉)または垂直徐冷炉(VGF炉)を用いて、高圧溶融法により融液からZnSeバルク結晶を製造する際に、ZnSe多結晶を種結晶として使用し、該種結晶の上に単結晶を育成することによって得られたZnSeバルク単結晶を、スライサーで[100]方位に切り出したものを、ラップポリッシュして作製した基板である。
【0012】
本発明者は、上記基板と比較のために従来の気相法で得たZnSe基板とを用いて、N 雰囲気中で860℃で2時間加熱処理を施して、加熱前後の基板を顕微鏡写真で比較したところ、本発明に係る高圧溶融法により育成したバルク単結晶から得た基板の方が、気相法によって得られた基板より熱ダメージを受けにくいことを確認している。
【0013】
この理由は、融液成長法(Melt Growth 法)でZnSeバルク単結晶を育成する場合、ZnSeの融点(Melting Point )が1520℃であるため、この温度前後で結晶化しているのに対して、従来のSPVT法に代表される気相法は、石英ガラス容器中で育成を行うため容器自体の耐熱性から高々1000℃位が育成温度の限界になり、結晶育成の温度も1000℃以下とならざるを得なく、その結果、得られたバルク単結晶も耐熱性が劣る結晶となっていたためである。
【0014】
さらに本発明の融液成長法に比べて、気相法はZnSe分子濃度が稀薄な系から結晶成長を行うことから、このことも耐熱安定性に欠ける原因となっている。
【0015】
以下実施例をもって本発明を詳細に説明するが、本発明の範囲はこれらに限定されるものではない。
【0016】
【実施例1】
原料として、同和鉱業(株)製の気相法によって得られた塊状の高純度ZnSe(純度99.999%)を、垂直ブリッジマン炉(雅慶電機製作所製電気炉GHP−A202 )内に窒化ホウ素製坩堝に入れて装入した。
【0017】
炉内を窒素で置換した後、30kgf/cmの圧力で窒素を導入し、炉内温度を1550℃(炉内最高温度)まで昇温し、この温度を5時間保持して坩堝内の原料および坩堝底部に予め準備したZnSe多結晶からなる種結晶の上端部を融解することによって、種結晶上に双晶のない径1インチ長さ30mmのZnSeバルク単結晶インゴットを得た。
【0018】
次いで該インゴットからカット面検査機で[100]方位の面出しをした後、スライサーで[100]方位のウェハを切り出し、これを5mm口にカットした。得られたウェハをφ5.5μmのAl 砥粒でラッピング処理し、さらにφ1μmとφ0.25μmの砥粒でポリッシュ処理を施し、最後にこのウェハをブロムメタノール(1%)でエッチングして加工変質層を除去して[100]方位に表面を有する5mm口のZnSeバルク単結晶基板を得た。尚、この基板の(400)X線ロッキングカーブの半価巾は24arcsecであった。
【0019】
このようにして得たZnSe単結晶基板をエピタキシャル基板として用い、スライドボード法によるLPE法でZnSe単結晶をホモエピタキシャル成長させた。
【0020】
このLPE法による成長条件としては、溶媒にGa0.84In0.16を用い、原料には予め7NZnと6NSeのメタルソースを用いて特開平6−64905号に開示する製造方法により合成したZnSeを粉末化したものを用い、窒素ガス雰囲気中、860℃に加熱保持した後、徐冷してエピタキシャル成長させた。
【0021】
このようにして作製したエピタキシャル成長後のサンプルを顕微鏡写真で撮ったところ、図1はエピタキシャル膜の表面を示す写真であるが、連続した膜になっている。また基板およびエピタキシャル膜の断面を図2に示すが、エピタキシャル面のモホロジーが良好なことがわかる。
【0022】
図5には2結晶X線回折法による上記エピタキシャル膜の(400)X線ロッキングカーブを示すが、これによると半価巾が基板と同等であることから、良好な単結晶膜になっていることを示している。
【0023】
【比較例1】
従来法に気相法によって育成したZnSeバルク単結晶インゴットを対象とした以外は、実施例1に示す手順で[100]方位に表面を持つ5mm口のZnSeバルク単結晶基板を得た。この基板の(400)X線ロッキングカーブを調べたところ、半価巾は20arcsecであった。
【0024】
さらにこの基板を用いて、実施例1と全く同様の条件でLPE法によりホモエピタキシャル成長を試みこれらを顕微鏡写真に撮った。図3は、エピタキシャル膜の表面を撮ったものであるが、アイランド状に成長していて連続した一枚の膜とはなっていなく、また図4には、基板およびエピタキシャル膜の断面図を示すが、モホロジーが悪いことがわかる。
【0025】
【実施例2】
実施例1で用いたと同一の高圧溶融法により育成された径1インチ長さ30mmのZnSeバルク単結晶インゴットから、実施例1と全く同様なプロセスを経て[100]方位を表面に持つ5mm口のZnSeバルク単結晶基板を得た。
【0026】
この基板を用いて、実施例1に示すLPE法に代えMOCVD法により、以下の条件下でZnSe単結晶膜をホモエピタキシャル成長させた。
【0027】
先ず、上記基板を133×10 -8 Paの真空チャンバー内で620℃×20分サーマルクリーニングして基板表面のベーキングを実施した。次に、基板温度を470℃に降温してからArガスを真空チャンバー内へ徐々に吹き込み常圧まで戻した後、基板温度を470℃に保ちながら原料のジエチル亜鉛(DEZn)とジエチルセレン(DESe)とをそれぞれ3.5μmol/min、9.0μmol/minずつ流し込み、約2時間流した。
【0028】
その後、基板温度を50℃/分の降温速度で室温まで下げてからエピタキシャルされた基板を取り出したところ、膜厚約1μmのエピタキシャルが成長しているのが確認できた。
【0029】
このエピタキシャル膜を2結晶X線回折法により[400]X線ロッキングカーブを測定した結果を図6に示すが、半価巾が小さく良好な単結晶薄膜がエピタキシャル成長していることが確認できた。
【0030】
【比較例2】
比較例1で用いたと同じ気相法により育成したZnSe単結晶インゴットから、実施例1に示す手段で[100]方位に表面を持つ5mm口のZnSeバルク単結晶基板を得た。
【0031】
この基板をエピタキシャル基板として用い、実施例2と全く同一条件のMOCVD法により、ZnSe単結晶膜のホモエピタキシャル成長を試み、膜厚約1μmのエピタキシャル膜を得た。
【0032】
得られたエピタキシャル膜の[400]X線ロッキングカーブを図7に示すが、実施例2の場合と比べて半価巾が約2倍大きく、結晶性が劣っていることが判明した。この原因として、サーマルクリーニング時における基板表面の熱ダメージの差によるものと考えられる。
【0033】
本発明における実施例としてLPE法とMOCVD法によるホモエピタキシャル成長法について開示したが、この成長法はMBE法を用いた場合においても、ZnSeバルク単結晶基板を用い、その基板表面を高温でサーマルクリーニングする工程を必須とするため、当然に実施例2に示すMOCVD法と同様な傾向を示すことから、MBE法によるホモエピタキシャル成長法にも応用できるものである。
【0034】
【発明の効果】
上述のように融液成長法によって得られたZnSe基板を用いて、LPE法、MOCVD法あるいはMBE法によってZnSe単結晶膜をホモエピタキシャル成長させる方法の方が、従来の気相法によって得られたZnSe基板を用いる場合より、良質なエピタキシャル膜を得ることができる。
【図面の簡単な説明】
【図1】実施例1によって得られたエピタキシャル膜表面を示す顕微鏡写真である。
【図2】実施例1によって得られたエピタキシャル膜断面を示す顕微鏡写真である。
【図3】比較例1によって得られたエピタキシャル膜表面を示す顕微鏡写真である。
【図4】比較例1によって得られたエピタキシャル膜断面を示す顕微鏡写真である。
【図5】実施例1により得られたエピタキシャル膜の[400]X線ロッキングカーブを示す図面である。
【図6】実施例2により得られたエピタキシャル膜の[400]X線ロッキングカーブを示す図面である。
【図7】比較例2により得られたエピタキシャル膜の[400]X線ロッキングカーブを示す図面である。
[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a ZnSe homoepitaxial single crystal film using a substrate for constructing blue, blue-green, and green light-emitting devices such as a semiconductor laser and a light-emitting diode.
[0002]
[Prior art]
Conventionally, LPE, MOCVD or MBE has been known as a method for manufacturing a light emitting diode. In these manufacturing methods, a GaAs single crystal substrate of a group III-V compound is used, and a ZnSe-based substrate is formed on the substrate. A so-called heteroepitaxial growth method for epitaxially growing a II-VI compound has been attempted.
[0003]
However, in recent years, differences in physical properties between an epitaxial substrate and an epitaxial film, particularly dislocations caused by a difference between a lattice constant and a coefficient of thermal expansion, and defects at a hetero interface such as diffusion of Ga in the substrate into the epitaxial film are caused by device lifetime. And the problem of poor reliability has come to be pointed out.
[0004]
In order to solve this problem, a homoepitaxial growth method using a ZnSe single crystal substrate instead of a conventional GaAs single crystal substrate as an epitaxial substrate has been attempted. As an example of this, there is a method of homoepitaxial growth using a ZnSe single crystal substrate grown by a so-called vapor phase method, such as a seeded physical vapor transport (SPVT) method.
[0005]
However, in the LPE method as a method of homoepitaxial growth using the ZnSe single crystal substrate, it is necessary to grow the ZnSe substrate at a temperature of at least 600 ° C. or more because of the melting point of the solvent and the solubility of ZnSe as a raw material. When heated to the epitaxial temperature, the substrate surface was thermally damaged and propagated as a defect to the epitaxial layer, so that a good quality film could not be obtained.
[0006]
In the MOCVD method or the MBE method, thermal cleaning is performed in a vacuum of about 500 ° C. or more for surface cleaning for the purpose of removing adsorbed substances and oxide layers on the surface of the used ZnSe single crystal substrate. In many cases, the substrate surface is damaged, and this is propagated as a defect to the epitaxial layer, thereby deteriorating the life and reliability of the device.
[0007]
[Problems to be solved by the invention]
Even if the ZnSe single crystal substrate obtained by the vapor phase growth method is used for homoepitaxial growth by the LPE method, MOCVD method, MBE method, or the like, the ZnSe single crystal substrate undergoes a so-called high-temperature process before epitaxial growth. I couldn't avoid the damage I received.
[0008]
An object of the present invention is to develop a ZnSe single crystal substrate that can be used in the above-mentioned LPE method, MOCVD method or MBE method, and use thereof.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve such a problem. As a ZnSe single crystal used as a substrate, a ZnSe single crystal obtained by a melt growth method in which ZnSe is crystallized at around its melting point is used for subsequent homogenization. It has been found that the method can be advantageously used for the epitaxial growth method, and the method of the present invention can be provided.
[0010]
That is, the method of the present invention is a method of homoepitaxially growing a ZnSe single crystal film on a ZnSe bulk single crystal substrate by the LPE method, the MOCVD method or the MBE method, wherein the ZnSe single crystal grown at about the melting point of ZnSe is used as the ZnSe bulk single crystal substrate. It was cut from the body [100] by lapping the wafer orientation, further polish treated by Rukoto used after form an epitaxial substrate is etched in the subsequent bromomethanol on a substrate having a surface to the [100] orientation (400) A method for producing a ZnSe homoepitaxial single crystal film, characterized in that a ZnSe single crystal film having a half width of an X-ray rocking curve equivalent to that of the substrate is homoepitaxially grown.
[0011]
[Action]
The ZnSe single crystal substrate used in the method of the present invention is prepared by using a vertical Bridgman furnace (VB furnace) or a vertical annealing furnace (VGF furnace) to produce a ZnSe bulk crystal from a melt by a high-pressure melting method. Is used as a seed crystal, and a ZnSe bulk single crystal obtained by growing a single crystal on the seed crystal is sliced in a [100] direction with a slicer, and is lap-polished. .
[0012]
The present inventor performed a heat treatment at 860 ° C. for 2 hours in an N 2 atmosphere using a ZnSe substrate obtained by a conventional gas phase method for comparison with the above-mentioned substrate, and obtained a micrograph of the substrate before and after heating. As a result, it was confirmed that the substrate obtained from the bulk single crystal grown by the high-pressure melting method according to the present invention was less susceptible to thermal damage than the substrate obtained by the gas phase method.
[0013]
The reason is that when a ZnSe bulk single crystal is grown by a melt growth method (Melt Growth method), the melting point (Melting Point) of ZnSe is 1520 ° C. In the vapor phase method typified by the conventional SPVT method, the growth temperature is limited to at most about 1000 ° C. due to the heat resistance of the container itself because the crystal is grown in a quartz glass container. This is inevitable, and as a result, the obtained bulk single crystal was also a crystal having poor heat resistance.
[0014]
Furthermore, as compared with the melt growth method of the present invention, the vapor phase method grows crystals from a system having a low ZnSe molecule concentration, which also causes a lack of heat resistance stability.
[0015]
Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited thereto.
[0016]
Embodiment 1
As a raw material, massive high-purity ZnSe (purity 99.999%) obtained by a gas phase method manufactured by Dowa Mining Co., Ltd. is nitrided in a vertical Bridgman furnace (Electric furnace GHP-A202 manufactured by Yakei Electric Works). It was charged in a boron crucible.
[0017]
After the inside of the furnace was replaced with nitrogen, nitrogen was introduced at a pressure of 30 kgf / cm 2 , the temperature of the furnace was raised to 1550 ° C. (the maximum temperature in the furnace), and this temperature was maintained for 5 hours to keep the raw materials in the crucible. By melting the upper end of a seed crystal made of ZnSe polycrystal prepared in advance at the bottom of the crucible, a ZnSe bulk single crystal ingot having a diameter of 1 inch and a length of 30 mm without twins was obtained on the seed crystal.
[0018]
Next, after the [100] direction was exposed from the ingot by a cut plane inspection machine, a [100] direction wafer was cut out by a slicer and cut into a 5-mm opening. The obtained wafer is subjected to lapping with φ5.5 μm Al 2 O 3 abrasive grains, further polished with φ1 μm and φ0.25 μm abrasive grains, and finally the wafer is etched with bromethanol (1%). The work-affected layer was removed to obtain a 5 mm-diameter ZnSe bulk single crystal substrate having a surface in the [100] direction. The half width of the (400) X-ray rocking curve of this substrate was 24 arcsec.
[0019]
Using the ZnSe single crystal substrate thus obtained as an epitaxial substrate, a ZnSe single crystal was homoepitaxially grown by an LPE method using a slide board method.
[0020]
The growth conditions by the LPE method are as follows: Ga 0.84 In 0.16 is used as a solvent, and ZnSe synthesized in advance using a metal source of 7NZn and 6NSe as a raw material by a manufacturing method disclosed in JP-A-6-64905. Was heated and maintained at 860 ° C. in a nitrogen gas atmosphere, and then gradually cooled to epitaxially grow.
[0021]
When the thus-prepared sample after the epitaxial growth was taken with a microscope photograph, FIG. 1 is a photograph showing the surface of the epitaxial film, and it is a continuous film. FIG. 2 shows a cross section of the substrate and the epitaxial film, and it can be seen that the morphology of the epitaxial surface is good.
[0022]
FIG. 5 shows a (400) X-ray rocking curve of the epitaxial film obtained by a two-crystal X-ray diffraction method. According to this, since the half width is equal to that of the substrate, a good single crystal film is obtained. It is shown that.
[0023]
[Comparative Example 1]
A 5-mm-aperture ZnSe bulk single-crystal substrate having a surface in the [100] direction was obtained by the procedure shown in Example 1, except that a ZnSe bulk single-crystal ingot grown by a gas phase method was used as a conventional method. When the (400) X-ray rocking curve of this substrate was examined, the half width was 20 arcsec.
[0024]
Further, using this substrate, homoepitaxial growth was attempted by the LPE method under exactly the same conditions as in Example 1, and these were photographed by a microscope. FIG. 3 is a photograph of the surface of the epitaxial film, which is grown in an island shape and is not a continuous film. FIG. 4 is a cross-sectional view of the substrate and the epitaxial film. However, it turns out that the morphology is bad.
[0025]
Embodiment 2
From a ZnSe bulk single crystal ingot having a diameter of 1 inch and a length of 30 mm grown by the same high-pressure melting method as used in Example 1, a 5 mm-opening having a [100] orientation on the surface was obtained through the same process as in Example 1. A ZnSe bulk single crystal substrate was obtained.
[0026]
Using this substrate, a ZnSe single crystal film was homoepitaxially grown by MOCVD in place of the LPE method shown in Example 1 under the following conditions.
[0027]
First, the substrate was subjected to thermal cleaning at 620 ° C. for 20 minutes in a vacuum chamber of 133 × 10 −8 Pa to bake the surface of the substrate. Next, the temperature of the substrate was lowered to 470 ° C., and Ar gas was gradually blown into the vacuum chamber to return to normal pressure. Then, while maintaining the substrate temperature at 470 ° C., diethyl zinc (DEZn) and diethyl selenium (DESe) as raw materials ) And 3.5 μmol / min and 9.0 μmol / min, respectively, and then for about 2 hours.
[0028]
Thereafter, the substrate temperature was lowered to room temperature at a rate of 50 ° C./min, and the epitaxially-grown substrate was taken out. As a result, it was confirmed that an epitaxial film having a thickness of about 1 μm had grown.
[0029]
The result of measuring the [400] X-ray rocking curve of this epitaxial film by a two-crystal X-ray diffraction method is shown in FIG. 6, and it was confirmed that a good single-crystal thin film having a small half-value width was epitaxially grown.
[0030]
[Comparative Example 2]
From the ZnSe single crystal ingot grown by the same gas phase method used in Comparative Example 1, a 5 mm-open ZnSe bulk single crystal substrate having a surface in the [100] direction was obtained by means shown in Example 1.
[0031]
Using this substrate as an epitaxial substrate, homoepitaxial growth of a ZnSe single crystal film was attempted by MOCVD under exactly the same conditions as in Example 2 to obtain an epitaxial film having a thickness of about 1 μm.
[0032]
FIG. 7 shows the [400] X-ray rocking curve of the obtained epitaxial film. It was found that the half width was about twice as large as that of Example 2 and the crystallinity was inferior. This is considered to be due to the difference in thermal damage on the substrate surface during thermal cleaning.
[0033]
Although the homoepitaxial growth method by the LPE method and the MOCVD method has been disclosed as an example in the present invention, even when the MBE method is used, a ZnSe bulk single crystal substrate is used, and the substrate surface is thermally cleaned at a high temperature. Since the process is indispensable, it naturally has the same tendency as that of the MOCVD method shown in the second embodiment, so that it can be applied to the homoepitaxial growth method by the MBE method.
[0034]
【The invention's effect】
The method of homoepitaxially growing a ZnSe single crystal film by the LPE method, MOCVD method or MBE method using the ZnSe substrate obtained by the melt growth method as described above is better than the ZnSe substrate obtained by the conventional vapor phase method. A higher quality epitaxial film can be obtained than when a substrate is used.
[Brief description of the drawings]
FIG. 1 is a micrograph showing the surface of an epitaxial film obtained in Example 1.
FIG. 2 is a micrograph showing a cross section of an epitaxial film obtained in Example 1.
FIG. 3 is a micrograph showing the surface of an epitaxial film obtained in Comparative Example 1.
FIG. 4 is a micrograph showing a cross section of an epitaxial film obtained in Comparative Example 1.
FIG. 5 is a drawing showing a [400] X-ray rocking curve of the epitaxial film obtained in Example 1.
FIG. 6 is a drawing showing a [400] X-ray rocking curve of an epitaxial film obtained by Example 2.
FIG. 7 is a diagram showing a [400] X-ray rocking curve of an epitaxial film obtained in Comparative Example 2.

Claims (1)

LPE法、MOCVD法またはMBE法によりZnSeバルク単結晶基板上にZnSe単結晶膜をホモエピタキシャル成長させる方法において、上記ZnSeバルク単結晶基板としてZnSeの融点前後で育成したZnSe単結晶体から切り出した[100]方位のウェハをラッピング処理し、さらにポリッシュ処理し、その後ブロムメタノールでエッチングしてエピタキシャル基板と成したものを用いることによって該[100]方位に表面を有する基板上に(400)X線ロッキングカーブの半価巾が該基板と同等のZnSe単結晶膜をホモエピタキシャル成長させることを特徴とするZnSeホモエピタキシャル単結晶膜の製造法。In the method of homoepitaxially growing a ZnSe single crystal film on a ZnSe bulk single crystal substrate by the LPE method, MOCVD method or MBE method, the ZnSe bulk single crystal substrate was cut from a ZnSe single crystal grown around the melting point of ZnSe [100 ] the orientation of the wafer lapping process, further polish treated, then (400) on a substrate having a surface to the [100] orientation in bromine methanol by Rukoto by using those forms an epitaxial substrate etching X-ray rocking A method for producing a ZnSe homoepitaxial single crystal film, characterized in that a ZnSe single crystal film having a half width of a curve equivalent to that of the substrate is homoepitaxially grown.
JP4923495A 1995-02-14 1995-02-14 Method for producing ZnSe homoepitaxial single crystal film Expired - Fee Related JP3560180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4923495A JP3560180B2 (en) 1995-02-14 1995-02-14 Method for producing ZnSe homoepitaxial single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4923495A JP3560180B2 (en) 1995-02-14 1995-02-14 Method for producing ZnSe homoepitaxial single crystal film

Publications (2)

Publication Number Publication Date
JPH08217599A JPH08217599A (en) 1996-08-27
JP3560180B2 true JP3560180B2 (en) 2004-09-02

Family

ID=12825214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4923495A Expired - Fee Related JP3560180B2 (en) 1995-02-14 1995-02-14 Method for producing ZnSe homoepitaxial single crystal film

Country Status (1)

Country Link
JP (1) JP3560180B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913941B (en) * 2021-03-09 2023-02-10 中国科学院福建物质结构研究所 ZnSe homogeneous-heterogeneous phase material and preparation method and application thereof
CN115094511B (en) * 2022-06-01 2023-11-07 西南应用磁学研究所(中国电子科技集团公司第九研究所) Method for homoepitaxial growth of garnet type ferrite single crystal thick film

Also Published As

Publication number Publication date
JPH08217599A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
US6936357B2 (en) Bulk GaN and ALGaN single crystals
US6576054B1 (en) Method for fabricating bulk AlGaN single crystals
US7501023B2 (en) Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
US5530267A (en) Article comprising heteroepitaxial III-V nitride semiconductor material on a substrate
US7556688B2 (en) Method for achieving low defect density AlGaN single crystal boules
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
US6616757B1 (en) Method for achieving low defect density GaN single crystal boules
JP4603386B2 (en) Method for producing silicon carbide single crystal
US20100107969A1 (en) Method for manufacturing group III nitride single crystals
KR102372706B1 (en) β-Ga₂O₃-BASED-SINGLE CRYSTAL SUBSTRATE
JP2022552024A (en) Gallium nitride single crystal based on ScAlMgO4 substrate and manufacturing method thereof
JP6526811B2 (en) Method of processing a group III nitride crystal
JP2006290677A (en) Method for manufacturing nitride-based compound semiconductor crystal and method for manufacturing nitride-based compound semiconductor substrate
JP4664464B2 (en) Silicon carbide single crystal wafer with small mosaic
EP1122341A1 (en) Single crystal SiC
JP3577974B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3560180B2 (en) Method for producing ZnSe homoepitaxial single crystal film
JPH0797299A (en) Method for growing sic single crystal
JP2023532799A (en) Semiconductor substrate with nitrided interfacial layer
JPH07267795A (en) Growth method of silicon carbide single crystal
JP2004035360A (en) GaN SINGLE CRYSTAL SUBSTRATE, NITRIDE SEMICONDUCTOR EPITAXIAL SUBSTRATE, AND ITS MANUFACTURING METHOD
JPH0536602A (en) Crystal growth method of hexagonal crystal semiconductor
WO2021210390A1 (en) Method for producing semiconductor substrate, semiconductor substrate, and method for preventing crack occurrence in growth layer
TW202201493A (en) Method for manufacturing semiconductor substrate, semiconductor substrate, and method for forming grown layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040520

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees