JPH08165189A - Production of semiconductor single crystal - Google Patents

Production of semiconductor single crystal

Info

Publication number
JPH08165189A
JPH08165189A JP30676394A JP30676394A JPH08165189A JP H08165189 A JPH08165189 A JP H08165189A JP 30676394 A JP30676394 A JP 30676394A JP 30676394 A JP30676394 A JP 30676394A JP H08165189 A JPH08165189 A JP H08165189A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
semiconductor single
producing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30676394A
Other languages
Japanese (ja)
Inventor
Shinichi Nagata
伸一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30676394A priority Critical patent/JPH08165189A/en
Publication of JPH08165189A publication Critical patent/JPH08165189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To produce the semiconductor single crystal little in crystal defects in a high yield by a lifting method. CONSTITUTION: The method for producing the semiconductor single crystal comprises holding the crystals of a lifting raw material at a high temperature in an atmospheric gas containing impure elements to be added, solidifying the melt, melting the solid, repeating the treatment cycles necessary times, melting the crystals of the raw material, and subsequently growing the semiconductor single crystal by the lifting method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチョコラルスキー法によ
る半導体単結晶の引上げに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to pulling a semiconductor single crystal by the Czochralski method.

【0002】[0002]

【従来の技術】近年、結晶欠陥がデバイス特性に及ぼす
影響が明らかになり、結晶欠陥を減少させることが重要
な問題となっている。例えば、半導体単結晶内の転位密
度が大になると、結晶内に形成されたp−n接合の逆方
向リーク電流が増加するなど、半導体素子特性が低下す
るとともに、信頼性にも悪影響を及ぼすことが知られて
いる。最近では、半導体素子の高集積化に伴って半導体
単結晶の転位や微小欠陥の低減化の要求がますます強く
なりつつある。
2. Description of the Related Art In recent years, the influence of crystal defects on device characteristics has been clarified, and reducing crystal defects has become an important issue. For example, when the dislocation density in the semiconductor single crystal becomes large, the reverse leakage current of the pn junction formed in the crystal increases, which deteriorates the semiconductor device characteristics and adversely affects the reliability. It has been known. Recently, the demand for reduction of dislocations and minute defects in semiconductor single crystals has been increasing with the high integration of semiconductor elements.

【0003】従来、結晶欠陥低減化の有効な方法として
結晶中で電気的に中性な不純物となる元素を添加する方
法がある。この方法は、添加すべき不純物と、引き上げ
るべき原料とをルツボに入れ、その後、加熱溶融して融
液を形成し、単結晶を引き上げる方法である。例えば、
InSb結晶においては不純物として窒素、リン、砒素
等のV族元素をInN(窒化インジウム)、InP(イ
ンジウムリン)、InAs(インジウム砒素)として添
加すると有効であることが、特開昭54−122681
で報告されている。
Conventionally, as an effective method of reducing crystal defects, there is a method of adding an element which becomes an electrically neutral impurity in the crystal. In this method, impurities to be added and raw materials to be pulled are put in a crucible, and then melted by heating to form a melt, and a single crystal is pulled. For example,
In the InSb crystal, it is effective to add a group V element such as nitrogen, phosphorus or arsenic as InN (indium nitride), InP (indium phosphide) or InAs (indium arsenide) as an impurity.
Has been reported in.

【0004】しかし、この方法では次のような問題点が
ある。前記不純物元素は、微量を添加するため、前記の
ようにInN、InAs等のように化合物として添加す
る。この時、融液中での溶融を容易にするため、および
秤量の精度を上げるため、微粉末(例えば、InNの場
合、粉末の粒径は約10μm)を用いる。この微粉末は
不活性ガス雰囲気のアンプル中に密封保管されたもので
あるが、バルクにくらべて表面積が大きくなるので、ア
ンプル開封と同時に自然酸化膜が形成されやすい。従っ
て、融液中で前記化合物が分解後、融液面上に酸化物の
スカムが形成される。
However, this method has the following problems. Since a small amount of the impurity element is added, it is added as a compound such as InN and InAs as described above. At this time, a fine powder (for example, in the case of InN, the particle size of the powder is about 10 μm) is used in order to facilitate melting in the melt and improve the accuracy of weighing. This fine powder is hermetically stored in an ampoule in an inert gas atmosphere, but since the surface area is larger than that of the bulk, a natural oxide film is likely to be formed simultaneously with opening the ampoule. Therefore, after the compound is decomposed in the melt, oxide scum is formed on the surface of the melt.

【0005】融液面上のスカムが単結晶引上げに種々の
悪影響を及ぼすことはよく知られている。例えば、種付
けや、結晶成長を阻害し、また、双晶発生の要因の一つ
でもある。最悪の場合は多結晶となることもある。従っ
て、引上げの障害になるスカムを除去することが重要な
問題である。
It is well known that scum on the melt surface has various adverse effects on pulling of a single crystal. For example, it inhibits seeding and crystal growth, and is one of the factors that cause twinning. In the worst case, it may become polycrystalline. Therefore, it is an important issue to remove the scum that hinders pulling.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように、結
晶中で電気的に中性になる不純物(粉末状)添加法は結
晶欠陥低減化に有効な方法であるが、融液面上に単結晶
引上げの障害になるスカムが形成される場合が多く、単
結晶引上げが困難になり、単結晶として引上げられる割
合、すなわち単結晶化率が著しく悪くなるという問題点
があった。本発明は上記の欠点を除去するもので、スカ
ムを発生させず、結晶欠陥の少ない単結晶を歩留まりよ
く製造する方法を提供するものである。
As described above, the method of adding impurities (powder) which becomes electrically neutral in the crystal is an effective method for reducing crystal defects, but In many cases, scum is formed which hinders the pulling of the single crystal, which makes the pulling of the single crystal difficult, resulting in a problem that the ratio of pulling the single crystal, that is, the single crystallization rate is significantly deteriorated. The present invention eliminates the above-mentioned defects, and provides a method for producing a single crystal with few crystal defects with good yield without generating scum.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体単結晶の製造方法では、添加すべき
不純物元素を含む雰囲気ガス中において、引上げの原料
となる結晶を高温下で溶融から固化、固化から溶融のサ
イクルを必要回数繰り返すことにより、前記結晶に目的
の不純物元素を所望濃度ドープし、その後、前記結晶を
溶融して半導体単結晶を引上げるものである。
In order to achieve the above object, in the method for producing a semiconductor single crystal of the present invention, a crystal as a pulling source is heated at a high temperature in an atmosphere gas containing an impurity element to be added. By repeating the cycles of melting to solidification and solidification to melting as many times as necessary, the crystal is doped with a desired impurity element at a desired concentration, and then the crystal is melted to pull up a semiconductor single crystal.

【0008】[0008]

【作用】上記製造方法では、不純物元素の添加方法とし
てガスによるドーピングを行っているため、ドーパント
表面に酸化膜は形成されない。その結果、融液表面に酸
化膜のスカムが発生せず、スカムの影響を受けずに単結
晶の引上げができる。また、ガスによるドーピングを効
率的に実施するため、融点より高い温度に結晶を保持
し、結晶が溶融するまでの時間、添加すべき不純物元素
をドープする(ガスによるドーピングでは結晶が固体状
態でないとドーピングされない。従って結晶が完全に溶
融するまでの間、添加すべき不純物元素がドープされる
ことになる)。結晶が完全に溶融した後、融点以下まで
降温して融液表面を固化させ(この理由は上に述べたと
おり)、その後、再度、結晶を融点より高い温度まで昇
温し、保持する。この融液から固体、固体から融液のサ
イクルを必要回数繰り返すことにより、所望の不純物濃
度が得られる。
In the above manufacturing method, since gas doping is performed as a method of adding an impurity element, an oxide film is not formed on the surface of the dopant. As a result, scum of the oxide film does not occur on the melt surface, and the single crystal can be pulled up without being affected by scum. Further, in order to efficiently carry out the doping with a gas, the crystal is held at a temperature higher than the melting point, and the impurity element to be added is doped for the time until the crystal is melted. It is not doped, so the impurity element to be added is doped until the crystal is completely melted). After the crystal is completely melted, the temperature is lowered to below the melting point to solidify the melt surface (the reason is as described above), and then the crystal is again heated to a temperature higher than the melting point and held. A desired impurity concentration can be obtained by repeating the cycle from the melt to the solid and from the solid to the melt a required number of times.

【0009】なお、結晶を融点直下に保持しても、本発
明の溶融から固化、固化から溶融を繰り返す方法と同等
に近い効果が得られるが、長時間を要するため、実用的
ではない。
Even if the crystal is held just below the melting point, an effect similar to the method of repeating melting and solidification and solidifying and melting of the present invention can be obtained, but it takes a long time and is not practical.

【0010】[0010]

【実施例】以下、本発明の一つの実施例を図面を参照し
て説明する。本発明は引上げ法による半導体単結晶製造
に広く適用できるが、発明の実施例としてIII −V族化
合物半導体であるInSb単結晶について図面を参照し
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Although the present invention can be widely applied to the production of semiconductor single crystals by the pulling method, an InSb single crystal which is a III-V compound semiconductor will be described as an embodiment of the present invention with reference to the drawings.

【0011】図1は本実施例に使用した引上げ装置の断
面図である。InSb単結晶の引上げに用いる高純度I
nSb多結晶、例えば700gをチャンバ1内の石英ル
ツボ2に入れ、<211>方位に切り出した種子結晶3
を種子結晶取り付けジグ4に取り付け、チャンバ1で密
封する。次に密封されたチャンバ1内を圧力10-4 Tor
r まで排気して、高純度N2 (窒素)ガスで充たし、こ
のガスを一定流量流しておく。続いて上記ルツボ2を取
り囲むヒータ5でInSbの融点525℃より高い温
度、例えば600℃まで加熱し、保持する。結晶が溶融
するまでの間、InSb多結晶は高温のN2 ガス中に保
持されることになり、N2 がInSb多結晶表面と有効
に反応し、その結果、Nがドープされる。さらにNドー
プ量を増やすために融点より低い温度、例えば520℃
まで降温して固化させる。固化は融液表面からスタート
する。融液表面が完全に固化した状態で約30分保持す
る。この間前記と同様にNがさらにドープされる。次に
結晶を再度InSbの融点525℃より高い温度、例え
ば600℃まで加熱し、固化したInSb多結晶を再び
溶融してInSb融液6を作る。前記融液面上6には、
本発明のガスドーピングを試みているので、酸化物のス
カムは存在していない。その後、図1に示すように例え
ば引上げ速度10mm/h、回転数10rpm、融液温
度550℃で引上げを行いInSb単結晶7を製造す
る。
FIG. 1 is a sectional view of the pulling device used in this embodiment. High purity I used for pulling InSb single crystal
Seed crystal 3 in which nSb polycrystal, for example, 700 g, was placed in the quartz crucible 2 in the chamber 1 and cut in the <211> orientation
Is attached to a seed crystal attachment jig 4 and sealed in the chamber 1. Next, the pressure in the sealed chamber 1 is 10 −4 Torr.
It is evacuated to r and filled with high-purity N 2 (nitrogen) gas, and this gas is allowed to flow at a constant flow rate. Then, the heater 5 surrounding the crucible 2 is heated to a temperature higher than the melting point of InSb of 525 ° C., for example, 600 ° C., and held. Until the crystal melts, the InSb polycrystal will be held in the hot N 2 gas, and N 2 will effectively react with the InSb polycrystal surface, resulting in N doping. Further, in order to increase the N doping amount, a temperature lower than the melting point, for example, 520 ° C.
Cool down to solidify. Solidification starts from the surface of the melt. Hold for about 30 minutes with the surface of the melt completely solidified. During this time, N is further doped as described above. Next, the crystal is heated again to a temperature higher than the melting point of InSb of 525 ° C., for example, 600 ° C., and the solidified InSb polycrystal is melted again to form the InSb melt 6. On the melt surface 6,
No oxide scum is present because of the attempted gas doping of the present invention. Then, as shown in FIG. 1, for example, the pulling rate is 10 mm / h, the rotation number is 10 rpm, and the pulling rate is 550 ° C. to produce the InSb single crystal 7.

【0012】本発明では、不純物元素の添加方法とし
て、ガスによるNドーピングを行っている。このよう
に、ガスによるドーピング方法でも結晶欠陥低減に効果
があるかどうかをチェックするため、本発明法により引
上げたInSb単結晶の結晶欠陥評価を以下の手順で行
った。この評価はエッチング法を用い、まず<211>
方向に成長させたInSb単結晶インゴットから(11
1)面のウェハを切り出し、この(111)In面を粒
径16μmのAl23 粉末から0.05μmに至るま
で順次研磨して鏡面に仕上げた。次に研磨傷を取り除く
ため、組成比がCH3CH(OH)COOH:HNO3 =6:1 のエッチン
グ液を用いて20℃で5分間エッチングした。引き続
き、エッチピット検出のために組成比が49%HF:3
5%H22 :H2 O=1:2:2のエッチング液を用
いて20℃で1分間エッチングした。
In the present invention, N doping with gas is performed as a method of adding an impurity element. As described above, in order to check whether the gas doping method is effective in reducing the crystal defects, the crystal defect evaluation of the InSb single crystal pulled up by the method of the present invention was performed by the following procedure. This evaluation uses the etching method, and first, <211>
From an InSb single crystal ingot grown in the direction (11
The wafer of (1) plane was cut out, and this (111) In plane was sequentially polished from Al 2 O 3 powder having a grain size of 16 μm to 0.05 μm to finish it as a mirror surface. Next, in order to remove polishing scratches, etching was performed at 20 ° C. for 5 minutes using an etching solution having a composition ratio of CH 3 CH (OH) COOH: HNO 3 = 6: 1. Subsequently, the composition ratio is 49% HF: 3 for detecting etch pits.
Etching was performed for 1 minute at 20 ° C. using an etching solution of 5% H 2 O 2 : H 2 O = 1: 2: 2.

【0013】その結果、転位に対応するD−pits(dislo
cation-pits)のみがファセット領域に若干(転位密度は
1桁のオーダ)存在するが、その他の微小欠陥に対応す
るS−pits(Saucer-like-pits)、および中心となる部分
に不純物の析出、あるいは欠陥があって、これを中心に
[110]方向にS−pitsが発生したP−pits(punchin
g-out-pits) 等の各種ピットは観察されず、結晶欠陥の
少ないInSb単結晶が得られることがわかった。
As a result, D-pits (dislo
Although only cation-pits are slightly present in the facet region (dislocation density is in the order of one digit), S-pits (Saucer-like-pits) corresponding to other microdefects and impurity precipitation in the central part , Or P-pits (punchin) in which S-pits are generated in the [110] direction around this defect.
Various pits such as g-out-pits) were not observed, and it was found that an InSb single crystal with few crystal defects was obtained.

【0014】上記実施例ではIII −V族化合物半導体で
あるInSb単結晶に関して本発明を適用する場合につ
いて述べたが、勿論InSb単結晶に限定する必要はな
く、その他の半導体単結晶引上げにおいて広く適用でき
るものである。また、上記実施例では不純物元素として
窒素ガスを使用する場合について述べたが、窒素ガスに
限定する必要はなく、窒素ガスの代わりに、リンや砒素
など他の不純物元素についても、気相状態にすることに
より適用できるものである。窒素、リン、砒素などはI
nSbに対して電気的に中性であるため、キャリア濃度
に影響を及ぼすことなく、結晶欠陥の少ない単結晶を得
ることができる。
In the above embodiments, the case where the present invention is applied to the InSb single crystal which is a III-V group compound semiconductor has been described, but needless to say, it is not limited to the InSb single crystal and is widely applied to pulling other semiconductor single crystals. It is possible. Further, although the case where nitrogen gas is used as the impurity element has been described in the above-mentioned embodiment, it is not necessary to limit to nitrogen gas, and instead of nitrogen gas, other impurity elements such as phosphorus and arsenic can also be changed to a gas phase state. It is applicable by doing. Nitrogen, phosphorus, arsenic, etc.
Since it is electrically neutral to nSb, a single crystal with few crystal defects can be obtained without affecting the carrier concentration.

【0015】[0015]

【発明の効果】以上述べたように本発明によれば、結晶
への不純物添加手段としてガスによるドーピング方法を
用いているため、前記多結晶を溶融しても融液面上には
酸化物のスカムは存在せず、種付けや、結晶成長を容易
にするとともに双晶発生や多結晶発生が抑制される。ま
た、前記ドーピングをより効率的に行うため、高温下で
溶融から固化、固化から溶融のサイクルを採用している
ので、所望の不純物濃度が得られる。この結果、低結晶
欠陥の単結晶を歩留まりよく製造することができ、経済
的効果が著しく増大する。
As described above, according to the present invention, a gas doping method is used as a means for adding impurities to crystals. Therefore, even if the polycrystal is melted, oxides are not formed on the melt surface. There is no scum, which facilitates seeding and crystal growth, and suppresses twinning and polycrystallization. Further, in order to carry out the doping more efficiently, since a cycle of melting to solidification and solidification to melting at a high temperature is adopted, a desired impurity concentration can be obtained. As a result, a single crystal with low crystal defects can be manufactured with a high yield, and the economic effect is significantly increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す単結晶引上げ装置の断面
図である。
FIG. 1 is a sectional view of a single crystal pulling apparatus showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1.チャンバ 2.石英ルツボ 3.種子結晶 4.種子結晶取付けジグ 5.ヒータ 6.融液 7.InSb単結晶 1. Chamber 2. Quartz crucible 3. Seed crystal 4. Seed crystal mounting jig 5. Heater 6. Melt 7. InSb single crystal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体単結晶を引上げ法により製造するに
際し、単結晶成長開始前に、引上げ原料となる結晶を高
温雰囲気ガス中で溶融から凝固、凝固から溶融のサイク
ルを必要回数繰り返すことを特徴とする半導体単結晶の
製造方法。
1. A method for producing a semiconductor single crystal by a pulling method, characterized in that, before the start of single crystal growth, a crystal serving as a pulling material is melted and solidified in a high temperature atmosphere gas, and a cycle from solidification to melting is repeated a required number of times. And a method for manufacturing a semiconductor single crystal.
【請求項2】前記雰囲気ガスが結晶中で電気的に中性な
不純物となる雰囲気ガスであることを特徴とする請求項
1記載の半導体単結晶の製造方法。
2. The method for producing a semiconductor single crystal according to claim 1, wherein the atmosphere gas is an atmosphere gas which becomes an electrically neutral impurity in the crystal.
【請求項3】前記結晶がIII-V族化合物半導体であるこ
とを特徴とする請求項1記載の半導体単結晶の製造方
法。
3. The method for producing a semiconductor single crystal according to claim 1, wherein the crystal is a III-V group compound semiconductor.
【請求項4】前記結晶がインジウムアンチモン(InS
b)からなることを特徴とする請求項1記載の半導体単
結晶の製造方法。
4. The crystal is indium antimony (InS).
The method for producing a semiconductor single crystal according to claim 1, wherein the method comprises b).
【請求項5】前記雰囲気ガスが窒素(N2 )ガスからな
ることを特徴とする請求項1記載の半導体単結晶の製造
方法。
5. The method for producing a semiconductor single crystal according to claim 1, wherein the atmosphere gas is nitrogen (N 2 ) gas.
【請求項6】前記結晶がインジウムアンチモン(InS
b)からなり、前記雰囲気ガスが窒素(N2 )ガスから
なることを特徴とする請求項1記載の半導体単結晶の製
造方法。
6. The crystal is indium antimony (InS).
2. The method for producing a semiconductor single crystal according to claim 1, wherein the atmosphere gas comprises b) and the atmosphere gas is nitrogen (N 2 ) gas.
JP30676394A 1994-12-12 1994-12-12 Production of semiconductor single crystal Pending JPH08165189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30676394A JPH08165189A (en) 1994-12-12 1994-12-12 Production of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30676394A JPH08165189A (en) 1994-12-12 1994-12-12 Production of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH08165189A true JPH08165189A (en) 1996-06-25

Family

ID=17961001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30676394A Pending JPH08165189A (en) 1994-12-12 1994-12-12 Production of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH08165189A (en)

Similar Documents

Publication Publication Date Title
US4303464A (en) Method of manufacturing gallium phosphide single crystals with low defect density
JPH11189495A (en) Silicon single crystal and its production
US5871580A (en) Method of growing a bulk crystal
JP4235711B2 (en) Manufacturing method of GaAs single crystal by vertical boat method
JP3412531B2 (en) Phosphorus-doped silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
JPH08165189A (en) Production of semiconductor single crystal
JP3237408B2 (en) Method for manufacturing compound semiconductor crystal
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JPH0733582A (en) Production of semiconductor single crystal
JPH08319197A (en) Production of indium antimony single crystal
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JPH05121319A (en) Manufacture of semiconductor device
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPH08756B2 (en) Inorganic compound single crystal growth method
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPH11292699A (en) Production of indium-antimony single crystal
JPH06144998A (en) Production of indium antimonide single crystal
JPH061700A (en) Production of indium antimonide single crystal
JPH10194898A (en) Manufacture of gallium-arsenic seed crystal
US6428618B2 (en) Method for forming a solid solution alloy crystal
JP5981356B2 (en) Compound semiconductor single crystal, compound semiconductor wafer, and method for producing compound semiconductor single crystal
JPH0967190A (en) Liquid phase epitaxial growth method