JPH061700A - Production of indium antimonide single crystal - Google Patents

Production of indium antimonide single crystal

Info

Publication number
JPH061700A
JPH061700A JP15990292A JP15990292A JPH061700A JP H061700 A JPH061700 A JP H061700A JP 15990292 A JP15990292 A JP 15990292A JP 15990292 A JP15990292 A JP 15990292A JP H061700 A JPH061700 A JP H061700A
Authority
JP
Japan
Prior art keywords
single crystal
insb
crystal
seed
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15990292A
Other languages
Japanese (ja)
Inventor
Shinichi Nagata
伸一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15990292A priority Critical patent/JPH061700A/en
Publication of JPH061700A publication Critical patent/JPH061700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain an InSb single crystal in a short time in good yield by using a single crystal body section having a non-vertical peripheral surface at the intial pulling stage as a seed crystal. CONSTITUTION:The single crystal body section 11 having a non-vertical peripheral surface of an InSb single-crystal pulled up in the [211] orientation is used as a seed crystal. A high-purity InSb polycrystal is placed in a crucible 2 arranged in a chamber 1, and the seed crystal is fixed to a single crystal adapter 4 and sealed by the chamber 1. The chamber 1 is evacuated to <=10<-4>Torr and filled with a forming gas. The crucible 2 is then heated by a heater 5 to melt the InSb polycrystal, and molten InSb 6 is obtained. The seed crystal is rotated, lowered 3-5mm above the molten material, kept for about 20 min, dipped in the molten material 6 and pulled up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチョクラルスキー法によ
るインジウムアンチモン(InSb)単結晶の引上げ形
成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pulling up an indium antimony (InSb) single crystal by the Czochralski method.

【0002】[0002]

【従来の技術】単結晶の引上げにおいては、双晶の発生
を抑制して単結晶化率を上げることが重要な課題の一つ
になっている。特にインジウムアンチモン(InSb)
単結晶引上げはシリコン(Si)、ガリウムひ素(Ga
As)、インジウムリン(InP)等の単結晶の引上げ
に比べて双晶が発生しやすいため、特別の配慮が必要に
なる。
2. Description of the Related Art In pulling a single crystal, it is an important subject to suppress the generation of twin crystals and increase the rate of single crystallization. Indium antimony (InSb)
Single crystal pulling is performed on silicon (Si) and gallium arsenide (Ga).
Twinning is more likely to occur than pulling a single crystal such as As) or indium phosphide (InP), so special consideration is required.

【0003】通常、InSb単結晶引上げには図3に断
面図で示す単結晶引上装置が用いられる。図に示すよう
に、チャンバ1内に配置された石英るつぼ2にInSb
多結晶体3を入れ、5×5×50mmの直方体の種子結
晶(Seed、以下シードと略称する)101を用いて
引上げを施す。図における4はシード取付け治具、5は
上記石英るつぼ2の側方を取巻くヒータである。 上記シ
ードの方位は〔111〕、〔211〕、〔311〕、
〔100〕の順に双晶が発生しやすい(R.F.HUL
ME,J.B.MULLIN;Solid State
Electronics 1962 Vol 15
pp211−247参照)ため、〔311〕、〔10
0〕方位に比べて比較的双晶が発生しにくい〔11
1〕、〔211〕等の方位を用いる。そして図4に示す
ように、上記シード101を用いてネック部102、肩
部103、胴体部104と順次形成して単結晶体105
を引上げる。前記単結晶引上げ工程で最も注意を要する
のは肩形成の工程である。この理由は、たとえ〔11
1〕、〔211〕方位のシードを用いても双晶のほとん
どはこの領域で発生するからである。この双晶の発生を
抑制する有効な手段として以下の方法が試みられてい
る。すなわち〔111〕方位引上げでは肩角度を20℃
以下に設定する。一方〔211〕引上げでは肩角度を1
5°以下に設定する。肩角度をそれぞれ前記のように設
定することにより双晶がかなり抑制されることが経験的
にではあるがわかっている。
Usually, for pulling an InSb single crystal, a single crystal pulling apparatus shown in a sectional view in FIG. 3 is used. As shown in the figure, InSb is placed in the quartz crucible 2 arranged in the chamber 1.
The polycrystalline body 3 is placed and pulled up using a 5 × 5 × 50 mm rectangular parallelepiped seed crystal (Seed, hereinafter abbreviated as a seed) 101. In the drawing, 4 is a seed attachment jig, and 5 is a heater that surrounds the quartz crucible 2 laterally. The orientation of the seed is [111], [211], [311],
Twins are likely to occur in the order of [100] (RF HUL
ME, J. B. MULIN; Solid State
Electronics 1962 Vol 15
pp211-247), [311], [10
Twins are less likely to occur as compared to the [0] orientation [11
1], [211], etc. are used. Then, as shown in FIG. 4, a neck portion 102, a shoulder portion 103, and a body portion 104 are sequentially formed using the seed 101 to form a single crystal body 105.
Pull up. The most important step in the single crystal pulling step is the shoulder forming step. The reason for this is
This is because most twins are generated in this region even if seeds of [1] and [211] orientations are used. The following methods have been tried as effective means for suppressing the generation of twins. That is, when raising the [111] direction, the shoulder angle is 20 ° C.
Set as follows. On the other hand, in [211] pulling up, the shoulder angle is 1
Set it to 5 ° or less. It is empirically known that twins are considerably suppressed by setting the shoulder angles as described above.

【0004】しかし、叙上の方法では次のような問題点
がある。まず〔111〕方位引上げは他の方位に比べ最
も双晶が発生しにくいが、結晶欠陥評価の結果、この方
位で引上げた単結晶体はウエハの中心から中間領域にか
けて転位が密集して発生する。その転位密度は103
-2のオーダである。このような単結晶体から切り出さ
れたウエハにおける転位は通常Y字型のパターンを示
す。従って、かかるウエハを用いて半導体デバイスを作
成した場合、結晶内に形成されたpn接合の逆方向リー
ク電流が増加してデバイス特性が低下するとともに、信
頼性にも悪影響を及ぼすので〔111〕方位のシードは
使用出来ない。一方、他の方位の引上げでは、例えば
〔211〕方位の引上げではウエハ周辺部のファセット
領域にのみ若干転位は存在する(転位密度は10°cm
-2のオーダ)が、〔111〕方位のようにウエハの中心
から中間領域にかけて転位の密集は見られないため、デ
バイスに適用出来る。次に問題になるのはInSb引上
げの場合、Si、GaAs等と異なってネック部から急
激に結晶径を増大して胴体部を形成出来ないため、(肩
角度が15°以上になると必ずと言ってもよいほど双晶
になることが経験的にわかっている)、肩形成と云うむ
だな(この肩領域は当然結晶径が小さく、しかも一定で
ないため、この部分のウエハはデバイス作りには実用的
でない)工程を経なければならず、これに要する時間は
全工程の約1/2にも達し、時間的損失が著しい。しか
も双晶発生を抑制するために肩角度をコンスタントに1
5°以下にコントロールすると云う問題があり、再現性
に劣る。
However, the above method has the following problems. First of all, twinning is less likely to occur in the [111] orientation pulling than in other orientations, but as a result of the crystal defect evaluation, the single crystal pulled up in this orientation has dense dislocations from the center of the wafer to the intermediate region. . The dislocation density is 10 3 c
The order is m -2 . The dislocations in a wafer cut out from such a single crystal usually show a Y-shaped pattern. Therefore, when a semiconductor device is manufactured using such a wafer, the reverse leakage current of the pn junction formed in the crystal increases, the device characteristics deteriorate, and the reliability is adversely affected. No seeds can be used. On the other hand, in pulling in other orientations, for example, in pulling in the [211] orientation, some dislocations exist only in the facet region in the peripheral portion of the wafer (the dislocation density is 10 ° cm.
The order of -2 ) is applicable to the device, since dislocation density is not seen from the center of the wafer to the intermediate region like the [111] orientation. The next problem is that in the case of InSb pulling up, unlike Si, GaAs, etc., the crystal diameter suddenly increases from the neck and the body cannot be formed. It has been empirically known that twins will be formed, and it is called shoulder formation (this shoulder region has a small crystal size and is not constant, so this part of the wafer is practical for device fabrication). (Non-target) process, and the time required for this process reaches about 1/2 of the total process, resulting in a significant time loss. Moreover, the shoulder angle is constantly set to 1 in order to suppress twinning.
There is a problem that it is controlled to 5 ° or less, and the reproducibility is poor.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように肩角
度を15°以下に設定して肩領域を形成することは双晶
発生の抑制には確かに有効な手段であるが、肩角度をコ
ンスタントに15°以下に保って引上げることは容易で
はなく、単結晶化率が著しく悪くなる。又、InSb単
結晶の場合は必ず肩領域を形成しなければならないた
め、この肩領域形成に要する時間が引上げ全工程に要す
る時間の約1/2になる等の問題があった。
As described above, forming the shoulder region by setting the shoulder angle to 15 ° or less is certainly effective in suppressing twinning, but the shoulder angle is It is not easy to pull up while constantly maintaining the angle below 15 °, and the single crystallization rate is significantly deteriorated. Further, in the case of an InSb single crystal, the shoulder region must be formed without fail, so that there is a problem that the time required for forming the shoulder region is increased and becomes about half of the time required for all steps.

【0006】本発明は上記の欠点を除去するもので、短
時間で歩留りよくInSb単結晶を製造する方法を提供
するものである。
The present invention eliminates the above-mentioned drawbacks, and provides a method for producing an InSb single crystal in a short time with a good yield.

【0007】[0007]

【課題を解決するための手段】本発明に係るインジウム
アンチモン単結晶の製造方法は、単結晶引上げ法により
インジウムアンチモン単結晶を製造するに際し、引上げ
初期の周側面が非垂直の単結晶体部分を種子結晶として
用いることを特徴とする。
A method for producing an indium antimony single crystal according to the present invention comprises the steps of producing an indium antimony single crystal by a single crystal pulling method, in which a peripheral side surface of a pulling initial stage is a non-vertical single crystal body portion. It is characterized by being used as a seed crystal.

【0008】[0008]

【作用】本発明の製造方法によれば、引上げ初期の周側
面が非垂直の単結晶体部分、いわゆるネック部および肩
部単結晶体部分をSeedとして用いるため、周側面が
垂直のいわゆる胴体部結晶のみ引上げてよく、双晶の発
生しやすい肩部領域を形成する必要がない。また、引上
所要時間も従来の約半分に短縮される。
According to the manufacturing method of the present invention, since a single crystal body portion having a non-vertical peripheral side surface at the initial stage of pulling, a so-called neck portion and a shoulder single crystal body portion is used as seed, a so-called body portion having a vertical peripheral side surface is used. Only the crystal may be pulled up, and it is not necessary to form the shoulder region where twinning is likely to occur. Also, the pulling time is reduced to about half that of the conventional one.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は本実施例に使用した引上げ装置の断面図
である。InSb単結晶の引上げに用いる高純度InS
b多結晶の例えば700gをチャンバ1内に配置された
石英るつぼ2に入れ、そして種子結晶(シード)として
は〔211〕方位で引上げた他のInSb単結晶体の肩
部分に対応する領域11を前もって切り出しておき(肩
部の最大径は引上げるべき単結晶径とほぼ同等の例えば
40mmφ)、これを種子結晶取付け治具4に取付け、
チャンバ1で密封する。次に密封されたチャンバ1内を
真空度10-4Torr以下まで排気して窒素90%と水
素10%からなるフォーミングガスを充たす。続いて上
記るつぼ2を取囲むヒータ5で600℃に加熱し、In
Sb多結晶を融解してInSb融液6を作る。引続きS
eed回転数10rpmで融液面上3〜5mmまで接近
させ、例えば20分ほど保持する。この理由はシード1
1が融液に接触した瞬間の熱衝撃による転位発生の要因
になる熱歪を出来る限り緩和するためである。その後図
2に示すように、例えば引上げ速度10mm/h、シー
ド回転数10rpm、融液温度550℃で従来法により
胴体部の引上げを行ないInSb単結晶7を製造する。
ちなみに本発明法で引上げた場合、胴体部のみの引上げ
でよいため、単結晶化率が従来法の肩形成する場合の2
0%から80%と著しく向上するとともに、一本の単結
晶を引上げるのに要する時間は、従来の22時間から1
2時間とほぼ半分の所要時間に短縮出来る。なお、単結
晶化率とは双晶なしで引上げできる歩留りのことであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a pulling device used in this embodiment. High-purity InS used for pulling InSb single crystal
b For example, 700 g of polycrystal was put in a quartz crucible 2 arranged in a chamber 1, and as a seed crystal (seed), a region 11 corresponding to a shoulder portion of another InSb single crystal body pulled in a [211] orientation was set. It is cut out in advance (the maximum diameter of the shoulder is approximately equal to the single crystal diameter to be pulled, for example, 40 mmφ), and this is attached to the seed crystal attachment jig 4,
Seal with chamber 1. Next, the sealed chamber 1 is evacuated to a vacuum degree of 10 −4 Torr or less and filled with a forming gas consisting of 90% nitrogen and 10% hydrogen. Subsequently, the heater 5 surrounding the crucible 2 is heated to 600 ° C.
The Sb polycrystal is melted to form an InSb melt 6. Continued S
It is brought close to 3 to 5 mm above the melt surface at an eded rotation speed of 10 rpm, and is held for, for example, about 20 minutes. The reason for this is seed 1
This is because the thermal strain that causes dislocation generation due to thermal shock at the moment when No. 1 contacts the melt is relaxed as much as possible. After that, as shown in FIG. 2, the body portion is pulled up by a conventional method at a pulling rate of 10 mm / h, a seed rotation number of 10 rpm, and a melt temperature of 550 ° C. to manufacture an InSb single crystal 7.
By the way, in the case of pulling by the method of the present invention, only the body portion needs to be pulled up.
The time required for pulling a single crystal is significantly improved from the conventional 22 hours to 1% while improving significantly from 0% to 80%.
It can be shortened to 2 hours, which is almost half the required time. The single crystallization rate is the yield that can be raised without twinning.

【0010】次に従来、シード底部は融液に接触させた
瞬間の熱衝撃による転位の発生を緩和するので、5mm
×5mmと小さくするのにくらべ、本発明の場合、シー
ドの径は約40mmφと大きい。この為、融液に接触し
た瞬間シードに転位が発生し、この転位が成長領域(胴
体部)まで伝播する可能性がある。これをチェックする
ため本発明により引上げられたInSb単結晶の結晶欠
陥評価を以下の手順で行なった。この評価はエッチング
法によってまず〔211〕方向に成長させたInSb単
結晶インゴットから(111)面のウエハを切り出し、
この(111)In面を粒径16μmのAl2 3 粉末
から0.05μmに至るまで順次研磨して鏡面に仕上げ
た。次に研磨傷を取り除くため、組成比がCH3 CH
(OH)COOH:HNO3 =6:1のエッチング液を
用いて20℃で5分間エッチングを施した。その後、更
にエッチピット検出のために組成比が49%HF:35
%H2 2 :H2 O=1:2:2のエッチング液を用い
て20℃で1分間エッチングを施した。
Conventionally, since the seed bottom portion alleviates generation of dislocation due to thermal shock at the moment of contact with the melt, it is 5 mm.
In the case of the present invention, the diameter of the seed is as large as about 40 mmφ as compared with the case of reducing the size to × 5 mm. Therefore, dislocations are generated in the seeds at the moment of contact with the melt, and the dislocations may propagate to the growth region (body). In order to check this, the crystal defect evaluation of the InSb single crystal pulled according to the present invention was performed in the following procedure. In this evaluation, a (111) plane wafer was cut out from an InSb single crystal ingot grown in the [211] direction by an etching method.
The (111) In surface was polished in order from Al 2 O 3 powder having a particle size of 16 μm to 0.05 μm to give a mirror surface. Next, in order to remove polishing scratches, the composition ratio is CH 3 CH
Etching was performed at 20 ° C. for 5 minutes using an etching solution of (OH) COOH: HNO 3 = 6: 1. After that, the composition ratio is 49% HF: 35 to detect the etch pit.
Etching was performed at 20 ° C. for 1 minute using an etching solution of% H 2 O 2 : H 2 O = 1: 2: 2.

【0011】その結果、転位に対応するD−pits
(dislocation−pits)のみが通常のS
eedを用いた場合と同様に、ウエハ周辺部のファセッ
ト領域に若干(転位密度は1桁のオーダ)存在するが、
その他の微少欠陥に対応するS−pits(Sauce
r−like−pits)、及び中心となる部分に不純
物の析出あるいは欠陥があって、これを中心に〔11
0〕方向にS−pitsが発生したP−pits(Pu
nching−out−pits)等の各種ピットは観
察されず、低結晶欠陥のInSb単結晶が得られること
がわかった。
As a result, D-pits corresponding to dislocations
Only (dislocation-pits) is a normal S
As in the case of using eded, a small amount (dislocation density is of the order of one digit) exists in the facet region around the wafer,
S-pits (Source) corresponding to other micro defects
r-like-pits) and the central portion has precipitation or defects of impurities.
0] direction, S-pits are generated in the P-pits (Pu
Various pits such as nching-out-pits) were not observed, and it was found that a low crystal defect InSb single crystal was obtained.

【0012】以上の結果から本発明のように大きな結晶
径のシード11を用いた場合でも、従来の底部が5mm
×5mmのシード101を用いた場合と同等の低結晶欠
陥の単結晶が得られ、InSb単結晶引上げには本発明
は極めて有効な方法であることがわかった。
From the above results, even when the seed 11 having a large crystal diameter is used as in the present invention, the conventional bottom portion is 5 mm.
It was found that a single crystal with a low crystal defect equivalent to the case of using a seed 101 of × 5 mm was obtained, and the present invention is an extremely effective method for pulling InSb single crystal.

【0013】[0013]

【発明の効果】叙上の如く本発明によれば、ネック部か
ら肩部までは既に形成されている単結晶をシードとして
用いるため、双晶発生頻度が高い肩形成工程が省略でき
る。従って胴体部のみの引上げとなるため、単結晶化率
が従来法の20%から80%に大幅に向上するととも
に、引上げに要する時間が従来法の22時間から12時
間と半減し、経済的効果が著しく増大する。
As described above, according to the present invention, a single crystal that has already been formed from the neck portion to the shoulder portion is used as a seed, so that the shoulder forming step in which twinning occurs frequently can be omitted. Therefore, since only the body part is pulled up, the single crystallization rate is greatly improved from 20% in the conventional method to 80%, and the time required for pulling is halved from 22 hours in the conventional method to 12 hours. Is significantly increased.

【0014】なお本発明においてはシードとしてネック
部から肩部までは形成されている単結晶を用いるが、従
来この部分の結晶径は当然一定でないため、デバイス用
としては使用できなかった。本発明はこの用いられなか
った肩領域をシードに用いようとするもので、新たにこ
の部分のみを作成する必要はない。
In the present invention, a single crystal formed from the neck portion to the shoulder portion is used as a seed. However, conventionally, the crystal diameter of this portion was not constant, so that it could not be used for a device. The present invention intends to use this unused shoulder region as a seed, and it is not necessary to newly create only this portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施例に用いられた単結晶引上げ
装置を説明するための断面図。
FIG. 1 is a sectional view for explaining a single crystal pulling apparatus used in an example of a method of the present invention.

【図2】本発明方法の実施例に用いられた単結晶引上げ
装置を「図1」に引続き説明するための断面図。
FIG. 2 is a cross-sectional view for continuing to explain “FIG. 1” of a single crystal pulling apparatus used in an example of the method of the present invention.

【図3】従来の方法に用いられた単結晶引上げ装置を説
明するための断面図。
FIG. 3 is a sectional view for explaining a single crystal pulling apparatus used in a conventional method.

【図4】従来の方法に用いられた単結晶引上げ装置を
「図3」に引続き説明するための断面図。
FIG. 4 is a cross-sectional view for continuing to explain “FIG. 3” of a single crystal pulling apparatus used in a conventional method.

【符号の説明】[Explanation of symbols]

1 チャンバ 2 石英るつぼ 3 融液 4 種子結晶取付け治具 5 ヒータ 12 InSb単結晶 101 種子結晶(シード) 1 Chamber 2 Quartz Crucible 3 Melt 4 Seed Crystal Attachment Jig 5 Heater 12 InSb Single Crystal 101 Seed Crystal (Seed)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単結晶引上げ法によりインジウムアンチ
モン単結晶を製造するに際し、引上げ初期の周側面が非
垂直の単結晶体部分を種子結晶として用いることを特徴
とするインジウムアンチモン単結晶の製造方法。
1. A method for producing an indium antimony single crystal, which comprises using, as a seed crystal, a single crystal body portion whose peripheral side surface in the initial stage of pulling is non-vertical when the indium antimony single crystal is produced by the single crystal pulling method.
JP15990292A 1992-06-19 1992-06-19 Production of indium antimonide single crystal Pending JPH061700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15990292A JPH061700A (en) 1992-06-19 1992-06-19 Production of indium antimonide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15990292A JPH061700A (en) 1992-06-19 1992-06-19 Production of indium antimonide single crystal

Publications (1)

Publication Number Publication Date
JPH061700A true JPH061700A (en) 1994-01-11

Family

ID=15703671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15990292A Pending JPH061700A (en) 1992-06-19 1992-06-19 Production of indium antimonide single crystal

Country Status (1)

Country Link
JP (1) JPH061700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255981A1 (en) * 2002-11-26 2004-06-17 Forschungsverbund Berlin E.V. Device for drawing a crystal from a melt or melt solution by the Czochralski method comprises a crucible containing the molten raw material, a seed crystal of predetermined crystal orientation, and a crystal holder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255981A1 (en) * 2002-11-26 2004-06-17 Forschungsverbund Berlin E.V. Device for drawing a crystal from a melt or melt solution by the Czochralski method comprises a crucible containing the molten raw material, a seed crystal of predetermined crystal orientation, and a crystal holder

Similar Documents

Publication Publication Date Title
US6299982B1 (en) Silicon single crystal wafer and method for producing silicon single crystal wafer
EP0875607B1 (en) Silicon single crystal with no crystal defects in peripheral part of wafer
JP2002100632A (en) Silicon wafer and method for manufacturing the same
JP4830073B2 (en) Method for growing silicon carbide single crystal
US5871580A (en) Method of growing a bulk crystal
US8252404B2 (en) High resistivity silicon wafers
JPH11322491A (en) Production of silicon single crystal wafer and silicon single crystal wafer
JP3353681B2 (en) Silicon wafer and crystal growing method
US7455730B2 (en) Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
JPH0741383A (en) Semiconductor single crystal and production thereof
JPH1192283A (en) Silicon wafer and its production
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
JPH061700A (en) Production of indium antimonide single crystal
JPH0977595A (en) Production of silicon carbide single crystal
JPH08319197A (en) Production of indium antimony single crystal
JP3412531B2 (en) Phosphorus-doped silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
JPH05221786A (en) Method and device for producing silicon single crystal
JPH06271388A (en) Production of semiconductor single crystal rod
JP7046242B1 (en) Method for manufacturing indium phosphide single crystal ingot and method for manufacturing indium phosphide substrate
JP3560180B2 (en) Method for producing ZnSe homoepitaxial single crystal film
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPH0733582A (en) Production of semiconductor single crystal
JP3726622B2 (en) Manufacturing method of semiconductor silicon wafer
JP2003137699A (en) InP SINGLE CRYSTAL AND METHOD OF PRODUCING THE SAME
JPH08165189A (en) Production of semiconductor single crystal