JP4830073B2 - Method for growing silicon carbide single crystal - Google Patents

Method for growing silicon carbide single crystal Download PDF

Info

Publication number
JP4830073B2
JP4830073B2 JP2001089544A JP2001089544A JP4830073B2 JP 4830073 B2 JP4830073 B2 JP 4830073B2 JP 2001089544 A JP2001089544 A JP 2001089544A JP 2001089544 A JP2001089544 A JP 2001089544A JP 4830073 B2 JP4830073 B2 JP 4830073B2
Authority
JP
Japan
Prior art keywords
silicon carbide
crystal
growth
single crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001089544A
Other languages
Japanese (ja)
Other versions
JP2002284599A (en
Inventor
和雄 荒井
伸一 西澤
直樹 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Showa Denko KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical Showa Denko KK
Priority to JP2001089544A priority Critical patent/JP4830073B2/en
Publication of JP2002284599A publication Critical patent/JP2002284599A/en
Application granted granted Critical
Publication of JP4830073B2 publication Critical patent/JP4830073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高耐圧、大電力用半導体素子等に使用される炭化珪素単結晶を昇華法により結晶成長させる際に,特に高品質単結晶を成長させるための結晶成長方法に関する。
【0002】
【従来の技術】
炭化珪素は、高い伝熱係数、低い誘電率を有し、熱的、化学的に安定でかつエネルギーバンドギャップが広い特徴を持つ材料であり、他の半導体材料に比し高温下でも使用可能な耐環境素子材料、耐放射線素子材料、電力制御用パワー素子材料、短波長発光素子材料として利用できる。またこれを用いたデバイスはシリコン(Si)など現在使用されている半導体材料から製造したデバイスよりも高温度でかつ高い放射線密度の環境下で作動できるものと予期される。
この炭化珪素単結晶を製造する方法としては、通常炭化珪素粉末を原料として高温下での昇華法が用いられている。
【0003】
炭化珪素単結晶の昇華法による製造においては、不活性ガス雰囲気中で炭化珪素原料粉末を充填した種結晶基板を設置したるつぼを減圧し、装置全体を1800〜2400℃に昇温する。昇温に伴い原料炭化珪素からは結晶成長に寄与するSi、Si2C、SiC2、SiCなどの蒸気が発生し、同時に原料などに含まれる不純物の微粒子、結晶性の妨害微粒子等もるつぼ内に浮遊することになる。るつぼ内の原料炭化珪素層に対向させて設けた種結晶基板の成長する単結晶表面に、これら不純物微粒子などが付着することにより単結晶としてエピタキシャルに成長する結晶にマイクロパイプの発生、結晶転位の原因となっているといわれている。
【0004】
一方、炭化珪素単結晶から種結晶基板を作製するため、研削、洗浄、薬品処理などにより成形加工が行われるが、この種結晶基板表面には加工時に生じた変質層等の外乱が残存している。この加工変質層は炭化珪素が化学的に安定であるため適切なエッチャントが無く除去することが困難となっている。このため通常の昇華法では、マイクロパイプや螺旋転位等といった結晶欠陥が種結晶基板表面から数多く発生してくる。また、従来の昇華法では自然発生的な核形成により結晶が成長するため結晶の形および結晶面の制御が困難なものとなっていた。
【0005】
これを解決するために、成長初期に数十kPaの成長圧力下で高品質の結晶を成長させた後、その圧力を0.13〜1.3kPaまで漸減させ成長させている(特開昭59−35099号公報)。またこの改良特許として特開平11−60390号公報においては圧力を漸減させる方法として複数段階による減圧方法が提案されている。
これらの成長初期結晶成長速度を低く抑える方法によって種結晶に由来する結晶欠陥を抑制し、初期成長層を高品質な炭化珪素単結晶とし、それ以後成長する結晶の高品質化を計っている。
【0006】
しかしながら、いずれの方法も成長速度の遅い成長初期には高品質な結晶が得られているものの、圧力を低くし成長速度を増した時点で螺旋転位等の結晶欠陥が発生してきている。また、結晶の成長とともに結晶表面温度が変化するためか成長表面の過飽和度も同様に変化し、このため、安定な結晶成長にならずこの外乱に伴って結晶欠陥や多形が混在しやすくなっている。
【0007】
【発明が解決しようとする課題】
本発明は、炭化珪素粉末を原料とし、マイクロパイプと呼ばれる空洞状の欠陥の発生がなく、螺旋転位の極めて少ない高品質な単結晶の成長方法の開発を目的とするものである。
【0008】
【課題を解決するための手段】
本発明は、
[1] 不活性雰囲気において、圧力を13.3〜40kPaの範囲内の一定の条件下において炭化珪素粉末原料を2250℃〜2400℃、炭化珪素の種結晶基板を炭化珪素粉末原料の温度より30〜100℃低い2200〜2300℃に加熱し、かつ炭化珪素単結晶の成長速度を70μm/h以下に調整して成長させることを特徴とする炭化珪素単結晶の成長方法、
[2] 不活性雰囲気において、初期の炭化珪素の種結晶基板温度を2250〜2350℃、成長圧力を13.3〜40kPaとして初期成長層を形成した後、基板温度および成長圧力を最終的に成長圧力0.13〜2.7kPa、基板温度2200〜2250℃まで徐々に減じながら炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の成長方法、および
[3] 初期成長層の厚さが70〜300μmである請求項2に記載の炭化珪素単結晶の成長方法、を開発することにより上記の課題を解決した。
【0009】
【発明の実施の形態】
本発明の炭化珪素単結晶の成長に使用する装置としては、例えば真空容器内に断熱材で保温され、外部より高周波などにより加熱可能とした黒鉛製のるつぼを使用する。加熱装置は炭化珪素原料粉末を充填したるつぼ底面を主として加熱し、それに対向した蓋面下部に設けられた炭化珪素の種結晶基板と熱勾配を調整できるように設けられている。
【0010】
結晶の成長に際し、炭化珪素の熱分解を防ぐためるつぼ内の雰囲気はアルゴン、ヘリウムなどの不活性ガス雰囲気下で行うことが必要である。コストおよび効果の点から見てアルゴンが最もバランスしたガスである。るつぼ内の雰囲気は、原料、、種結晶をセットした後、一旦ほぼ完全に真空にし、次に高純度アルゴンを数十kPaまで再充填し、さらに必要ならばこれを繰り返して十分ガス置換を行い、必要とする雰囲気の圧力に調整することにより不活性雰囲気とする。
【0011】
炭化珪素粉末原料は、高品質の炭化珪素単結晶を作成するためには当然のことながら高純度のものが好ましい。原料中に不純物が多いときは炭化珪素原料の昇華ガスとともに原料炭化珪素に含まれるFe、Ti等の不純物や、その他高品質の結晶の成長を妨げる妨害微小粒子がるつぼ内に多量浮遊することになるので、結晶形は問わないが高純度の炭化珪素であることが好ましい。
【0012】
先に記載したように、種結晶基板とする炭化珪素基板は、炭化珪素単結晶から作製することが必要である。必要とする結晶形の高品質の炭化珪素単結晶を切削、研磨して種結晶として必要な形状とする。ついで表面にある切削、研磨による外乱を含む結晶形の乱れた変質層をできるだけ除くため、例えば熱濃硫酸で洗浄し、ついでアンモニア水と過酸化水素の混合物で洗浄し、脱イオン水で洗浄し、酸素雰囲気下で1200℃程度の高温で焼鈍した後、酸化膜を除去するためフッ化水素酸で洗浄することにより外乱を除去して種結晶とする。このようにしてもまだ完全に外乱は除去されていないので、初期成長においてこれらの外乱を消す(小さくする)様な条件とすることが必要となる。
【0013】
一般に炭化珪素の種結晶基板加熱部が2200℃以上においては、成長温度を高くするほど成長速度が大きくなる反面、結晶の空洞状欠陥の発生や螺旋転位の生成も増加の傾向にあるが、2200℃以下になってもさほど空洞状欠陥の発生の抑制や螺旋転位の生成の現象はさほど明確には表れない。従って生産性を考慮するときは炭化珪素の種結晶基板加熱部温度を2200℃以上とすることが好ましい。
【0014】
単結晶の成長速度は、成長温度が高いほど成長速度が大きくなる。また雰囲気の圧力が低いほど成長速度は大きくなる。さらに一般的には成長速度が大きいほど結晶の品位は低下する。
【0015】
前記[1]の発明においては、圧力13.3〜40kPa、炭化珪素粉末原料温度2250〜2400℃、炭化珪素の種結晶基板をこれより30〜100℃低い温度に保持した一定条件下、成長速度を70μm/hr以下に調整して炭化珪素単結晶を成長させる方法である。かかる単結晶の成長を行うときは、種結晶の若干の外乱が残っていたときでも、高品質の炭化珪素単結晶を製造できる。なお単結晶の成長速度は直接測定不可能であるので、あらかじめ圧力、温度の関係を検量しておき所定の成長速度に調整することが必要である。
【0016】
前記[2]の発明の炭化珪素単結晶の成長方法において、初期の炭化珪素の種結晶基板温度が2250〜2350℃、圧力を13.3〜40kPaとして初期成長層(厚さとして約70〜300μm、好ましくは100〜200μm)を形成した後、温度および圧力を最終的に圧力0.13〜2.7kPa、基板温度2200〜2250℃まで徐々に減じながら結晶を成長させる時は、空洞状欠陥の発生の抑制や螺旋転位の生成は大きく押さえることができ、高品質の単結晶を製造できる。
【0017】
特に本発明の前記[2]の発明においては、成長工程における炭化珪素原料加熱部と炭化珪素の種結晶加熱部間の温度勾配を約20〜60℃/cmにするときは、驚くべきことには成長速度が大きくともマイクロパイプの発生がなく、また結晶転位の発生を大きく減少できるので好ましい温度勾配である。この結果、比較的大きい成長速度でもって高品質の炭化珪素単結晶を製造することが可能となった。
【0018】
炭化珪素単結晶の成長において、炭化珪素の種結晶基板温度を炭化珪素原料温度よりも30〜100℃低くかつ2200℃以上の高温を維持する時は、基板表面に付着した原料分子の表面マイグレーションが活発になり、不要な2次核発生を抑制するだけでなく、単結晶基板表面の昇華再結晶化も活発になり表面の乱れた部分が再構成される。
これらの作用により従来単結晶基板表面から発生していた螺旋転位等に代表される結晶欠陥は抑制される。この時、過飽和度が過度にならないよう周囲の圧力を13.3kPa以上にし、成長速度として70μm/h以下にする必要がある。 また初期成長層を形成した後、成長速度を数百μm/hにする場合には徐々に周囲の圧力を下げる。この時、結晶成長に伴い結晶表面の温度が高くなる。過度に温度が高くなる場合には、結晶表面の昇華作用が強くなり結晶がダメージを受ける。これを緩和するために種単結晶基板温度を調節しながら同時に減圧を行うことにより、結晶中に発生する欠陥を抑制することが出来る。
これにより数十〜数百個/cm2あったマイクロパイプと呼ばれる空洞状の欠陥の発生はなく螺旋転位も105〜106個/cm2から103〜104個/cm2に大幅に低減されている。
【0019】
【実施例】
(実施例1)
本発明による結晶成長装置の一例を図1に示す。黒鉛からなる内径50mm深さ95mmのるつぼに炭化珪素原料粉末(昭和電工製#240)を高さ60mmになるよう充填した。黒鉛製るつぼ蓋下面にはレーリー法で作成された約1cm2の6H−炭化珪素単結晶を種結晶基板(6H−炭化珪素単結晶(Si)面、10mm径、厚さ0.5mm)として貼り付け保持した。この蓋をるつぼ開口部に配置し、この黒鉛るつぼを断熱材で包み高周波加熱炉内の反応管にセットした。ガス排出口8より反応管内を6.7×10-7kPaに減圧後、不活性ガス導入口7よりアルゴンガスを常圧まで充填した後、再度ガス排出口より6.7×10-7kPaまで減圧し反応間内の空気を追い出した。そして不活性ガス導入口よりアルゴンガスを再度93kPaまで充填し、炭化珪素粉末原料温度を2250℃、種結晶基板温度を2200℃になるまで昇温する。
【0020】
その後ガス排出口よりガスを排出し、アルゴン雰囲気圧力を13.3kPaに減圧した状態で炭化珪素単結晶の成長を72時間行い、成長層として長さ3mmの炭化珪素単結晶を得た。成長速度は3mm/72h≒40μm/hであった。この場合基板温度2200℃、原料温度2250℃でその差は50℃であり、原料粉末面と種結晶基板との間隔は2.5cmとしたので温度勾配は20℃/cmであった。
この結晶を成長方向に対して垂直に切断、鏡面研磨し、透過偏光顕微鏡で観察したところマイクロパイプは発生していなかった。また、500℃の溶融KOHに10分間浸し、エッチピット観察をしたところ、エッチピット密度が4×103個/cm2という高品質な結晶が得られた。また、X線回折により多形結晶が混在していないことを確認した。
【0021】
(実施例2)
実施例1において、不活性ガス導入口よりアルゴンガスを再度93kPaまで充填した後、初期成長層の成長条件として炭化珪素粉末原料温度2400℃、種結晶基板温度2300℃、成長圧力13.3kPaに条件調整を行い、その条件で3時間結晶成長を行った。その後ガス排出口よりガスを排出しながら、基板温度および圧力を徐々に減じながら20時間成長を行った。最終的な基板温度は2200℃(炭化珪素粉末原料温度2300℃)、成長圧力は0.13kPaであった。基板温度および圧力を変化させ始めたところで成長雰囲気ガスに窒素ガスを混入して炭化珪素結晶を着色し、成長条件を変化した位置が分かるようにした。
【0022】
その結果、初期成長では約200μmの長さの炭化珪素単結晶を得た。成長速度は200μm/3h=約67μm/hである。
また基板温度および成長圧力を減じ始めてからは、20時間で2.8mmの単結晶を成長させた。平均の成長速度は2.8mm/20h=140μm/hであった。またこの際の基板温度と原料温度の差は100℃であり、原料と種結晶との間の間隔は2.5cmとしたので温度勾配は40℃/cmであった。
この結晶を成長方向に対して垂直に切断、鏡面研磨し、透過偏光顕微鏡で観察したところマイクロパイプは発生していなかった。また、500℃の溶融KOHに10分間浸し、エッチピット観察をしたところ、エッチピット密度が6×103個/cm2という高品質な結晶が得られた。また、X線トポグラフにおいても転位密度が小さくなっていることを確認した。
【0023】
【発明の効果】
本発明により,種結晶基板表面に存在する結晶の乱れや汚れに影響されること無く、また結晶成長中も安定な成長を続けることが可能となり成長過程における転位等の結晶欠陥が炭化珪素単結晶中に導入されにくくなる。これにより従来ではマイクロパイプと呼ばれる空洞状欠陥が数十から数百個/cm2発生していたのに対し本発明においてはマイクロパイプの発生はなくなる。また、螺旋転位と呼ばれる半導体素子特性に影響する欠陥も欠陥密度で105〜106個/cm2から103〜104個/cm2に改善することができる。
【図面の簡単な説明】
【図1】実施例に使用した装置の断面図。
【図2】本発明による成長結晶のトポグラフ。
【図3】従来法による成長結晶のトポグラフ。
【符号の説明】
1 真空容器
2 断熱材
3 高周波コイル
4 成長結晶
5 炭化珪素原料粉
6 黒鉛るつぼ
7 ガス導入口
8 ガス排出口
9 放射温度計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystal growth method for growing a high-quality single crystal especially when a silicon carbide single crystal used for a high breakdown voltage, high power semiconductor element or the like is grown by a sublimation method.
[0002]
[Prior art]
Silicon carbide is a material that has a high heat transfer coefficient, low dielectric constant, is thermally and chemically stable and has a wide energy band gap, and can be used at high temperatures compared to other semiconductor materials. It can be used as an environment-resistant element material, a radiation-resistant element material, a power element material for power control, and a short wavelength light-emitting element material. Devices using this are expected to be able to operate at higher temperatures and higher radiation densities than devices made from currently used semiconductor materials such as silicon (Si).
As a method for producing this silicon carbide single crystal, a sublimation method at a high temperature is usually used using silicon carbide powder as a raw material.
[0003]
In the production of the silicon carbide single crystal by the sublimation method, the crucible in which the seed crystal substrate filled with the silicon carbide raw material powder is placed in an inert gas atmosphere is decompressed, and the entire apparatus is heated to 1800 to 2400 ° C. Vapor such as Si, Si 2 C, SiC 2 , or SiC that contributes to crystal growth is generated from the raw material silicon carbide as the temperature rises, and at the same time, fine particles of impurities, crystalline interfering fine particles, etc. contained in the raw material are contained in the crucible. Will be floating. Micropipe generation and crystal dislocations occur in the crystal that grows epitaxially as a single crystal by attaching these impurity fine particles to the surface of the single crystal on which the seed crystal substrate provided facing the raw material silicon carbide layer in the crucible grows. It is said to be the cause.
[0004]
On the other hand, in order to produce a seed crystal substrate from a silicon carbide single crystal, forming processing is performed by grinding, washing, chemical treatment, etc., but disturbances such as an altered layer generated during processing remain on the surface of the seed crystal substrate. Yes. Since the silicon carbide is chemically stable, this work-affected layer is difficult to remove without an appropriate etchant. Therefore, in the normal sublimation method, many crystal defects such as micropipes and screw dislocations are generated from the surface of the seed crystal substrate. Further, in the conventional sublimation method, the crystal grows by spontaneous nucleation, so that it is difficult to control the crystal shape and crystal plane.
[0005]
In order to solve this, after growing a high quality crystal under a growth pressure of several tens of kPa in the initial stage of growth, the pressure is gradually reduced to 0.13 to 1.3 kPa (Japanese Patent Laid-Open No. 59). -35099). As this improved patent, Japanese Patent Application Laid-Open No. 11-60390 proposes a method of reducing pressure by a plurality of steps as a method of gradually reducing the pressure.
A crystal defect derived from a seed crystal is suppressed by a method of suppressing the initial growth rate of these growth crystals, the initial growth layer is made a high-quality silicon carbide single crystal, and the quality of the crystal grown thereafter is improved.
[0006]
However, in either method, high-quality crystals are obtained at the early stage of growth where the growth rate is slow, but crystal defects such as screw dislocations are generated when the pressure is lowered and the growth rate is increased. Also, because the crystal surface temperature changes as the crystal grows, the supersaturation degree of the growth surface changes in the same way, so that stable crystal growth does not occur and crystal defects and polymorphism tend to be mixed with this disturbance. ing.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to develop a high-quality single crystal growth method that uses silicon carbide powder as a raw material, does not generate hollow defects called micropipes, and has very few screw dislocations.
[0008]
[Means for Solving the Problems]
The present invention
[1] In an inert atmosphere, the pressure is 1250 to 2400 ° C. for the silicon carbide powder raw material and the temperature of the silicon carbide seed crystal substrate is 30 from the temperature of the silicon carbide powder raw material under a certain condition in the range of 13.3 to 40 kPa. A method of growing a silicon carbide single crystal, characterized by heating to 2100 to 2300 ° C. which is lower by ˜100 ° C. and adjusting the growth rate of the silicon carbide single crystal to 70 μm / h or less,
[2] In an inert atmosphere, an initial growth layer is formed with an initial silicon carbide seed crystal substrate temperature of 2250 to 2350 ° C. and a growth pressure of 13.3 to 40 kPa, and then the substrate temperature and growth pressure are finally grown. A silicon carbide single crystal growth method characterized by growing a silicon carbide single crystal while gradually reducing the pressure from 0.13 to 2.7 kPa and the substrate temperature from 2200 to 2250 ° C., and [3] thickness of the initial growth layer The above-mentioned problem has been solved by developing a method for growing a silicon carbide single crystal according to claim 2, wherein is from 70 to 300 μm.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As an apparatus used for the growth of the silicon carbide single crystal of the present invention, for example, a graphite crucible which is kept warm by a heat insulating material in a vacuum vessel and can be heated from outside by high frequency or the like is used. The heating device is provided so as to mainly heat the bottom surface of the crucible filled with the silicon carbide raw material powder and to adjust the thermal gradient with the silicon carbide seed crystal substrate provided at the lower part of the cover surface facing the crucible.
[0010]
During crystal growth, the atmosphere in the crucible must be an inert gas atmosphere such as argon or helium in order to prevent thermal decomposition of silicon carbide. Argon is the most balanced gas in terms of cost and effectiveness. The atmosphere in the crucible is set to the raw material and seed crystal, and then vacuumed almost completely, and then refilled with high-purity argon to several tens of kPa, and if necessary, this is repeated to sufficiently replace the gas. The inert atmosphere is adjusted by adjusting the pressure of the required atmosphere.
[0011]
As a matter of course, a high-purity silicon carbide powder raw material is preferable for producing a high-quality silicon carbide single crystal. When there are many impurities in the raw material, impurities such as Fe and Ti contained in the raw material silicon carbide together with the sublimation gas of the silicon carbide raw material and other disturbing fine particles that hinder the growth of high-quality crystals will float in the crucible. Therefore, although it does not ask | require a crystal form, it is preferable that it is a high purity silicon carbide.
[0012]
As described above, a silicon carbide substrate used as a seed crystal substrate needs to be made from a silicon carbide single crystal. A high-quality silicon carbide single crystal of the required crystal form is cut and polished to obtain the required shape as a seed crystal. Next, in order to remove as much as possible the disordered layer of crystal form including disturbance due to cutting and polishing on the surface, it is washed with hot concentrated sulfuric acid, then with a mixture of ammonia water and hydrogen peroxide, and washed with deionized water. After annealing at a high temperature of about 1200 ° C. in an oxygen atmosphere, the disturbance is removed by washing with hydrofluoric acid in order to remove the oxide film, thereby obtaining a seed crystal. Even in this way, disturbances have not yet been completely removed, so it is necessary to make conditions that eliminate (reduce) these disturbances in the initial growth.
[0013]
In general, when the temperature of the silicon carbide seed crystal substrate heating portion is 2200 ° C. or higher, the growth rate increases as the growth temperature increases, but the generation of crystal cavity defects and the generation of screw dislocations tend to increase. Even when the temperature is lower than 0 ° C., the phenomenon of the generation of hollow defects and the generation of screw dislocations are not so clearly shown. Therefore, when productivity is taken into consideration, it is preferable that the temperature of the silicon carbide seed crystal substrate heating portion be 2200 ° C. or higher.
[0014]
The growth rate of a single crystal increases as the growth temperature increases. Moreover, the growth rate increases as the pressure of the atmosphere decreases. More generally, the higher the growth rate, the lower the crystal quality.
[0015]
In the invention of [1], the growth rate is maintained under a certain condition in which the pressure is 13.3 to 40 kPa, the silicon carbide powder raw material temperature is 2250 to 2400 ° C., and the silicon carbide seed crystal substrate is maintained at a temperature 30 to 100 ° C. lower than this. Is adjusted to 70 μm / hr or less to grow a silicon carbide single crystal. When such a single crystal is grown, a high-quality silicon carbide single crystal can be produced even when a slight disturbance of the seed crystal remains. Since the growth rate of a single crystal cannot be measured directly, it is necessary to calibrate the relationship between pressure and temperature in advance and adjust it to a predetermined growth rate.
[0016]
In the method for growing a silicon carbide single crystal of the invention of [2], an initial growth layer (with a thickness of about 70 to 300 μm) is obtained with an initial silicon carbide seed crystal substrate temperature of 2250 to 2350 ° C. and a pressure of 13.3 to 40 kPa. When the crystal is grown while gradually reducing the temperature and pressure to 0.13-2.7 kPa and the substrate temperature of 2200-2250 ° C. Suppression of generation and generation of screw dislocations can be greatly suppressed, and high-quality single crystals can be produced.
[0017]
In particular, in the invention [2] of the present invention, when the temperature gradient between the silicon carbide source heating part and the silicon carbide seed crystal heating part in the growth step is about 20-60 ° C./cm, it is surprising. Is a preferable temperature gradient because micropipes are not generated even when the growth rate is high, and generation of crystal dislocations can be greatly reduced. As a result, a high quality silicon carbide single crystal can be produced with a relatively high growth rate.
[0018]
In the growth of a silicon carbide single crystal, when the silicon carbide seed crystal substrate temperature is maintained at a temperature 30-100 ° C. lower than the silicon carbide source temperature and higher than 2200 ° C., surface migration of source molecules attached to the substrate surface In addition to suppressing the generation of unnecessary secondary nuclei, the sublimation recrystallization of the surface of the single crystal substrate is also activated, and the disordered portion of the surface is reconstructed.
By these actions, crystal defects represented by screw dislocations and the like that have conventionally occurred from the surface of the single crystal substrate are suppressed. At this time, it is necessary to set the ambient pressure to 13.3 kPa or more and the growth rate to 70 μm / h or less so that the degree of supersaturation does not become excessive. In addition, after the initial growth layer is formed, when the growth rate is set to several hundred μm / h, the ambient pressure is gradually lowered. At this time, the temperature of the crystal surface increases with crystal growth. When the temperature becomes excessively high, the sublimation action on the crystal surface becomes strong and the crystal is damaged. In order to alleviate this, defects occurring in the crystal can be suppressed by simultaneously reducing the pressure while adjusting the seed single crystal substrate temperature.
As a result, there was no generation of hollow defects called micropipes, which were several tens to several hundreds / cm 2, and the screw dislocation was greatly increased from 10 5 to 10 6 / cm 2 to 10 3 to 10 4 / cm 2. Has been reduced.
[0019]
【Example】
Example 1
An example of a crystal growth apparatus according to the present invention is shown in FIG. A crucible made of graphite having an inner diameter of 50 mm and a depth of 95 mm was filled with silicon carbide raw material powder (Showa Denko # 240) to a height of 60 mm. About 1 cm2 of 6H-silicon carbide single crystal prepared by the Rayleigh method is attached to the lower surface of the graphite crucible lid as a seed crystal substrate (6H-silicon carbide single crystal (Si) surface, 10 mm diameter, 0.5 mm thickness). Retained. The lid was placed in the crucible opening, and the graphite crucible was wrapped with a heat insulating material and set in a reaction tube in a high-frequency heating furnace. After reducing the pressure in the reaction tube from the gas discharge port 8 to 6.7 × 10 −7 kPa, filling the argon gas from the inert gas introduction port 7 to normal pressure, and then again 6.7 × 10 −7 kPa from the gas discharge port. The pressure in the reactor was reduced until the air in the reaction was expelled. Then, argon gas is again charged to 93 kPa from the inert gas inlet, and the temperature of the silicon carbide powder raw material is increased to 2250 ° C. and the seed crystal substrate temperature to 2200 ° C.
[0020]
Thereafter, gas was discharged from the gas discharge port, and a silicon carbide single crystal was grown for 72 hours in a state where the argon atmosphere pressure was reduced to 13.3 kPa, thereby obtaining a silicon carbide single crystal having a length of 3 mm as a growth layer. The growth rate was 3 mm / 72h≈40 μm / h. In this case, the difference between the substrate temperature of 2200 ° C. and the raw material temperature of 2250 ° C. was 50 ° C., and the distance between the raw material powder surface and the seed crystal substrate was 2.5 cm, so the temperature gradient was 20 ° C./cm.
When this crystal was cut perpendicularly to the growth direction, mirror-polished, and observed with a transmission polarization microscope, no micropipes were generated. Further, when immersed in molten KOH at 500 ° C. for 10 minutes and observed for etch pits, high-quality crystals having an etch pit density of 4 × 10 3 pieces / cm 2 were obtained. Further, it was confirmed by X-ray diffraction that no polymorphic crystals were mixed.
[0021]
(Example 2)
In Example 1, after argon gas was again filled up to 93 kPa from the inert gas inlet, the growth conditions of the initial growth layer were as follows: silicon carbide powder raw material temperature 2400 ° C., seed crystal substrate temperature 2300 ° C., growth pressure 13.3 kPa. Adjustment was performed, and crystal growth was performed for 3 hours under the conditions. Thereafter, the substrate was grown for 20 hours while gradually decreasing the substrate temperature and pressure while discharging the gas from the gas discharge port. The final substrate temperature was 2200 ° C. (silicon carbide powder raw material temperature 2300 ° C.), and the growth pressure was 0.13 kPa. When the substrate temperature and pressure were changed, nitrogen gas was mixed into the growth atmosphere gas to color the silicon carbide crystal so that the position where the growth conditions were changed can be seen.
[0022]
As a result, a silicon carbide single crystal having a length of about 200 μm was obtained in the initial growth. The growth rate is 200 μm / 3h = about 67 μm / h.
Moreover, after starting to reduce the substrate temperature and the growth pressure, a 2.8 mm single crystal was grown in 20 hours. The average growth rate was 2.8 mm / 20h = 140 μm / h. Further, the difference between the substrate temperature and the raw material temperature at this time was 100 ° C., and since the distance between the raw material and the seed crystal was 2.5 cm, the temperature gradient was 40 ° C./cm.
When this crystal was cut perpendicularly to the growth direction, mirror-polished, and observed with a transmission polarization microscope, no micropipes were generated. Further, when immersed in molten KOH at 500 ° C. for 10 minutes and observed for etch pits, high-quality crystals with an etch pit density of 6 × 10 3 pieces / cm 2 were obtained. It was also confirmed that the dislocation density was reduced in the X-ray topograph.
[0023]
【The invention's effect】
According to the present invention, it is possible to continue stable growth without being affected by disorder or contamination of crystals existing on the surface of the seed crystal substrate, and crystal defects such as dislocations during the growth process can be obtained. It becomes difficult to be introduced inside. As a result, while tens to hundreds / cm 2 of hollow defects called micropipes have conventionally been generated, the occurrence of micropipes is eliminated in the present invention. In addition, defects that affect the characteristics of semiconductor elements called screw dislocations can be improved from 10 5 to 10 6 pieces / cm 2 to 10 3 to 10 4 pieces / cm 2 in terms of defect density.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an apparatus used in an example.
FIG. 2 is a topograph of a grown crystal according to the present invention.
FIG. 3 is a topograph of a crystal grown by a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Heat insulating material 3 High frequency coil 4 Growth crystal 5 Silicon carbide raw material powder 6 Graphite crucible 7 Gas inlet 8 Gas outlet 9 Radiation thermometer

Claims (2)

炭化珪素粉末原料を用いて昇華法により炭化珪素単結晶を成長させる方法であって、不活性雰囲気において、初期の炭化珪素の種結晶基板温度を2250〜2350℃、成長圧力を13.3〜40kPaとして初期成長層を形成した後、基板温度および成長圧力を最終的に成長圧力0.13〜2.7kPa、基板温度2200〜2250℃まで徐々に減じながら炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の成長方法。 A method of growing a silicon carbide single crystal by a sublimation method using a silicon carbide powder raw material, wherein an initial silicon carbide seed crystal substrate temperature is 2250 to 2350 ° C. and a growth pressure is 13.3 to 40 kPa in an inert atmosphere. After the initial growth layer is formed, the silicon carbide single crystal is grown while gradually reducing the substrate temperature and the growth pressure to the growth pressure of 0.13 to 2.7 kPa and the substrate temperature of 2200 to 2250 ° C. A method for growing a silicon carbide single crystal. 初期成長層の厚さが70〜300μmである請求項1に記載の炭化珪素単結晶の成長方法。  The method for growing a silicon carbide single crystal according to claim 1, wherein the initial growth layer has a thickness of 70 to 300 μm.
JP2001089544A 2001-03-27 2001-03-27 Method for growing silicon carbide single crystal Expired - Fee Related JP4830073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089544A JP4830073B2 (en) 2001-03-27 2001-03-27 Method for growing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001089544A JP4830073B2 (en) 2001-03-27 2001-03-27 Method for growing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2002284599A JP2002284599A (en) 2002-10-03
JP4830073B2 true JP4830073B2 (en) 2011-12-07

Family

ID=18944460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089544A Expired - Fee Related JP4830073B2 (en) 2001-03-27 2001-03-27 Method for growing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4830073B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029459A (en) * 2003-06-16 2005-02-03 Showa Denko Kk Method for growing silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
KR100782998B1 (en) 2003-06-16 2007-12-07 쇼와 덴코 가부시키가이샤 Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
JP5562641B2 (en) * 2006-09-14 2014-07-30 クリー インコーポレイテッド Micropipe-free silicon carbide and method for producing the same
WO2008039914A2 (en) * 2006-09-27 2008-04-03 Ii-Vi Incorporated Sic single crystals with reduced dislocation density grown by step-wise periodic perturbation technique
EP2245217A1 (en) * 2007-12-12 2010-11-03 Dow Corning Corporation Method to manufacture large uniform ingots of silicon carbide by sublimation/condensation processes
EP2471981A4 (en) 2009-08-27 2013-04-17 Nippon Steel & Sumitomo Metal Corp Sic single crystal wafer and process for production thereof
CN102560671B (en) * 2010-12-31 2015-05-27 中国科学院物理研究所 Semi-insulating silicon carbide mono-crystal
US9234297B2 (en) 2011-08-29 2016-01-12 Nippon Steel & Sumitomo Metal Corporation Silicon carbide single crystal wafer and manufacturing method for same
JP5614387B2 (en) * 2011-08-29 2014-10-29 新日鐵住金株式会社 Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP5954046B2 (en) * 2012-08-21 2016-07-20 住友電気工業株式会社 Method for manufacturing silicon carbide substrate
CN104704150B (en) 2012-11-15 2018-06-12 新日铁住金株式会社 Monocrystalline silicon carbide substrate and its preparation method
JP6183010B2 (en) * 2013-07-03 2017-08-23 住友電気工業株式会社 Silicon carbide single crystal substrate and method for manufacturing the same
KR102160863B1 (en) 2014-09-30 2020-09-28 쇼와 덴코 가부시키가이샤 Silicon carbide single crystal wafer
KR101819140B1 (en) * 2016-12-20 2018-01-16 에스케이씨 주식회사 Method for growing silicon carbide single crystal ingot with high quality
JP2018140903A (en) * 2017-02-28 2018-09-13 昭和電工株式会社 Method for manufacturing silicon carbide single crystal ingot
CN110592672B (en) * 2018-12-14 2020-09-18 北京天科合达半导体股份有限公司 Low basal plane dislocation density silicon carbide crystal growth method
JP6860054B2 (en) * 2019-10-29 2021-04-14 住友電気工業株式会社 Method for producing silicon carbide single crystal
CN113445128A (en) * 2021-09-01 2021-09-28 浙江大学杭州国际科创中心 Preparation method of low-micropipe-density silicon carbide single crystal and silicon carbide single crystal
CN115261976A (en) * 2022-07-29 2022-11-01 中电化合物半导体有限公司 Device and method for reducing BPD (boron nitride) defects in silicon carbide crystal growth process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948792B2 (en) * 1982-08-17 1984-11-28 工業技術院長 Silicon carbide crystal growth method
JP2944410B2 (en) * 1993-03-16 1999-09-06 新日本製鐵株式会社 Method for growing SiC single crystal
JPH10297997A (en) * 1997-04-24 1998-11-10 Denso Corp Formation of silicon carbide singe crystal
JP3500921B2 (en) * 1997-08-07 2004-02-23 株式会社デンソー Method for producing silicon carbide single crystal

Also Published As

Publication number Publication date
JP2002284599A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP4830073B2 (en) Method for growing silicon carbide single crystal
JP5779171B2 (en) Method and apparatus for sublimation growth of SiC single crystal
WO2010024390A1 (en) METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
JP4585359B2 (en) Method for producing silicon carbide single crystal
WO2008044744A1 (en) Process for producing single crystal of silicon carbide
JP2007119273A (en) Method for growing silicon carbide single crystal
JP2010095397A (en) Silicon carbide single crystal and silicon carbide single crystal wafer
JP2007204309A (en) Single crystal growth device and single crystal growth method
JP2018140884A (en) Single crystal production apparatus, and single crystal production method
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
WO2019171901A1 (en) Production method for silicon carbide single crystal
JP2012131679A (en) Device for producing silicon carbide single crystal ingot
JP2021195298A (en) Silicon carbide ingot, wafer and method of manufacturing the same
JP2006347865A (en) Container for growing compound semiconductor single crystal, compound semiconductor single crystal and manufacturing method of compound semiconductor single crystal
JP2003104798A (en) Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
CN108149324B (en) Aluminum nitride self-nucleation growth method
JP3491429B2 (en) Method for producing silicon carbide single crystal
JP5761264B2 (en) Method for manufacturing SiC substrate
US7455730B2 (en) Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
TW202138635A (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
JP2018095490A (en) Method for manufacturing silicon single crystal, silicon single crystal and silicon single crystal wafer
Korostelin et al. Seeded vapour-phase free growth of ZnSe single crystals in the< 1 0 0> direction
JP5428706B2 (en) Method for producing SiC single crystal
KR100749938B1 (en) High quality silicon single crystal ingot growing apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

R150 Certificate of patent or registration of utility model

Ref document number: 4830073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees