JPH08319197A - Production of indium antimony single crystal - Google Patents
Production of indium antimony single crystalInfo
- Publication number
- JPH08319197A JPH08319197A JP12415095A JP12415095A JPH08319197A JP H08319197 A JPH08319197 A JP H08319197A JP 12415095 A JP12415095 A JP 12415095A JP 12415095 A JP12415095 A JP 12415095A JP H08319197 A JPH08319197 A JP H08319197A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- single crystal
- insb
- indium antimony
- shoulder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、チョコラルスキー法に
よるインジウムアンチモン単結晶の引上げ形成方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pulling up an indium antimony single crystal by the Czochralski method.
【0002】[0002]
【従来の技術】近年、転位がデバイス特性に与える影響
が明確になり、転位を減少させることが重要な問題とな
っている。例えば半導体単結晶内の転位密度が大になる
と結晶内に形成されたp−n接合の逆方向リーク電流が
増加するなど、半導体素子特性が低下するとともに信頼
性にも悪影響を及ぼすことが知られている。最近では半
導体素子の高集積化にともなって半導体単結晶の転位等
の結晶欠陥低減化の要求がますます強くなりつつある。2. Description of the Related Art In recent years, the influence of dislocations on device characteristics has become clear, and reducing dislocations has become an important issue. For example, it is known that when the dislocation density in the semiconductor single crystal becomes large, the reverse leakage current of the pn junction formed in the crystal increases, and the semiconductor device characteristics deteriorate and the reliability is adversely affected. ing. Recently, the demand for reduction of crystal defects such as dislocation of a semiconductor single crystal has become stronger with the higher integration of semiconductor elements.
【0003】従来、低転位化の有効な方法として種子結
晶(seed)からの転位伝播を抑制する方法がある。
シリコン(Si)、ガリウムヒ素(GaAs)等の単結
晶引上げにおいて用いられるネックダウン法は、インジ
ウムアンチモン(InSb)単結晶引上げにおいても有
効な方法である。Conventionally, as an effective method for reducing dislocation, there is a method for suppressing dislocation propagation from seed crystals.
The neck-down method used for pulling a single crystal of silicon (Si), gallium arsenide (GaAs) or the like is also an effective method for pulling an indium antimony (InSb) single crystal.
【0004】しかし、InSb単結晶引上げはSi、G
aAs等の単結晶引上げにくらべて双晶が発生しやすい
ため、特別の配慮が必要になる。通常、InSb単結晶
引上げは、図2に断面図で示す単結晶引上げ装置が用い
られる。図に示すようにチャンバ1内に配置された石英
ルツボ2にInSb結晶体を入れ、例えば5×5×50
mmの直方体のSeed3を用いて引上げを実施する。
図における4はSeed取り付けジグ、5は上記石英ル
ツボ2を取り囲むヒータである。上記Seed3の結晶
方位は[111]がもっとも双晶が発生しにくく、次い
で[211]、[311]、[100]の順になる
(R.F.HULME,J.B.MULLIN;Sol
id State Electronics 1962
Vol.15 pp211〜247参照)。このた
め、[311]、[100]方位にくらべて比較的双晶
が発生しにくい[111]、[211]等の結晶方位を
用いる。そして、図2に示すようにInSb融液6よ
り、上記Seed3を用いてネック部101、肩部10
2、胴体部103と順次形成して単結晶体104を引き
上げる。However, the pulling of InSb single crystal is performed by Si, G
Twinning is more likely to occur than pulling a single crystal such as aAs, so special consideration is required. Usually, for pulling InSb single crystal, a single crystal pulling apparatus shown in a sectional view in FIG. 2 is used. As shown in the figure, an InSb crystal is placed in a quartz crucible 2 arranged in a chamber 1 and, for example, 5 × 5 × 50
Pulling is performed using a Seed3 of a rectangular parallelepiped having a size of mm.
In the figure, 4 is a Seed mounting jig, and 5 is a heater surrounding the quartz crucible 2. Regarding the crystal orientation of Seed3, [111] is the most unlikely to cause twinning, and then [211], [311], and [100] in that order (RF HULME, JB MULIN; Sol.
id State Electronics 1962
Vol. 15 pp 211-247). Therefore, crystal orientations such as [111] and [211] in which twinning is relatively less likely to occur as compared with the [311] and [100] orientations are used. Then, as shown in FIG. 2, the neck portion 101 and the shoulder portion 10 are formed from the InSb melt 6 using the Seed 3 described above.
2. The single crystal body 104 is pulled up by sequentially forming the body portion 103.
【0005】前記、単結晶引上げ工程でもっとも注意を
要するのは、肩形成102の工程である。この理由はた
とえ[111]、[211]方位のSeedを用いても
双晶の殆どはこの領域で発生するからである。この双晶
の発生を抑制する有効な手段として以下の方法が試みら
れている。すなわち[111]方位引上げではネックダ
ウン後、肩形成角度を最大30°以下に設定する。一
方、[211]引上げではネックダウン後、肩形成角度
を最大20°以下に設定する。肩形成角度をそれぞれ前
記のように設定することにより、双晶がかなり抑制され
ることが経験的にわかっている。The most important point in the above-mentioned single crystal pulling step is the step of forming the shoulder 102. This is because most twins are generated in this region even if seeds of [111] and [211] orientations are used. The following methods have been tried as effective means for suppressing the generation of twins. That is, in raising the [111] direction, the shoulder forming angle is set to 30 ° or less after the neck down. On the other hand, in the [211] pulling up, the shoulder forming angle is set to 20 ° or less after the neck down. It is empirically known that twins are considerably suppressed by setting the shoulder forming angles as described above.
【0006】しかし、上述の方法では次のような問題点
がある。まず[111]方位引上げは他の方位にくらべ
双晶はもっとも発生しにくいが、結晶欠陥評価の結果で
は、この方位で引き上げた単結晶体はウェハの中心から
中間領域にかけて転位が密集して発生する。その転位密
度は103 cm-2以上のオーダである。このような単結
晶体から切り出されたウェハにおける転位は通常Y字型
のパターンを示す。従って、かかるウェハを用いて半導
体デバイスを作成した場合、結晶内に形成されたp−n
接合の逆方向リーク電流が増加して、デバイス特性が低
下するとともに、信頼性にも悪影響を及ぼすので、[1
11]方位のSeedは使用できない。一方、他の方位
の引上げ、例えば[211]方位の引上げでは、ウェハ
周辺部におけるファセット領域のみ転位は存在する(転
位密度は102 cm-2のオーダ)が、[111]方位の
ようにウェハ中心から中間領域にかけて転位の密集は見
られず、平均的に若干(転位密度101 cm-2のオー
ダ)存在する程度であり、デバイスへの適用は可能であ
る。However, the above method has the following problems. First of all, twinning is most unlikely to occur in the [111] orientation pulling up compared to other orientations. However, according to the result of the crystal defect evaluation, the single crystal pulled up in this orientation has dislocations concentrated from the center of the wafer to the intermediate region. To do. The dislocation density is on the order of 10 3 cm -2 or more. The dislocations in a wafer cut out from such a single crystal usually show a Y-shaped pattern. Therefore, when a semiconductor device is produced using such a wafer, the pn formed in the crystal is
The reverse leakage current of the junction increases, the device characteristics deteriorate, and the reliability is adversely affected.
11] Seed of direction cannot be used. On the other hand, in pulling in other orientations, for example, pulling in the [211] orientation, dislocations are present only in the facet region in the peripheral portion of the wafer (dislocation density is on the order of 10 2 cm -2 ), but in the [111] orientation, The dislocation density is not seen from the center to the intermediate region, and the dislocation density is a little (on the order of dislocation density of 10 1 cm −2 ) on average, and the device can be applied.
【0007】次に問題になるのはInSb引上げの場
合、Si、GaAs等と異なってネックダウン後、急激
に結晶径を増大して肩部を形成できない。この理由は上
述したように肩形成角度が20°以上になると必ずとい
ってもよいほど双晶になることが経験的にわかっている
からである。この結果、InSbの場合、肩領域はS
i、GaAsより何倍も長くなり、このネック部および
肩部形成だけで引上げ全工程の所要時間の1/2に達す
る。しかも、双晶発生抑制のためネックダウン後、肩形
成角度をコンスタントに20°以下にしなければなら
ず、単結晶作成の再現性が著しく劣っている。Next, in the case of InSb pulling up, unlike Si, GaAs and the like, after neck down, the crystal diameter rapidly increases and the shoulder cannot be formed. The reason for this is that, as described above, it is empirically known that when the shoulder forming angle is 20 ° or more, twin crystals are always formed. As a result, in the case of InSb, the shoulder area is S
It is many times longer than i and GaAs, and it takes half the time required for the entire pulling process only by forming the neck and shoulder. In addition, the shoulder formation angle must be constantly kept at 20 ° or less after neck down to suppress twinning, and the reproducibility of single crystal production is extremely poor.
【0008】[0008]
【発明が解決しようとする課題】以上述べたようにネッ
クダウンを図り、その後、肩形成角度を20°以下に設
定して肩領域を形成することは、Seedからの転位伝
播を抑制し、また双晶発生の抑制にもつながり、確かに
有効な手段である。しかし、肩形成角度をネックダウン
後、コンスタントに20°以下に保持して引き上げるこ
とは容易ではなく、単結晶化率が著しく悪くなる。ま
た、InSb単結晶の場合は必ず肩角度を20°以下で
肩部を形成しなければならないため、これ(ネック部、
肩部形成)に要する時間は、引上げ全工程に要する時間
の約1/2になる等の問題があった。本発明は上記の欠
点を除去するもので、歩留まり良く、低転位InSb単
結晶を従来より短時間で製造する方法を提供するもので
ある。As described above, it is possible to suppress the dislocation propagation from the seed by forming the shoulder region by setting the shoulder forming angle to 20 ° or less after the neck down, and It is also an effective means because it also suppresses twinning. However, it is not easy to hold the angle of shoulder formation to 20 ° or less and pull it up after necking down, and the single crystallization rate remarkably deteriorates. Further, in the case of InSb single crystal, the shoulder portion must be formed with a shoulder angle of 20 ° or less.
There is a problem that the time required for forming the shoulder portion is about half of the time required for the entire pulling process. The present invention eliminates the above-mentioned drawbacks, and provides a method for producing a low-dislocation InSb single crystal with a good yield in a shorter time than ever before.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に本発明では、請求項1に対応する発明としてインジウ
ムアンチモン単結晶を引上げ法により製造するに際し、
原料として用いるインジウムアンチモン結晶体に不純物
を添加し、結晶成長開始直後より所定径に達するまで肩
形成角度一定で単調に結晶径を増大させることを特徴と
するインジウムアンチモン単結晶の製造方法とする。請
求項2に対応する発明として前記不純物が結晶中で電気
的に中性な不純物となる元素を含むことを特徴とする請
求項1記載のインジウムアンチモン単結晶の製造方法と
する。請求項3に対応する発明として前記肩形成角度が
20°以下であることを特徴とする請求項1記載のイン
ジウムアンチモン単結晶の製造方法とする。請求項4に
対応する発明として前記肩形成角度が20°以下である
ことを特徴とする請求項1記載のインジウムアンチモン
単結晶の製造方法とする。請求項5に対応する発明とし
て前記不純物がガリウムであることを特徴とする請求項
1記載のインジウムアンチモン単結晶の製造方法とす
る。請求項6に対応する発明として前記不純物が窒化ガ
リウムであることを特徴とする請求項1記載のインジウ
ムアンチモン単結晶の製造方法とする。請求項7に対応
する発明として前記不純物がガリウムからなり、前記肩
形成角度が20°以下であることを特徴とする請求項1
記載のインジウムアンチモン単結晶の製造方法とする。
請求項8に対応する発明として前記不純物が窒化ガリウ
ムからなり、前記肩形成角度が20°以下であることを
特徴とする請求項1記載のインジウムアンチモン単結晶
の製造方法とする。In order to achieve the above object, in the present invention, when an indium antimony single crystal is produced by a pulling method as an invention corresponding to claim 1,
An indium antimony single crystal manufacturing method is characterized in that impurities are added to an indium antimony crystal used as a raw material, and the crystal diameter is monotonically increased with a constant shoulder forming angle until a predetermined diameter is reached immediately after the start of crystal growth. The invention corresponding to claim 2 is the method for producing an indium antimony single crystal according to claim 1, wherein the impurities include an element that becomes an electrically neutral impurity in the crystal. As an invention corresponding to claim 3, the shoulder forming angle is 20 ° or less, and the method for producing an indium antimony single crystal according to claim 1 is provided. According to a fourth aspect of the invention, the shoulder forming angle is 20 ° or less, and the indium antimony single crystal manufacturing method according to the first aspect is provided. The invention corresponding to claim 5 is the method for producing an indium antimony single crystal according to claim 1, wherein the impurity is gallium. The invention corresponding to claim 6 is the method for producing an indium antimony single crystal according to claim 1, wherein the impurity is gallium nitride. The invention corresponding to claim 7 is characterized in that the impurity is made of gallium and the shoulder formation angle is 20 ° or less.
The method for producing the indium antimony single crystal described above is used.
The invention corresponding to claim 8 is that the impurity is gallium nitride, and the shoulder formation angle is 20 ° or less, and the method for manufacturing an indium antimony single crystal according to claim 1.
【0010】[0010]
【作用】Seedからの転位伝播を抑制するにはネック
ダウン工程を採用することが必須事項であったが本発明
の製造方法では転位低減化のために不純物添加を行って
いる。従ってネック部形成工程を省略することができ
る。この結果、Seed直下(結晶成長開始直後)から
肩角度20°で所定径まで単調に径を増大させるだけで
よく、InSb融液温度を上下させる必要がないため
(融液温度をネックダウンするために昇温し、逆に肩形
成するために降温させる)、肩形成角度のコントロール
が容易になり、双晶発生は抑制されるとともに、従来の
肩形成終了までの所要時間が約1/2に短縮される。ま
た、この不純物添加法はSeedからの転位伝播があっ
ても、肩形成初期の段階で低減させる作用を持つことが
わかった。In order to suppress the dislocation propagation from Seed, it was essential to adopt the neck-down process. However, in the manufacturing method of the present invention, impurities are added to reduce dislocations. Therefore, the neck portion forming step can be omitted. As a result, it is only necessary to monotonically increase the diameter from immediately below Seed (immediately after the start of crystal growth) to a predetermined diameter at a shoulder angle of 20 °, and it is not necessary to raise or lower the InSb melt temperature (to lower the melt temperature. The temperature is raised to the lower limit and the temperature is lowered to form shoulders.) It is easier to control the shoulder formation angle, twinning is suppressed, and the time required to complete the conventional shoulder formation is reduced to about 1/2. Shortened. It was also found that this impurity addition method has the effect of reducing dislocation propagation from Seed even in the early stage of shoulder formation.
【0011】[0011]
【実施例】以下、本発明の一つの実施例を図面を参照し
て説明する。図1は本実施例に使用した引上げ装置の断
面図である。InSb単結晶の引上げに用いる高純度I
nSb結晶を例えば700gと高純度ガリウム(Ga)
60mgをチャンバ1内に配置された石英ルツボ2に入
れ、そして種子結晶(Seed)としては[211]方
位に切り出したSeed3を種子結晶取り付けジグ4に
取り付け、チャンバ1で密封する。次に密封されたチャ
ンバ1内を真空度10-4Torrまで排気して、窒素9
0%と水素10%からなるフォーミングガスで満たす。
そして、チャンバ1内にはこのフォーミングガスを流し
ておく。続いて上記ルツボ2を取り囲むヒータ5でIn
Sbの融点525℃より高い温度、例えば600℃まで
加熱し、InSb結晶を融解してInSb融液6を作
る。その後、図1に示すように例えば引上げ速度10m
m/h、シード回転数10rpm、融液温度550℃で
種付けをし、結晶成長を開始する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a pulling device used in this embodiment. High purity I used for pulling InSb single crystal
For example, 700 g of nSb crystal and high-purity gallium (Ga)
60 mg is put into a quartz crucible 2 arranged in the chamber 1, and Seed 3 cut out in a [211] direction as a seed crystal (Seed) is attached to a seed crystal attachment jig 4 and sealed in the chamber 1. Next, the inside of the sealed chamber 1 is evacuated to a vacuum degree of 10 −4 Torr, and nitrogen 9
Fill with a forming gas consisting of 0% and 10% hydrogen.
Then, this forming gas is allowed to flow in the chamber 1. Then, the heater 5 surrounding the crucible 2 is used to
The InSb crystal is melted by heating the InSb crystal to a temperature higher than the melting point of Sb of 525 ° C., for example, 600 ° C. Then, as shown in FIG. 1, for example, a pulling speed of 10 m
Seed at m / h, seed rotation speed 10 rpm, and melt temperature 550 ° C. to start crystal growth.
【0012】本発明ではSeedからの転位伝播を抑制
するために、不純物Gaを添加しているので、ネックダ
ウン工程は省略できる。従って、ネック形成自身も行わ
ず、種付け後、肩形成角度20°以下で肩部形成7に即
時に入ることができる。その後、胴体部8を形成してI
nSb単結晶9を製造する。In the present invention, since the impurity Ga is added in order to suppress the dislocation propagation from Seed, the neck-down step can be omitted. Therefore, the neck formation itself is not performed, and the shoulder formation 7 can be immediately entered at a shoulder formation angle of 20 ° or less after seeding. Then, the body portion 8 is formed and I
nSb single crystal 9 is manufactured.
【0013】従来法では、上述のごとくネックダウンを
行うため、融液温度を徐々に例えば0.1℃/minの
割合で上昇させ、ネック部最小径をシード5×5mm角
より細い1.5mmφまで絞り込む。その後、今度は逆
に融液温度を徐々に下げ、肩部を形成する。この間の融
液温度のコントロールが容易でなく、本発明のように単
調に融液温度を降下させる場合と異なって、双晶発生が
著しく増加する。また、ネック部を形成することになる
ため、この分の所要時間が本発明のように肩部形成だけ
の場合にくらべ2倍必要である。In the conventional method, since the neck down is performed as described above, the melt temperature is gradually increased at a rate of, for example, 0.1 ° C./min, and the minimum diameter of the neck portion is 1.5 mmφ which is thinner than the seed 5 × 5 mm square. Narrow down to After that, the melt temperature is gradually lowered to form shoulders. It is not easy to control the melt temperature during this period, and unlike the case where the melt temperature is lowered monotonously as in the present invention, twinning is significantly increased. Further, since the neck portion is formed, the time required for this is twice as long as in the case of forming the shoulder portion only as in the present invention.
【0014】本発明ではSeedからの転位伝播を制御
するため、不純物Gaを添加している。このように不純
物Ga添加でも転位抑制の効果があるかどうかをチェッ
クするため、本発明により引き上げられたInSb単結
晶の結晶欠陥評価を以下の手順で行った。この評価はエ
ッチング法を用いまず[211]方向に成長させたIn
Sb単結晶インゴットから(111)面のウェハを切り
出し、この(111)In面を粒径16μmのAl2 O
3 粉末から0.05μmのものに至るまで順次研磨して
鏡面に仕上げた。次に研磨傷を取り除くため、組成比が
CH3 CH(OH)COOH:HNO3 =6:1 のエ
ッチング液を用いて20℃で5分間エッチングした。そ
の後、さらにエッチピット検出のために組成比が49%
HF:35%H2 O2 :H2 O=1:2:2 のエッチ
ング液を用いて20℃で1分間エッチングした。In the present invention, the impurity Ga is added in order to control the dislocation propagation from Seed. As described above, in order to check whether or not the addition of the impurity Ga has the effect of suppressing dislocation, the crystal defect evaluation of the InSb single crystal pulled by the present invention was performed by the following procedure. In this evaluation, the In grown by the etching method was first grown in the [211] direction.
A (111) plane wafer was cut out from an Sb single crystal ingot, and the (111) In plane was cut with Al 2 O having a grain size of 16 μm.
Three powders to 0.05 μm were sequentially polished to a mirror finish. Next, in order to remove polishing scratches, etching was performed at 20 ° C. for 5 minutes using an etching solution having a composition ratio of CH 3 CH (OH) COOH: HNO 3 = 6: 1. After that, the composition ratio is 49% to detect etch pits.
Etching was performed at 20 ° C. for 1 minute using an etching solution of HF: 35% H 2 O 2 : H 2 O = 1: 2: 2.
【0015】その結果、転位に対応するD−pits
(dislocation−pits)がウェハ周辺部
におけるファセット領域に若干(転位密度101 cm-2
オーダ)存在するが、ウェハの中心から中間領域にかけ
ては全く観察されず、本発明法はInSb単結晶引上げ
には極めて有効な方法であることがわかった。As a result, D-pits corresponding to dislocations
(Dislocation-pits) is slightly (dislocation density 10 1 cm -2 ) in the facet region in the peripheral portion of the wafer.
However, it was found that the method of the present invention is an extremely effective method for pulling InSb single crystal.
【0016】上記実施例では不純物Ga添加に関して述
べたが、勿論Ga単体に限定する必要はなく、窒化ガリ
ウム(GaN)等のInSbに対して電気的に中性なG
aとV族の化合物(キャリア濃度に影響を与えない)な
らば適用できる。In the above-mentioned embodiments, the addition of the impurity Ga has been described, but needless to say, it is not limited to Ga alone, and G which is electrically neutral to InSb such as gallium nitride (GaN) is used.
Any a and V group compound (which does not affect the carrier concentration) can be applied.
【0017】[0017]
【発明の効果】以上説明したように本発明によれば、s
eedからの転位伝播の抑制に不純物添加法を用いてい
るため、双晶発生頻度が高いネック部形成工程が省略で
きる。従って肩部および胴体部の引上げとなるため、単
結晶化率が20%から80%に大幅に向上するととも
に、ネック部引上げに要する時間が省略できるため、従
来の肩形成までの所要時間が約1/2に短縮される。ま
た、本発明はネックダウン法にくらべ転位低減効果が著
しい。以上の結果、低転位InSb単結晶を従来より短
時間で歩留まりよく製造することができ、経済的効果が
著しく増大する。As described above, according to the present invention, s
Since the impurity addition method is used to suppress the dislocation propagation from seeds, the neck portion forming step in which twinning occurs frequently can be omitted. Therefore, since the shoulder portion and the body portion are pulled up, the single crystallization rate is significantly improved from 20% to 80%, and the time required for pulling up the neck portion can be omitted. It is shortened to 1/2. Further, the present invention is more effective in reducing dislocations than the neck-down method. As a result, a low-dislocation InSb single crystal can be manufactured with a high yield in a shorter time than ever before, and the economic effect is remarkably increased.
【図1】本発明の実施例に用いられた単結晶引上げ装置
を説明する断面図である。FIG. 1 is a cross-sectional view illustrating a single crystal pulling apparatus used in an example of the present invention.
【図2】従来の方法に用いられた単結晶引上げ装置を説
明する断面図である。FIG. 2 is a sectional view illustrating a single crystal pulling apparatus used in a conventional method.
1. チャンバ 2. 石英ルツボ 3. 種子結晶(Seed) 4. 種子結晶取り付けジグ 5. ヒータ 6. InSb融液 9,104. InSb単結晶体 1. Chamber 2. Quartz crucible 3. Seed crystal (Seed) 4. Seed crystal mounting jig 5. Heater 6. InSb melt 9,104. InSb single crystal
Claims (8)
より製造するに際し、原料として用いるインジウムアン
チモン結晶体に不純物を添加し、結晶成長開始直後より
所定径に達するまで肩形成角度一定で単調に結晶径を増
大させることを特徴とするインジウムアンチモン単結晶
の製造方法。1. When an indium antimony single crystal is manufactured by a pulling method, impurities are added to an indium antimony crystal used as a raw material, and the crystal diameter is monotonically changed with a constant shoulder forming angle immediately after the start of crystal growth until a predetermined diameter is reached. A method for producing an indium antimony single crystal, which is characterized by increasing the amount.
物となる元素を含むことを特徴とする請求項1記載のイ
ンジウムアンチモン単結晶の製造方法。2. The method for producing an indium antimony single crystal according to claim 1, wherein the impurities include an element which becomes an electrically neutral impurity in the crystal.
物となるIII −V族化合物であることを特徴とする請求
項1記載のインジウムアンチモン単結晶の製造方法。3. The method for producing an indium antimony single crystal according to claim 1, wherein the impurity is a III-V group compound which becomes an electrically neutral impurity in the crystal.
特徴とする請求項1記載のインジウムアンチモン単結晶
の製造方法。4. The method for producing an indium antimony single crystal according to claim 1, wherein the shoulder forming angle is 20 ° or less.
する請求項1記載のインジウムアンチモン単結晶の製造
方法。5. The method for producing an indium antimony single crystal according to claim 1, wherein the impurity is gallium.
徴とする請求項1記載のインジウムアンチモン単結晶の
製造方法。6. The method for producing an indium antimony single crystal according to claim 1, wherein the impurity is gallium nitride.
成角度が20°以下であることを特徴とする請求項1記
載のインジウムアンチモン単結晶の製造方法。7. The method for producing an indium antimony single crystal according to claim 1, wherein the impurity is gallium and the shoulder formation angle is 20 ° or less.
肩形成角度が20°以下であることを特徴とする請求項
1記載のインジウムアンチモン単結晶の製造方法。8. The method for producing an indium antimony single crystal according to claim 1, wherein the impurity is gallium nitride, and the shoulder forming angle is 20 ° or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12415095A JPH08319197A (en) | 1995-05-24 | 1995-05-24 | Production of indium antimony single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12415095A JPH08319197A (en) | 1995-05-24 | 1995-05-24 | Production of indium antimony single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08319197A true JPH08319197A (en) | 1996-12-03 |
Family
ID=14878180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12415095A Pending JPH08319197A (en) | 1995-05-24 | 1995-05-24 | Production of indium antimony single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08319197A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2482228C1 (en) * | 2012-01-27 | 2013-05-20 | Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности" ОАО "ГИРЕДМЕТ" | Method for production of indium ammonide large-size monocrystals |
CN109280978A (en) * | 2018-11-29 | 2019-01-29 | 云南北方昆物光电科技发展有限公司 | A kind of preparation method of low dislocation indium antimonide<111>direction monocrystalline |
CN112126982A (en) * | 2020-10-22 | 2020-12-25 | 中国电子科技集团公司第四十六研究所 | Method for rapidly growing InSb monocrystal |
CN113774490A (en) * | 2021-08-25 | 2021-12-10 | 中国电子科技集团公司第十一研究所 | Large-size <211> crystal orientation low-dislocation density indium antimonide InSb crystal and growth method thereof |
-
1995
- 1995-05-24 JP JP12415095A patent/JPH08319197A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2482228C1 (en) * | 2012-01-27 | 2013-05-20 | Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности" ОАО "ГИРЕДМЕТ" | Method for production of indium ammonide large-size monocrystals |
CN109280978A (en) * | 2018-11-29 | 2019-01-29 | 云南北方昆物光电科技发展有限公司 | A kind of preparation method of low dislocation indium antimonide<111>direction monocrystalline |
CN112126982A (en) * | 2020-10-22 | 2020-12-25 | 中国电子科技集团公司第四十六研究所 | Method for rapidly growing InSb monocrystal |
CN113774490A (en) * | 2021-08-25 | 2021-12-10 | 中国电子科技集团公司第十一研究所 | Large-size <211> crystal orientation low-dislocation density indium antimonide InSb crystal and growth method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7704318B2 (en) | Silicon wafer, SOI substrate, method for growing silicon single crystal, method for manufacturing silicon wafer, and method for manufacturing SOI substrate | |
US6936357B2 (en) | Bulk GaN and ALGaN single crystals | |
EP0962557B1 (en) | Silicon single crystal wafer and method for producing silicon single crystal wafer | |
EP0875607B1 (en) | Silicon single crystal with no crystal defects in peripheral part of wafer | |
JP2003124219A (en) | Silicon wafer and epitaxial silicon wafer | |
EP0751242B1 (en) | Process for bulk crystal growth | |
US8252404B2 (en) | High resistivity silicon wafers | |
JPH08319197A (en) | Production of indium antimony single crystal | |
JPH11322491A (en) | Production of silicon single crystal wafer and silicon single crystal wafer | |
JP3353681B2 (en) | Silicon wafer and crystal growing method | |
JPH1192283A (en) | Silicon wafer and its production | |
JP2002198375A (en) | Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby | |
JP3412531B2 (en) | Phosphorus-doped silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them | |
JPH05221786A (en) | Method and device for producing silicon single crystal | |
JPH061700A (en) | Production of indium antimonide single crystal | |
JPH06271388A (en) | Production of semiconductor single crystal rod | |
JP2004099390A (en) | Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal | |
JPH02229796A (en) | P-type inp single crystal substrate material having low dislocation density | |
JP3726622B2 (en) | Manufacturing method of semiconductor silicon wafer | |
JP2001080992A (en) | Silicon wafer and production of the same | |
JP4200690B2 (en) | GaAs wafer manufacturing method | |
JPH08165189A (en) | Production of semiconductor single crystal | |
JPH06144998A (en) | Production of indium antimonide single crystal | |
JP2002154896A (en) | METHOD FOR PRODUCING Ga-DOPED SILICON SINGLE CRYSTAL | |
CN117926396A (en) | Processing method for reducing oxidation induced stacking faults of large-size heavily-doped boron silicon wafer |