JPH05221786A - Method and device for producing silicon single crystal - Google Patents

Method and device for producing silicon single crystal

Info

Publication number
JPH05221786A
JPH05221786A JP4026890A JP2689092A JPH05221786A JP H05221786 A JPH05221786 A JP H05221786A JP 4026890 A JP4026890 A JP 4026890A JP 2689092 A JP2689092 A JP 2689092A JP H05221786 A JPH05221786 A JP H05221786A
Authority
JP
Japan
Prior art keywords
single crystal
reflector
crystal
silicon single
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4026890A
Other languages
Japanese (ja)
Inventor
Isao Kanda
勲 神田
Hisao Esaka
久雄 江阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4026890A priority Critical patent/JPH05221786A/en
Publication of JPH05221786A publication Critical patent/JPH05221786A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/32Seed holders, e.g. chucks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To suppress oxidation-induced stacking faults distributed annularly and easy to generate at the initial crystal growth stage and to grow a silicon single crystal excellent in the pressure withstanding characteristic when an MOS disk is mounted in a worked wafer in the CZ silicon single crystal producing device by providing a reflector to a chuck for connecting a seed crystal to its lower end in opposition to the bottom surface of a crucible. CONSTITUTION:A reflector 8 is provided to a chuck 7 in opposition to the bottom surface of a crucible 6. The reflector is not damaged or broken even under the high temp. in the furnace by specifying the quality of the reflector. Besides, a single crystal is grown in the shape corresponding to the apex angle of the reflector and mounting position by controlling the growth rate, and the efficiency in reflecting the radiant heat is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高品質のシリコン単結晶
を高速に製造する単結晶製造装置および方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal production apparatus and method for producing a high quality silicon single crystal at high speed.

【0002】[0002]

【従来の技術】一般にチョクラルスキー法によるシリコ
ン単結晶の製造は、チャンバ内に記した石英るつぼに結
晶用原料を投入し、これを加熱溶融せしめた後、この溶
融液中に種結晶を浸し、これを回転させつつ上方に引き
上げて種結晶下端に単結晶を成長せしめることによって
行われている。引き上げは、まず高速(≧4.0mm/
min)で直径3mm程度の結晶(ダッシュネック)を
成長させて無転位結晶にした後、所定の直径まで結晶を
拡げ、肩部を形成し一定直径の単結晶を成長させる。得
られた単結晶を成長軸と垂直な方向に切断し表面を鏡面
加工してウェハ状にしたものに湿酸化熱処理を施すとウ
ェハの中心を中心とするリング状に酸化誘起積層欠陥
(以下OSFと呼ぶ)が発生することがある。OSFが
シリコンデバイスを作製する工程の熱処理で発生すると
リーク電流の原因となるため、デバイス作製用のシリコ
ンウェハはOSF発生密度が制限されている。リング状
に生ずるOSFは単結晶の一定直径部の初期の部分に発
生し易く、シリコンウェハの製造歩留を低下させる原因
となっている。
2. Description of the Related Art Generally, in the production of a silicon single crystal by the Czochralski method, a crystal raw material is put into a quartz crucible described in a chamber, the material is heated and melted, and a seed crystal is dipped in the melt. This is performed by rotating this and pulling it upward to grow a single crystal at the lower end of the seed crystal. At first, pulling up is high speed (≧ 4.0mm /
min), a crystal (dash neck) having a diameter of about 3 mm is grown into a dislocation-free crystal, the crystal is expanded to a predetermined diameter, a shoulder is formed, and a single crystal having a constant diameter is grown. When the obtained single crystal was cut in a direction perpendicular to the growth axis, and the surface was mirror-finished into a wafer shape and subjected to wet oxidation heat treatment, a ring-shaped oxidation-induced stacking fault (hereinafter referred to as OSF) centered on the center of the wafer was applied. Called) may occur. If the OSF is generated in the heat treatment in the step of manufacturing a silicon device, it causes a leak current, so that the OSF generation density of the silicon wafer for manufacturing the device is limited. The ring-shaped OSF is likely to occur in the initial portion of the constant diameter portion of the single crystal, which causes a reduction in the production yield of silicon wafers.

【0003】一般にこのリング状のOSFは成長中の結
晶が1200℃付近の温度を通過するときの冷却速度が
小さいと発生が抑制される。従来、結晶の冷却速度を制
御する手段としてるつぼの直上部または結晶の周囲にヒ
ーターを設ける装置(実開平2−61965号、特開昭
63−60190号)、結晶周囲に熱遮蔽体を設ける装
置(特公昭51−47153号)などが提案されてい
る。しかし、前者はヒーターの素材が剥離または昇華し
てるつぼ内の融液を汚染する可能性が高く、さらに装置
が複雑であり、余分な電力を要する等の問題点がある。
後者は断熱効果が成長界面付近にも及び界面付近での冷
却速度が遅くなり結晶の成長速度が制限され生産性を低
下させる、また炉内の雰囲気ガスの流れを遮るための融
液表面から蒸発するSiOガスの排出が効率よく行われ
ず、熱遮蔽体表面にSiO2が凝結し、このSiO2が融
液に落下して成長中の単結晶に付着し転位源になる可能
性が非常に高くなる、などの問題点がある。
In general, the ring-shaped OSF is suppressed from being generated when the growing crystal passes through a temperature near 1200 ° C. and the cooling rate is low. Conventionally, a device for providing a heater directly above the crucible or around the crystal as a means for controlling the cooling rate of the crystal (Actual Kaihei No. 2-61965, JP-A-63-60190), a device for providing a heat shield around the crystal. (Japanese Patent Publication No. 51-47153) and the like have been proposed. However, in the former case, there is a high possibility that the material of the heater is peeled off or sublimated to contaminate the melt in the crucible, the apparatus is complicated, and extra power is required.
The latter has adiabatic effect near the growth interface and slows the cooling rate near the interface, limiting the crystal growth rate and lowering the productivity, and evaporating from the melt surface to block the flow of atmospheric gas in the furnace. It is highly possible that the SiO 2 gas will not be efficiently discharged, and SiO 2 will be condensed on the surface of the heat shield, and this SiO 2 will fall into the melt and adhere to the growing single crystal to become a dislocation source. There are problems such as becoming.

【0004】次に、シリコンウェハの上に上層がアルミ
ニウム、下層がドープされ多結晶シリコンからなる2層
電極を有するMOSダイオードを実装したときに、基板
シリコンから多数キャリアが注入される極性の電圧を印
加してゲート酸化膜の耐圧特性を評価すると、前述のリ
ング状OSFの外側の領域では耐圧特性に優れ、内側の
領域では耐圧特性が劣ることが知られている(篠山誠二
・長谷部政美・山内剛:応用物理60,766(199
1))。ゲート酸化膜の耐圧は、デバイスの微小化にと
もなう酸化膜の薄膜化により従来以上に高耐圧であるこ
とが求められている。従来、耐圧特性を向上させるため
に単結晶の成長速度を0.8mm/min以下に制限す
る方法が提案されている(特開平2−267195
号)。また、成長速度が小さくなるとリング状のOSF
の半径が小さくなりある臨界速度以下では中心で消滅し
てしまうことが知られている。したがって、結晶を低速
で成長させるとリング状のOSFの発生がなく、MOS
ダイオードを実装したときのゲート酸化膜耐圧の特性が
優れたシリコン単結晶を製造することができる。しか
し、低速である以上、生産性が低下するので十分な技術
とはいえない。
Next, when a MOS diode having a two-layer electrode made of polycrystalline silicon in which the upper layer is aluminum and the lower layer is doped is mounted on a silicon wafer, a polarity voltage in which majority carriers are injected from the substrate silicon is applied. When the withstand voltage characteristic of the gate oxide film is evaluated by applying the voltage, it is known that the withstand voltage characteristic is excellent in the outer region of the ring-shaped OSF and inferior in the inner region (Seiji Shinoyama, Masami Hasebe, Yamauchi). Tsuyoshi: Applied Physics 60,766 (199
1)). The breakdown voltage of the gate oxide film is required to be higher than before due to the thinning of the oxide film accompanying the miniaturization of devices. Conventionally, a method has been proposed in which the growth rate of a single crystal is limited to 0.8 mm / min or less in order to improve withstand voltage characteristics (Japanese Patent Laid-Open No. 2-267195).
issue). In addition, when the growth rate decreases, a ring-shaped OSF
It is known that the radius of becomes small and disappears at the center below a certain critical speed. Therefore, when the crystal is grown at a low speed, no ring-shaped OSF is generated and the MOS
It is possible to manufacture a silicon single crystal having excellent gate oxide film breakdown voltage characteristics when a diode is mounted. However, it cannot be said to be a sufficient technique because the productivity is reduced as long as the speed is low.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、成長
初期のリング状のOSFの発生がなく、ゲート酸化膜耐
圧特性にも優れたシリコン単結晶を低速成長法によるこ
となく、高速度で生産する手段を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to produce a silicon single crystal which is free of ring-shaped OSF in the initial stage of growth and has excellent gate oxide film withstand voltage characteristics at a high speed without using the slow growth method. It is to provide the means to produce.

【0006】[0006]

【課題を解決するための手段】本発明では上記課題を解
決するために結晶が1200℃付近で通過するとき、
0.8mm/min以上の成長速度においても0.8m
m/min以下の成長速度の時とほぼ同じ冷却速度を実
現する装着および方法を提供する。
According to the present invention, in order to solve the above-mentioned problems, when a crystal passes around 1200 ° C.,
0.8m even at a growth rate of 0.8mm / min or more
An installation and method is provided that achieves about the same cooling rate as at a growth rate of m / min or less.

【0007】2水準のシリコン単結晶の成長速度に対し
て、成長中の結晶の温度分布を計算機シュミレーション
で求めた結果と、1200℃付近に於ける冷却速度(成
長方向の温度勾配×成長速度)を図3および図4に示
す。これから結晶の中心軸付近は外側よりも冷却速度が
速く、その差は成長速度が小さいほど小さいことがわか
る。成長速度を小さくしていくとリング状のOSFの半
径が小さくなること、リングの外側が内側よりもゲート
酸化膜耐圧が優れていると言う事実から、リング状のO
SFはある範囲の冷却速度域で発生する。その速度を境
に速度の大きな領域でゲート酸化膜耐圧が劣り速度の小
さな領域でゲート酸化膜耐圧が優れているという知見を
得た。この知見から、中心軸付近の冷却速度を抑制し全
体の冷却速度が臨界の速度より小さくなるようにすれ
ば、リング状のOSFの発生がなくゲート酸化膜の耐圧
特性の優れた単結晶が得られる。従来技術のるつぼ直上
のヒーターおよび結晶周囲の熱遮蔽体は結晶の外側から
熱を加えることによって冷却速度を低下させるものであ
り、既に述べたような問題点がある。
The results of calculating the temperature distribution of the growing crystal by computer simulation with respect to the growth rate of the two-level silicon single crystal, and the cooling rate at around 1200 ° C. (temperature gradient in the growth direction × growth rate) Is shown in FIGS. 3 and 4. From this, it can be seen that the cooling rate near the central axis of the crystal is higher than that at the outside, and the difference is smaller as the growth rate is smaller. Due to the fact that the radius of the ring-shaped OSF becomes smaller as the growth rate is made smaller and the gate oxide film breakdown voltage is better on the outside of the ring than on the inside, the ring-shaped O
SF occurs in a certain cooling rate range. At that speed, it was found that the gate oxide film breakdown voltage was poor in the high speed region and the gate oxide film breakdown voltage was excellent in the low speed region. From this knowledge, if the cooling rate in the vicinity of the central axis is suppressed so that the overall cooling rate becomes lower than the critical rate, a single crystal with excellent withstand voltage characteristics of the gate oxide film can be obtained without generation of ring-shaped OSF. Be done. The prior art heater directly above the crucible and the heat shield around the crystal reduce the cooling rate by applying heat from the outside of the crystal, and have the problems already mentioned above.

【0008】図1に本発明の反射板を設けたシリコン単
結晶製造装置を示す。単結晶のダッシュネック直後の円
錐部(10)は、単結晶直胴部の側面と比べて、冷却水
によって冷却されているメインチャンバー(2)を臨む
角度が大きく、さらに高温に加熱された石英るつぼ
(6)、原料融液表面を臨む角度が小さい。これは結晶
の直胴部側面が石英るつぼに対向し、メインチャンバー
を臨む角度が小さく、石英るつぼを臨む角度が大きくな
っており、円錐部10とは対照的である。とくに結晶の
成長初期に於いては、結晶の全表面積に占める円錐部の
表面積の割合が大きいため、結晶からの抜熱はおもに円
錐部からなされ、その結果、結晶の中心軸付近の冷却速
度が大きくなる。したがって、この円錐部からの抜熱を
抑制すれば、特に中心軸付近において単結晶の冷却速度
が低下し、全体が臨界の冷却速度より小さくなる。
FIG. 1 shows an apparatus for producing a silicon single crystal provided with a reflector of the present invention. The conical portion (10) immediately after the dash neck of the single crystal has a larger angle facing the main chamber (2) cooled by the cooling water than the side surface of the straight body of the single crystal, and quartz heated to a higher temperature The angle of the crucible (6) and the surface of the raw material melt is small. This is in contrast to the conical portion 10, in which the side surface of the straight body of the crystal faces the quartz crucible, the angle facing the main chamber is small, and the angle facing the quartz crucible is large. Especially in the initial stage of crystal growth, the surface area of the cone occupies a large proportion of the total surface area of the crystal, so heat is removed from the crystal mainly from the cone, and as a result, the cooling rate near the central axis of the crystal is increased. growing. Therefore, if the heat removal from the conical portion is suppressed, the cooling rate of the single crystal decreases, especially near the central axis, and the cooling rate becomes lower than the critical cooling rate as a whole.

【0009】本発明は、単結晶のダッシュネック直後の
円錐部からの抜熱を抑制するために種結晶取り付け用の
チャック(7)の胴部側面に底面の直径がプルチャンバ
ー(1)の内径を超えない中空円錐状で、その中空部が
るつぼの底面に対向する反射板を設けた装置である。反
射板とチャックの接合方法は例えば図2の穴13をシャ
フト14に通し、凹部15を凸部16にかみ合わせて挿
着する。ただし、挿着方法はここに示したものに限らな
い。反射板の材質は炉内の高温(約1200℃)におい
ても破損・破断がなく、かつ輻射光の反射率が高い材料
でなければならず、モリブデン、または炭化珪素でコー
ティングした黒鉛、または半透明石英を使用する。石英
の反射率はその肉中気泡容積比によって変化し、十分な
抜熱抑制効率を得るためには肉中気泡容積比は4×10
-3以上でなければならない。また、反射板の側面は単結
晶の円錐面と平行であることが望ましく、反射板の頂角
(θ)は通常の操業における円錐面の頂角(φ)にほぼ
等しいものとし、単結晶の円錐部を成長させるときに結
晶直径を測定しながらφがθにほぼ等しくなるように成
長速度を抑制する。また、結晶の円錐面が反射板を臨む
角度は大きいほうが抜熱抑制効率が高く、図5において
xが円錐面の母線の長さの0.5倍以上であることが望
ましい。すなわち、接合部(12)と単結晶のダッシュ
ネック終了位置(9)との距離LがL≦2R/sin
(θ)−r/2/sin(φ/2)/cos(θ/2)
[式1]を満たせばよい。この条件を満たすために、接
合部の位置と種結晶の長さをあらかじめ適当な値に調整
しておき、結晶成長中にダッシュネックの長さを式1を
満たすようにする。なお、Lの最小値は、単結晶製造装
置の構造および製造条件により定まるものである。
According to the present invention, in order to suppress heat removal from the conical portion of the single crystal immediately after the dash neck, the diameter of the bottom surface is the inner diameter of the pull chamber (1) on the body side surface of the chuck (7) for mounting the seed crystal. The device has a hollow conical shape that does not exceed 5 cm, and the hollow portion is provided with a reflecting plate facing the bottom surface of the crucible. As for the method of joining the reflector and the chuck, for example, the hole 13 shown in FIG. 2 is passed through the shaft 14, and the concave portion 15 is engaged with the convex portion 16 for insertion. However, the insertion method is not limited to the one shown here. The material of the reflector should be a material that does not break or break even at high temperature (about 1200 ° C) in the furnace and has high reflectance of radiant light. Graphite coated with molybdenum or silicon carbide, or semi-transparent Use quartz. The reflectance of quartz changes depending on the volume ratio of bubbles in meat, and the volume ratio of bubbles in meat is 4 × 10 in order to obtain sufficient heat removal suppression efficiency.
-Must be -3 or higher. Further, it is desirable that the side surface of the reflecting plate be parallel to the conical surface of the single crystal, and the apex angle (θ) of the reflecting plate should be approximately equal to the apex angle (φ) of the conical surface in normal operation. While growing the conical portion, while controlling the crystal diameter, the growth rate is controlled so that φ becomes substantially equal to θ. Further, the larger the angle at which the conical surface of the crystal faces the reflector, the higher the heat removal suppression efficiency, and in FIG. 5, x is preferably 0.5 times or more the length of the generatrix of the conical surface. That is, the distance L between the joint portion (12) and the single crystal dash neck end position (9) is L ≦ 2R / sin.
(Θ) -r / 2 / sin (φ / 2) / cos (θ / 2)
It suffices to satisfy [Equation 1]. In order to satisfy this condition, the position of the bonded portion and the length of the seed crystal are adjusted to appropriate values in advance, and the length of the dash neck satisfies the formula 1 during the crystal growth. The minimum value of L is determined by the structure and manufacturing conditions of the single crystal manufacturing apparatus.

【0010】[0010]

【作用】本発明の反射板を設けることにより、シリコン
単結晶の成長初期に於いて単結晶ダッシュネック後の円
錐部(10)からの抜熱が抑制され、特に結晶の中心軸
付近で冷却速度が小さくなる。その結果、成長速度が
0.8mm/min以上でも、結晶が1200℃付近の
温度を通過するときの冷却速度がリング状のOSFが発
生する臨界速度より小さくなる。また、反射板の材質を
モリブデン、または炭化珪素でコーティングした黒鉛、
または肉中気泡容積比が4×10-3以上の半透明石英に
することにより輻射熱の反射が効率よく行われ、かつ炉
内が高温になっても破損破断がないので単結晶の成長を
阻害することはない。さらに、成長速度を制御して円錐
面(10)が反射板に平行になるようにし、接合部(1
2)とダッシュネック終了位置(9)の距離Lが式1を
満たすようにすることによって、円錐面(10)が反射
板を臨む角度が大きくなり輻射熱の反射が効率よく行わ
れる。また、本発明の反射板の単結晶のダッシュネック
後の円錐部のみを断熱するので成長界面付近への影響が
少なく、成長速度が制限されることはない。また、円錐
状であるため雰囲気ガスの流れをほとんど乱すことがな
くSiOガスの排出がスムーズに行われる。
By providing the reflecting plate of the present invention, heat removal from the conical portion (10) after the dash neck of the single crystal is suppressed at the initial stage of growth of the silicon single crystal, and especially the cooling rate is near the center axis of the crystal. Becomes smaller. As a result, even when the growth rate is 0.8 mm / min or more, the cooling rate when the crystal passes through a temperature near 1200 ° C. becomes lower than the critical rate at which the ring-shaped OSF is generated. Also, the material of the reflector is molybdenum or graphite coated with silicon carbide,
Alternatively, by using semi-transparent quartz with a volume ratio of bubbles in meat of 4 × 10 -3 or more, radiant heat can be efficiently reflected, and even if the temperature inside the furnace is high, there is no breakage and breakage, which hinders the growth of single crystals. There is nothing to do. Further, the growth rate is controlled so that the conical surface (10) is parallel to the reflection plate, and the joint (1
By setting the distance L between the 2) and the dash neck end position (9) to satisfy the expression 1, the angle at which the conical surface (10) faces the reflecting plate becomes large, and the radiant heat is efficiently reflected. Further, since only the conical portion after the dash neck of the single crystal of the reflector of the present invention is insulated, the influence on the vicinity of the growth interface is small and the growth rate is not limited. Further, since it has a conical shape, the flow of the atmospheric gas is hardly disturbed, and the SiO gas is smoothly discharged.

【0011】[0011]

【実施例】以下、本発明例および比較例により本発明を
具体的に説明する。なお、本発明例、比較例ともに表1
に示す共通の条件で単結晶を成長させた。得られた単結
晶の1例を図6に示す。評価用の試料は、結晶の肩部か
らの距離S=50mmの位置から採取し、通常の工業生
産に於ける過程を経て直径150mmの鏡面ウェハに加
工した。本発明例、比較例の共通実施条件を表2に示
す。また、図7に各実施例の反射板の形状、図8に反射
板の取り付け位置を変えた実施例を示す。
EXAMPLES The present invention will be specifically described below with reference to Examples of the present invention and Comparative Examples. In addition, both of the present invention example and the comparative example are shown in Table 1.
Single crystals were grown under the common conditions shown in. An example of the obtained single crystal is shown in FIG. The sample for evaluation was taken from a position at a distance S = 50 mm from the shoulder of the crystal, and processed into a mirror-finished wafer having a diameter of 150 mm through a process in normal industrial production. Table 2 shows common implementation conditions of the present invention example and the comparative example. Further, FIG. 7 shows the shape of the reflection plate of each embodiment, and FIG. 8 shows an embodiment in which the mounting position of the reflection plate is changed.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】ア)OSF発生密度の比較 各試料を1100℃の湿酸化雰囲気で80分間熱処理し
たのち、表面酸化膜を希弗酸で除去し、Wrightエ
ッチング液で90秒間腐食し、ピットとなって現れた結
晶欠陥を光学顕微鏡で観察し積層欠陥と判断できるピッ
トを数えた。顕微鏡の倍率を200倍とし、ウェハの直
径方向にOSFの個数を数えた結果を表3に示す。ま
た、OSF個数におよぼすθ−φおよびLの影響を図9
および図10に示す。本発明例および比較例ではOSF
はウェハあたり0〜2個であるが、比較例9〜16では
リング状に分布したOSFが見られた。特に比較例9の
結晶のウェハ面内のOSFの密度分布を図11に示す。
この試料では軸心から55mm付近にピークを持つ高密
度のOSFがリング状に発生している。また、比較例1
3の試料にはリング状のOSFは見られなかったがウェ
ハ全面にOSFが発生していた。これは、反射板から炭
素がシリコン溶融液中に混入したためと考えられる。さ
らに、図9により反射板の頂角φと結晶の円錐部の頂角
θの差が大きいとOSF個数が多くなり、図10よりL
が本発明の請求項6の式を満たさない場合にもOSF個
数が多くなることがわかる。
A) Comparison of OSF generation density After each sample was heat-treated in a wet oxidation atmosphere at 1100 ° C. for 80 minutes, the surface oxide film was removed with dilute hydrofluoric acid and corroded with a Wright etching solution for 90 seconds to form a pit. The crystal defects that appeared were observed with an optical microscope, and the number of pits that could be determined as stacking faults was counted. Table 3 shows the results of counting the number of OSFs in the diameter direction of the wafer with a microscope magnification of 200 times. In addition, the influence of θ-φ and L on the number of OSFs is shown in FIG.
And shown in FIG. In the present invention example and the comparative example, OSF
Is 0 to 2 per wafer, but in Comparative Examples 9 to 16, OSFs distributed in a ring shape were observed. In particular, FIG. 11 shows the OSF density distribution in the wafer surface of the crystal of Comparative Example 9.
In this sample, a high-density OSF having a peak around 55 mm from the axis is ring-shaped. Comparative Example 1
No ring-shaped OSF was observed in the sample No. 3, but OSF was generated on the entire surface of the wafer. It is considered that this is because carbon was mixed into the silicon melt from the reflector. Further, according to FIG. 9, when the difference between the apex angle φ of the reflector and the apex angle θ of the conical portion of the crystal is large, the number of OSFs increases, and from FIG.
It can be seen that the number of OSFs is large even when does not satisfy the formula of claim 6 of the present invention.

【0015】イ)ゲート酸化膜耐圧の比較 耐圧特性はシリコンウェハ上に実装した多数個のMOS
ダイオードのゲート電極に電圧ランピング法により電界
を印加し酸化膜が絶縁破壊を起こす電界で評価した。M
OSダイオードの実装方法を表4に沿って説明する。ま
ずウェハを洗浄し、(工程No.1以下No.のみで表
示する)、ゲート酸化を行ってSiO2層を形成し
(2)、多結晶シリコンを堆積させ(3)、この多結晶
シリコンにイオン注入してドープする(6)。酸化前洗
浄(4)及び多結晶シリコンの酸化(5)はイオン注入
(6)の前処理である。ついで、アニール前洗浄(7)
を行い、ドライブアニールして多結晶シリコン中のドー
バントを固溶化し(8)、多結晶シリコン酸化膜をエッ
チング除去し(9)、アルミニウムを蒸着してアルミニ
ウム層を形成する(10)。次に、直径5mmの2層ゲ
ート電極を実装するためにリソグラフィー(11)によ
りポリレジスト膜をコートして、パターニングしたの
ち、アルミニウム層をエッチングし(12)、レジスト
膜を除去する(14)。そして、水素アニールによりS
i/SiO2界面を安定化したのち(15)、表面にレ
ジスト膜を塗布してMOSダイオードを保護し(1
6)、プラズマエッチングにより表面多結晶シリコン膜
を除去する(17)。表面に保護用のレジスト膜を再度
塗布して(18)、裏面酸化膜をエッチングにより除去
し(19)、p型の場合には金、n型の場合には金・ア
ンチモン合金を蒸着して裏面電極を形成する(20)。
最後に、保護用レジスト膜を除去した(21)。
A) Comparison of breakdown voltage of gate oxide film The breakdown voltage characteristic is that many MOSs mounted on a silicon wafer.
An electric field was applied to the gate electrode of the diode by the voltage ramping method, and evaluation was made by the electric field in which the oxide film caused dielectric breakdown. M
A method of mounting the OS diode will be described with reference to Table 4. First, the wafer is washed (process No. 1 and subsequent numbers are shown only), gate oxidation is performed to form a SiO 2 layer (2), and polycrystalline silicon is deposited (3). Doping by ion implantation (6). Pre-oxidation cleaning (4) and polycrystalline silicon oxidation (5) are pre-treatments for ion implantation (6). Then, cleaning before annealing (7)
Then, drive annealing is performed to solidify the dopant in the polycrystalline silicon (8), the polycrystalline silicon oxide film is removed by etching (9), and aluminum is deposited to form an aluminum layer (10). Next, a polyresist film is coated by lithography (11) to mount a two-layer gate electrode having a diameter of 5 mm, and after patterning, the aluminum layer is etched (12) and the resist film is removed (14). Then, by hydrogen annealing, S
After stabilizing the i / SiO 2 interface (15), a resist film is applied to the surface to protect the MOS diode (1
6) The surface polycrystalline silicon film is removed by plasma etching (17). A protective resist film is applied again on the surface (18), the backside oxide film is removed by etching (19), and gold is deposited for p-type and gold-antimony alloy is deposited for n-type. A back electrode is formed (20).
Finally, the protective resist film was removed (21).

【0016】電圧ランピング法とは、図12において、
基板シリコンから多数キャリアが注入される極性の直流
電圧をアルミニウム層(21)と裏面電流(20)との
間に印加し、その電圧を時間に対してステップ状に増加
させる方法である。本発明例では、この電圧ランピング
法の1ステップあたりの電圧増加を電界換算で0.25
MV/cm、保護時間を200ms/ステップとし、絶
縁膜破壊のおこる臨界電界(Eb)が8.0MV/cm
以上であるMOSダイオードの個数の割合(Cモード合
格率)を計算した。
The voltage ramping method is as shown in FIG.
In this method, a DC voltage having a polarity in which majority carriers are injected from the substrate silicon is applied between the aluminum layer (21) and the back surface current (20), and the voltage is increased stepwise with respect to time. In the example of the present invention, the voltage increase per step of this voltage ramping method is converted into an electric field of 0.25.
MV / cm, protection time is 200 ms / step, and critical electric field (Eb) at which insulation film breakdown occurs is 8.0 MV / cm.
The ratio of the number of the MOS diodes described above (C mode acceptance rate) was calculated.

【0017】[0017]

【表3】 [Table 3]

【0018】その結果を表4に示す。また、Cモード合
格率とθ−φおよびLの関係を図13、14に示した。
本発明例および比較例8(反射板なし)の単結晶ではC
モード合格率は90%以上である。これに対し、比較例
9、13、14の結晶ではCモード合格率は70%以下
である。図15に本発明例1および比較例8の結晶につ
いてウェハ面内のCモード合格、不合格の分布を示し
た。比較例8ではリング状のOSFの内側の領域で不合
格が多くなっている。また、図13により反射板の頂角
φと結晶の円錐部の頂角θの差が大きいと合格率が低く
なり、図10よりLが本発明の請求項6の式を満たさな
い場合にも合格率が低くなることがわかる。
The results are shown in Table 4. 13 and 14 show the relationship between the C mode acceptance rate and θ−φ and L.
In the single crystals of the present invention example and the comparative example 8 (without a reflector), C was used.
The mode pass rate is 90% or more. On the other hand, in the crystals of Comparative Examples 9, 13, and 14, the C mode acceptance rate is 70% or less. FIG. 15 shows distributions of pass / fail of C mode in the plane of the wafer for the crystals of Inventive Example 1 and Comparative Example 8. In Comparative Example 8, the number of rejects increases in the area inside the ring-shaped OSF. Further, as shown in FIG. 13, when the difference between the apex angle φ of the reflection plate and the apex angle θ of the conical portion of the crystal is large, the pass rate becomes low. It can be seen that the pass rate is low.

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【発明の効果】本発明の反射板を設けることにより、
0.8mm/min以上の成長速度でも0.8mm/m
in以下の場合と同様の冷却速度が実現され、成長初期
に発生し易かったリング状のOSFの発生がなく、か
つ、ゲート酸化膜高圧特性にすぐれたシリコン単結晶を
製造できる。
By providing the reflecting plate of the present invention,
0.8 mm / m even at a growth rate of 0.8 mm / min or more
A cooling rate similar to that in the case of less than or equal to in can be realized, a ring-shaped OSF, which was easily generated in the initial stage of growth, is not generated, and a silicon single crystal having excellent gate oxide film high-voltage characteristics can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシリコン単結晶製造装置を示す図、FIG. 1 is a view showing a silicon single crystal production apparatus of the present invention,

【図2】本発明の反射板と種結晶取り付け用チャックと
の接合部の構造の1例を示す図、
FIG. 2 is a diagram showing an example of a structure of a joint portion between a reflector and a chuck for mounting a seed crystal of the present invention,

【図3】計算機シミュレーションで求めた成長初期のシ
リコン単結晶の温度分布を示す図、
FIG. 3 is a diagram showing a temperature distribution of a silicon single crystal at an early stage of growth obtained by computer simulation,

【図4】単結晶が1200℃付近の温度を通過するとき
の冷却速度を示す図、
FIG. 4 is a diagram showing a cooling rate when a single crystal passes through a temperature near 1200 ° C.,

【図5】本発明の反射板と単結晶の位置関係を示す図、FIG. 5 is a diagram showing a positional relationship between a reflector and a single crystal of the present invention,

【図6】成長させたシリコン単結晶の1例を示す図、FIG. 6 is a view showing an example of a grown silicon single crystal,

【図7】各実施例における反射板の形状を示す図、FIG. 7 is a diagram showing the shape of a reflector in each example,

【図8】各実施例における反射板の取り付け位置を示す
図、
FIG. 8 is a diagram showing a mounting position of a reflection plate in each embodiment,

【図9】OSF個数とθ−φの関係を示す図、FIG. 9 is a diagram showing the relationship between the number of OSFs and θ-φ;

【図10】OSF個数とLの関係を示す図、FIG. 10 is a diagram showing the relationship between the number of OSFs and L;

【図11】比較例9のウェハ面内のOSF密度分布を示
す図、
11 is a diagram showing an in-plane OSF density distribution of Comparative Example 9, FIG.

【図12】実装したMOSダイオードの部分断面図、FIG. 12 is a partial cross-sectional view of a mounted MOS diode,

【図13】Cモード合格率とθ−φの関係を示す図、FIG. 13 is a diagram showing a relationship between a C mode acceptance rate and θ-φ;

【図14】Cモード合格率とLの関係を示す図、FIG. 14 is a diagram showing a relationship between a C mode acceptance rate and L;

【図15】本発明例1および比較例9のゲート酸化膜耐
圧特性(ウェハ面内分布)を示す図である。
FIG. 15 is a diagram showing gate oxide film breakdown voltage characteristics (in-plane distribution of wafer) of Inventive Example 1 and Comparative Example 9.

【符号の説明】[Explanation of symbols]

1 プルチャンバー 2 メインチャンバー 3 断熱材 4 加熱手段 5 黒鉛るつぼ 6 石英るつぼ 7 種結晶取り付け用チャック 8 反射板 9 ダッシュネック終了位置 10 単結晶円錐部 11 シリコン単結晶 12 7と8の接合部 13 穴部 14 シャフト 15 凹部 16 凸部 17 単結晶肩部 18 基板シリコン 19 SiO2膜(厚さ約250オームストロング) 20 多結晶シリコン層(厚さ約5000オームストロ
ング) 21 アルミニウム層(厚さ2000〜5000オーム
ストロング) 22 2層ゲート電極
DESCRIPTION OF SYMBOLS 1 Pull chamber 2 Main chamber 3 Heat insulating material 4 Heating means 5 Graphite crucible 6 Quartz crucible 7 Seed crystal mounting chuck 8 Reflector plate 9 Dash neck end position 10 Single crystal cone portion 11 Silicon single crystal 12 7 Joint portion of 7 and 8 13 hole Part 14 Shaft 15 Recess 16 Protrusion 17 Single crystal shoulder 18 Substrate silicon 19 SiO 2 film (thickness about 250 ohm strong) 20 Polycrystalline silicon layer (thickness about 5000 ohm strong) 21 Aluminum layer (thickness 2000 to 5000) Ohm Strong) 22 Double-layer gate electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法による単結晶製造装
置に於いて、下端に種結晶を連結するためのチャック
(7)に、るつぼ(6)の底面に対向して反射板を設け
たことを特徴とするシリコン単結晶製造装置。
1. A device for producing a single crystal by the Czochralski method, wherein a chuck (7) for connecting a seed crystal at a lower end thereof is provided with a reflection plate facing the bottom surface of the crucible (6). Characteristic silicon single crystal manufacturing equipment.
【請求項2】 前記反射板の材質がモリブデンであるこ
とを特徴とする請求項1記載のシリコン単結晶製造装
置。
2. The silicon single crystal manufacturing apparatus according to claim 1, wherein the material of the reflector is molybdenum.
【請求項3】 前記反射板の材質が炭化珪素でコーティ
ングを施した黒鉛であることを特徴とする請求項1記載
のシリコン単結晶製造装置。
3. The silicon single crystal manufacturing apparatus according to claim 1, wherein the material of the reflector is graphite coated with silicon carbide.
【請求項4】 前記反射板が半透明石英であり、その肉
中気泡容積比が4×10-3以上であることを特徴とする
請求項1記載のシリコン単結晶製造装置。
4. The apparatus for producing a silicon single crystal according to claim 1, wherein the reflector is semitransparent quartz and the volume ratio of bubbles in the meat is 4 × 10 −3 or more.
【請求項5】 前記反射板の頂角(θ)と単結晶の円錐
面(10)の頂角(φ)が等しくなるように結晶の成長
速度を制御することを特徴とするシリコン単結晶製造方
法。
5. The production of a silicon single crystal, wherein the crystal growth rate is controlled so that the apex angle (θ) of the reflector and the apex angle (φ) of the conical surface (10) of the single crystal are equal. Method.
【請求項6】 前記反射板と種結晶取り付け用チャック
との接合部(12)と単結晶のダッシュネック終了位置
(9)との距離LがL≦2R/sin(θ)−r/2/
sin(φ/2)/cos(θ/2)(R:反射板下端
の円周の半径、r:単結晶の半径)を満たすように単結
晶を引き上げることを特徴とするシリコン単結晶製造方
法。
6. The distance L between the joint (12) between the reflector and the chuck for mounting the seed crystal and the dash neck end position (9) of the single crystal is L ≦ 2R / sin (θ) -r / 2 /
A method for producing a silicon single crystal, characterized in that the single crystal is pulled so as to satisfy sin (φ / 2) / cos (θ / 2) (R: radius of circumference of lower end of reflector, r: radius of single crystal). ..
JP4026890A 1992-02-13 1992-02-13 Method and device for producing silicon single crystal Withdrawn JPH05221786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4026890A JPH05221786A (en) 1992-02-13 1992-02-13 Method and device for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4026890A JPH05221786A (en) 1992-02-13 1992-02-13 Method and device for producing silicon single crystal

Publications (1)

Publication Number Publication Date
JPH05221786A true JPH05221786A (en) 1993-08-31

Family

ID=12205849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4026890A Withdrawn JPH05221786A (en) 1992-02-13 1992-02-13 Method and device for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JPH05221786A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677208A (en) * 1994-03-25 1997-10-14 Nippondenso Co., Ltd. Method for making FET having reduced oxidation inductive stacking fault
US6015460A (en) * 1995-12-15 2000-01-18 Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag Method and apparatus for pulling a monocrystal
JP2000044388A (en) * 1998-07-30 2000-02-15 Shin Etsu Handotai Co Ltd Silicon single crystal wafer and its production
US6268298B1 (en) 1998-03-10 2001-07-31 Denso Corporation Method of manufacturing semiconductor device
WO2016021860A1 (en) * 2014-08-04 2016-02-11 엘지실트론 주식회사 Seed chuck and ingot growing apparatus including same
CN113550008A (en) * 2021-07-14 2021-10-26 济南大学 Device and method for growing oversized lithium niobate crystal
EP4130348A1 (en) * 2021-08-02 2023-02-08 Siltronic AG Device and method for producing a monocrystalline silicon rod

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677208A (en) * 1994-03-25 1997-10-14 Nippondenso Co., Ltd. Method for making FET having reduced oxidation inductive stacking fault
US6015460A (en) * 1995-12-15 2000-01-18 Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag Method and apparatus for pulling a monocrystal
US6268298B1 (en) 1998-03-10 2001-07-31 Denso Corporation Method of manufacturing semiconductor device
JP2000044388A (en) * 1998-07-30 2000-02-15 Shin Etsu Handotai Co Ltd Silicon single crystal wafer and its production
US20170226660A1 (en) * 2014-08-04 2017-08-10 Lg Siltron Inc. Seed chuck and ingot growing apparatus including same
CN106661757A (en) * 2014-08-04 2017-05-10 Lg矽得荣株式会社 Seed chuck and ingot growing apparatus including same
WO2016021860A1 (en) * 2014-08-04 2016-02-11 엘지실트론 주식회사 Seed chuck and ingot growing apparatus including same
JP2017523951A (en) * 2014-08-04 2017-08-24 エルジー シルトロン インコーポレイテッド Seed chuck and ingot growth apparatus including the same
DE112015003606B4 (en) * 2014-08-04 2021-01-21 Sk Siltron Inc. Seed chuck and ingot growing apparatus including the same
CN113550008A (en) * 2021-07-14 2021-10-26 济南大学 Device and method for growing oversized lithium niobate crystal
CN113550008B (en) * 2021-07-14 2023-06-23 山东恒元半导体科技有限公司 Device and method for growing oversized lithium niobate crystal
EP4130348A1 (en) * 2021-08-02 2023-02-08 Siltronic AG Device and method for producing a monocrystalline silicon rod
WO2023011939A1 (en) * 2021-08-02 2023-02-09 Siltronic Ag Device and method for producing a monocrystalline silicon rod

Similar Documents

Publication Publication Date Title
US6261361B1 (en) Silicon single crystal wafer having few defects wherein nitrogen is doped and a method for producing it
JP4020987B2 (en) Silicon single crystal having no crystal defects around the wafer and its manufacturing method
JP3624827B2 (en) Method for producing silicon single crystal
US6641888B2 (en) Silicon single crystal, silicon wafer, and epitaxial wafer.
JP3919308B2 (en) Method for producing silicon single crystal with few crystal defects and silicon single crystal and silicon wafer produced by this method
WO2001027362A1 (en) Silicon single-crystal wafer for epitaxial wafer, epitaxial wafer, methods for producing them, and evaluating method
US20020142170A1 (en) Silicon single crystal, silicon wafer, and epitaxial wafer
JP2521007B2 (en) Method for producing silicon single crystal
JPH0393700A (en) Heat treating method and device of silicon single crystal and production device thereof
US5575847A (en) Apparatus for producing single crystals
JPH05221786A (en) Method and device for producing silicon single crystal
US8252404B2 (en) High resistivity silicon wafers
JPH11180800A (en) Production of silicon single crystal having low crystal defect and silicon single crystal wafer produced therewith
JP2004043256A (en) Silicon wafer for epitaxial growth and epitaxial wafer, and method for manufacturing the same
JPH0741383A (en) Semiconductor single crystal and production thereof
JP4102988B2 (en) Method for producing silicon wafer and epitaxial wafer, and epitaxial wafer
JPH10208987A (en) Silicon wafer for hydrogen thermal treatment and manufacture thereof
JP2001199794A (en) Silicon single crystal ingot, method for producing the same and method for producing silicon wafer
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP2002201091A (en) Method of manufacturing epitaxial wafer having no epitaxial defect using nitrogen and carbon added substrate
JPH06271388A (en) Production of semiconductor single crystal rod
JPH11302098A (en) Silicon wafer and silicon epitaxial wafer, and their production
WO2005019506A1 (en) Process for producing single crystal and silicon single crystal wafer
WO2001088230A1 (en) Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer
JPH08319197A (en) Production of indium antimony single crystal

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518