WO2001088230A1 - Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer - Google Patents

Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer Download PDF

Info

Publication number
WO2001088230A1
WO2001088230A1 PCT/JP2001/003946 JP0103946W WO0188230A1 WO 2001088230 A1 WO2001088230 A1 WO 2001088230A1 JP 0103946 W JP0103946 W JP 0103946W WO 0188230 A1 WO0188230 A1 WO 0188230A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
silicon single
crystal
single crystal
diameter
Prior art date
Application number
PCT/JP2001/003946
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Iida
Masahiro Kato
Akihiro Kimura
Original Assignee
Shin-Etsu Handotai Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co.,Ltd. filed Critical Shin-Etsu Handotai Co.,Ltd.
Priority to JP2001584610A priority Critical patent/JP4296740B2/en
Publication of WO2001088230A1 publication Critical patent/WO2001088230A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot

Definitions

  • the present invention relates to a silicon single crystal wafer having a small number of crystal defects and a method for producing the same, and in particular, a silicon single crystal wafer having a large diameter of 300 mm or more, a method for producing the same, and the wafer as a substrate.
  • a silicon single crystal wafer having a small number of crystal defects and a method for producing the same, and in particular, a silicon single crystal wafer having a large diameter of 300 mm or more, a method for producing the same, and the wafer as a substrate.
  • epitaxy Background art
  • silicon wafer an epitaxial silicon single crystal wafer (hereinafter simply referred to as silicon wafer), in which an epitaxial layer is grown on a silicon single crystal wafer (hereinafter sometimes simply referred to as silicon wafer). (Sometimes called epitaxy).
  • the diameter of the crystal has been increasing to reduce the cost of the depiling process.
  • the diameter of the crystal is 300 mm, and even a diameter of 400 mm is being manufactured and prototyped.
  • an epitaxy wafer was formed by forming an epitaxy layer (hereinafter sometimes simply referred to as an epi layer) on a silicon wafer having a diameter of 300 mm or more, and the epitaxy layer was investigated.
  • an epitaxy layer hereinafter sometimes simply referred to as an epi layer
  • such a large-diameter epitaxial wafer having a diameter of 300 mm or more has a problem in that defects that were not apparent in an epitaxial wafer having a diameter of up to 200 mm may occur. I got it.
  • the present inventors conducted intensive research on the defects formed in these epi layers. As a result, it was confirmed that microscopic dislocation loops existed at a certain density on the surface of the substrate for epitaxy growth at the location where such an epilayer defect was generated.
  • such defects found on the substrate surface are generated in the I-rich region of the low-speed grown crystal with a reduced pulling speed, and are subjected to selective etching (eg, seco etching). For example, these are observed by non-stirring seco etching used in FPD evaluation) and copper decoration methods.
  • the size of the observed defects is very large, and the size is at least 1 ⁇ or more. Also called.
  • the epitaxy growth substrate that had generated dislocation loops in the epitaxy wafer of 300 mm or more was not a substrate made from a low-speed growth crystal, but was obviously a high-speed growth. Some of them were grown in the touch area. Similar to the above, defects were observed by selective etching such as Secco etching (for example, non-stirred Secco etching used for FPD evaluation) and copper decoration method. Is observed as an etch pit in the shape of a droplet of about 5 ⁇ m when non-stirred seco etching is performed with an etch-off amount of about 30 ⁇ m on one side, and it is impossible to exceed 10 ⁇ m at the maximum.
  • Secco etching for example, non-stirred Secco etching used for FPD evaluation
  • copper decoration method Is observed as an etch pit in the shape of a droplet of about 5 ⁇ m when non-stirred seco etching is performed with an etch-off amount of about 30 ⁇ m on one side,
  • the point defects incorporated into the crystal include atomic vacancies (Vacancy) and interstitial silicon (Interstitial — Si). It is known that the concentration of is determined by the relationship (V / G) between the crystal pulling rate V (growth rate) and the temperature gradient G near the solid-liquid interface in the crystal.
  • V / G the concentration of the crystal pulling rate
  • V growth rate
  • G the temperature gradient G near the solid-liquid interface in the crystal.
  • V-rich region a region where many vacancies are taken in is called a V-rich region, and there are many void-type green-in defects due to lack of silicon atoms. I do.
  • the region in which a large amount of interstitial silicon is incorporated is called an I_rich region, and many defects such as dislocation clusters exist due to dislocations caused by the presence of extra silicon atoms.
  • OSF oxidation induced stacking faults
  • FIG. 2 schematically shows a distribution diagram of a green-in defect region when the vertical axis is the crystal pulling speed and the horizontal axis is the distance from the crystal center.
  • the distribution of this defect region can be changed by adjusting the crystal pulling conditions and the structure inside the furnace of the crystal growth apparatus (hot zone: Hot Z one: HZ) and controlling the VNO G. You.
  • the OSF region moves toward the outer periphery of the crystal by increasing the pulling speed of the crystal, and eventually disappears from the outer periphery of the crystal, and the entire surface becomes a crystal in the V-rich region.
  • the OSF region moves toward the center of the crystal, and eventually disappears at the center of the crystal, and passes through the N region to become a crystal of the entire I-rich region. It has been reported that when nitrogen is doped, the width of the OSF region and the N region and the boundary position of the region change.
  • the present invention has been made in view of such a problem.
  • micro dislocation loops do not occur up to a diameter of 200 mm.
  • Investigate the causes that occur at 0 mm or more establish a growth method that can suppress the generation of crystal defects, and crystal defects that occur in the epitaxial layer when epitaxially growing silicon single crystal wafers obtained from this. It is a main object of the present invention to provide a method for producing a silicon single crystal wafer capable of suppressing the occurrence of a silicon single crystal wafer, and a silicon single crystal wafer and an epitaxial wafer produced therefrom.
  • the method for producing a silicon single crystal wafer according to the present invention is characterized in that, when growing a silicon single crystal having a diameter of 30 O mm or more by the Czochralski method, at least the center position of the crystal is adjusted.
  • a silicon single crystal rod is drawn from the silicon single crystal rod, which is in the V-rich region and whose cooling rate in the temperature range of 1000 to 900 ° C is pulled up to 1.25 ° C / min or less.
  • an e-ha is manufactured.
  • a silicon single crystal wafer with a dislocation loop free diameter of 300 mm or more can be manufactured.
  • the silicon single crystal wafer can be used as an epitaxial growth wafer.
  • the silicon crystal wafer of the present invention is suitable for epitaxial growth. It is an extremely effective substrate. Therefore, if an epi layer is formed on the wafer, a high-quality epitaxy wafer without deteriorating the leak characteristics and the like for a device having no epi defects can be easily manufactured at low cost. be able to.
  • the silicon single crystal wafer according to the present invention is a silicon single crystal wafer having a V-rich region and a diameter of 30 Omm or more, which is grown by the Czochralski method, wherein the dislocation loop has an entire surface of the silicon wafer. It is characterized by not being present.
  • the wafer of the present invention is a high-quality silicon single crystal wafer in which dislocation loops are not present on the entire surface of the wafer even when the diameter grown by the CZ method is 300 mm or more.
  • the silicon single crystal wafer can be used as an epitaxial growth wafer.
  • a silicon single crystal wafer having a V-rich region and having no dislocation loops over the entire surface of the wafer is a very effective substrate for epitaxial growth.
  • an epitaxy wafer in which an epitaxy layer having no epi defects is formed on the surface of the silicon single crystal wafer.
  • an epitaxy wafer formed by the Czochralski method and having an epitaxy layer formed on the surface of a silicon single crystal wafer having a diameter of 300 mm or more and having a V-rich region.
  • the present invention provides an epitaxy wafer having an extremely small number of crystal defects having an LPD density of 0.09 m or more observed on the epitaxy layer of 4.3 pieces / 100 cm 2 or less.
  • the epitaxial wafer of the present invention has an epitaxial layer in which a crystal center is a V-rich region and dislocation loops do not exist on the entire surface of the silicon.
  • FIG. 1 is a schematic explanatory view of a single crystal pulling apparatus by the CZ method used in the present invention.
  • Fig. 2 is a distribution diagram of a grown-in defect region in a silicon single crystal where the horizontal position is the radial position of the crystal and the vertical axis is the crystal pulling rate (non-doped nitrogen crystal).
  • FIG. 3 is a result diagram showing the relationship between the length from the crystal shoulder and the dislocation loop density.
  • the micro dislocation loop as described above does not occur up to a diameter of 200 mm, but occurs at a diameter of 300 mm or more.
  • the cause was changed from the viewpoint of the thermal history of the pulled crystal.
  • the growth of a crystal with a diameter of 300 mm or more is more than that of a conventional crystal with a diameter of up to 200 mm due to the structure of the pulling champ and HZ. It was presumed that the high cooling rate was the cause in the following low-temperature part.
  • the method is to change the pulling speed suddenly. Specifically, in growing this crystal, after raising the straight body from the shoulder to 60 cm from the shoulder at a pulling speed of 1.0 mm / min, the crystal tail was cut at the same speed to separate it from the melt. After rounding, the winding speed is 0.5 mm from the position where the crystal is cut off. No: min was wound up by 40 cm.
  • the transit time is about 80 minutes, and the cooling rate is about 1.25 ° CZm i II. Therefore, it was found that the micro dislocation loop could be reduced by setting the cooling rate in this temperature range to 1.25 ° C / min or less.
  • the lower limit of the cooling rate is not particularly limited as long as at least the center of the crystal is in the V-rich region, but is practically about 0.4 ° C / min.
  • the general pulling conditions of conventional nitrogen non-doped crystals up to a diameter of 200 mm with little occurrence of small dislocation loops in the V-rich region were investigated. It was found that the transit time in the temperature zone of ° C required about 80 minutes even at the fastest. Therefore, as a condition for preventing the generation of small dislocation loops in the V-rich region, the cooling rate in the temperature range of 1000 to 900 ° C is set to about 1 ⁇ 25 ° CZ (100 ° CZ). (° C / 80 min) It was confirmed that the following conditions should be satisfied.
  • the single crystal pulling apparatus 30 includes a pulling chamber 31 and a pulling chamber 31.
  • a crucible 32 provided in the crucible 32, a heater 34 disposed around the crucible 32, a crucible holding shaft 33 for rotating the crucible 32, and a rotation mechanism thereof (not shown);
  • a seed chuck 6 for holding the seed crystal 5, a wire 7 for pulling up the seed chuck 6, and a winding mechanism (not shown) for rotating or winding the wire 7 are provided.
  • the crucible 32 is provided with an English crucible on the inner side for containing the silicon melt (hot water) 2 and a graphite crucible on the outer side. Further, a heat insulating material 35 is disposed around the outside of the heater 34.
  • an annular solid-liquid interface heat insulator 8 is provided on the periphery of the solid-liquid interface 4 of the crystal, and an upper surrounding heat insulator 9 is disposed thereon.
  • the solid-liquid interface heat insulating material 8 is provided with a small gap 10 between its lower end and the molten metal surface 3 of the silicon melt 2.
  • the upper surrounding insulation 9 may not be used depending on the conditions.
  • a cylindrical cooling device (not shown) that blows a cooling gas or blocks radiant heat to cool the single crystal may be provided.
  • a magnet (not shown) is installed outside the pulling chamber 31 in the horizontal direction, and a magnetic field in the horizontal or vertical direction is applied to the silicon melt 2 to suppress the convection of the melt.
  • the so-called MCZ method for stable growth of single crystals is often used.
  • a raw material polycrystalline silicon is charged into a 32 inch (800 mm) quartz crucible, and the diameter is 300 mm, the orientation is ⁇ 100>, and the conductivity type is p-type.
  • a plurality of silicon single crystal rods 1 for producing silicon single crystal wafers were pulled up (no nitrogen doping).
  • the pulling experiment was repeated by changing the position and size of the upper surrounding heat insulating material 9 installed in the upper space of the HZ, and the pulling speed was 100 mm0 min at 100 mm0 min.
  • the HZ was set so that the cooling rate in the 900 ° C temperature zone was 1.25 ° C / min.
  • a plurality of epitaxy wafers having a 3 ⁇ epitaxy layer formed on the surface of these wafers at 112 ° C were manufactured, and a surface inspection device SP 1 (trade name of KLA-Tencor Corporation) was manufactured.
  • SP 1 trade name of KLA-Tencor Corporation
  • LPDs with a size of 0.09 ⁇ m or more were measured.
  • the LPD density on the epi layer can be greatly improved by setting the cooling rate in the temperature range of 1000 to 900 ° C to 1.25 ° C / min or less.
  • the cooling rate is further reduced more than 1.25 ° CZ, the number of defects is further reduced from 4.3 pieces / 100 cm 2 .
  • the HZ was set so that the pulling speed was 1.OmmZmin and the cooling rate in the temperature range of 1000 to 900 ° C was 1.3, which was more than one minute. Then, several silicon single crystal rods were pulled up.
  • a silicon single crystal wafer was fabricated from each of the pulled silicon single crystal rods, an epitaxy wafer was fabricated under the same conditions as in Example 1, and an LPD of at least 0.09 ⁇ ⁇ was measured. As a result, 100 or more LPDs were observed on the entire surface of the wafer (diameter: 300 mm) for each wafer.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
  • the Czochralski method (CZ method)
  • CZ method the case of growing a single crystal of silicon
  • the present invention is not limited to this, and the so-called McZ method of applying a horizontal magnetic field, a vertical magnetic field, a cusp magnetic field, or the like to the silicon melt can be used. It goes without saying that it can be applied.
  • the present invention is applicable regardless of the conductivity type, resistivity, oxygen concentration, etc. of the single crystal as long as the diameter of the silicon single crystal ( ⁇ wafer) is 300 mm or more and the cooling rate is a predetermined value or less. Further, the present invention can be similarly applied to, for example, a silicon single crystal doped with carbon to promote oxygen precipitation.

Abstract

A silicon single-crystal wafer manufacturing method for manufacturing a silicon single-crystal wafer from a silicon single-crystal rod which is so pulled upper so that when a silicon single crystal having a diameter of 300 mm or more is grown by the Czochralski method, at least the central portion of the crystal may be a V-rich region and the cooling rate of the temperature band of 1,000 to 900 º may be 1.25 º/min or less, and an epitaxial wafer having a substrate made of the wafer. To grow a single crystal by the Cz method, therefore, there is established a growing method which causes no small dislocation loop within a diameter of 300 mm or more, thereby providing an epitaxial wafer which has no crystal defect in an epitaxial layer even if the silicon single-crystal wafer is subjected to epitaxial growth.

Description

明 細 書 シリコン単結晶ゥエーハの製造方法およびシリ コン単結晶ゥエーハ  Description: Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
ならびにェピタキシヤノレゥェーハ 技術分野  And Epitaxyanoreja Technical Field
本発明は結晶欠陥の少ないシリ コン単結晶ゥエーハとその製造方法に関し、 特 に直径 3 0 0 mm以上の大口径を有するシリ コン単結晶ゥェ一ハとその製造方法 並びにそのゥエーハを基板としたェピタキシャルゥエーハに関する。 背景技術  The present invention relates to a silicon single crystal wafer having a small number of crystal defects and a method for producing the same, and in particular, a silicon single crystal wafer having a large diameter of 300 mm or more, a method for producing the same, and the wafer as a substrate. Regarding epitaxy. Background art
デバイスの高集積化 ,微細化に伴い、 高性能なゥエーハの要求が強い。 それに 対し従来、 シリ コン単結晶ゥエーハ (以下、 単にシリ コンゥエーハ、 ゥエーハと いうことがある) 上にェピタキシャル層を成長させたェピタキシャルシリ コン単 結晶ゥエーハ (以下、 単にシリ コンェピタキシャルゥエーハ、 ェピタキシャルゥ エーハと呼ぶことがある) が利用されている。  As devices become more highly integrated and miniaturized, there is a strong demand for high-performance wafers. On the other hand, conventionally, an epitaxial silicon single crystal wafer (hereinafter simply referred to as silicon wafer), in which an epitaxial layer is grown on a silicon single crystal wafer (hereinafter sometimes simply referred to as silicon wafer). (Sometimes called epitaxy).
また、 デパイス工程のコス トダウンのために、 結晶の直径も大口径化してきて おり、 現在では直径が 3 0 0 mm、 さらには直径 4 0 0 mmのものまで製造、 試 作されている。 そして、 このような大直径ゥエーハに対しても、 品質への要求は 高く、 大口径ェピタキシャルゥエーハの製造も行われている。  In addition, the diameter of the crystal has been increasing to reduce the cost of the depiling process. At present, the diameter of the crystal is 300 mm, and even a diameter of 400 mm is being manufactured and prototyped. There is also a high demand for quality for such large diameter wafers, and large diameter epitaxial wafers are also being manufactured.
ところで、 3 0 0 mm以上の直径をもつシリコンゥエーハにェピタキシャル層 (以下、 単にェピ層と呼ぶことがある) を形成したェピタキシャルゥエーハを作 製し、 そのェピタキシャル層を調査したところ、 このような 3 0 0 mm以上の直 径を持つ大口径ェピタキシャルゥエーハには、 2 0 0 mmまでのェピタキシャル ゥエーハには顕在化していなかった欠陥が発生するという問題があることがわか つてきた。  By the way, an epitaxy wafer was formed by forming an epitaxy layer (hereinafter sometimes simply referred to as an epi layer) on a silicon wafer having a diameter of 300 mm or more, and the epitaxy layer was investigated. However, such a large-diameter epitaxial wafer having a diameter of 300 mm or more has a problem in that defects that were not apparent in an epitaxial wafer having a diameter of up to 200 mm may occur. I got it.
この欠陥は、 ェピ層表面をパーティクルカゥンターで測定すると 0. 0 9 μ m サイズ以上の L P D (L i g h t P o i n t D e f e c t : レーザ光を用い たゥエーハ表面検査装置で観察される輝点欠陥の総称) と称する結晶欠陥が約 1 0 0個 Z直径 3 0 O mmゥエーハ (約 1 4個ノ 1 0 0 c m2) 程度存在するとい うものであり、 顕微鏡にて拡大観察した結果、 これらの欠陥の多くはェピ層に形 成された転位ループであることがわかった。 一般的にこのような結晶欠陥がェピ 層表面に存在すると、 リーク特性を劣化させる等、 デバイスに悪影響を及ぼすこ とが知られている。 When this defect is measured with a particle counter on the surface of the epi layer, a 0.09 μm or more LPD (Light Point Defect: a bright spot defect that is observed with an wafer surface inspection device using laser light) About 1) crystal defects It is said that there are about 100 Z-diameters of about 30 Omm ゥ a (about 140 pieces of 100 cm 2 ). As a result of observation under a microscope, many of these defects are formed in the epi layer. It was found that the dislocation loop was formed. It is generally known that the presence of such crystal defects on the surface of the epi layer adversely affects devices, such as deteriorating leakage characteristics.
そこで本発明者等は、 これらェピ層に形成される欠陥について鋭意調査を行つ た。 その結果、 このようなェピ層の欠陥が発生している位置には、 そのェピタキ シャル成長用の基板表面に、 微小な転位ループがある程度の密度で存在している ことを確認した。 通常の直径 2 0 0 mm以下の基板においては、 このような基板 表面に見られる欠陥は、 引上げ速度を低下させた低速育成結晶の I 一リ ツチ領域 に発生し、 セコエッチング等の選択エッチング (例えば F P Dの評価に用いられ る無攪拌セコエッチング) や銅デコレーション法等で観察されるもので、 観察さ れる欠陥のサイズは大変大きく、 その大きさは最低でも 1 Ο μ πι以上あり、 転位 クラスターとも呼ばれている。  Therefore, the present inventors conducted intensive research on the defects formed in these epi layers. As a result, it was confirmed that microscopic dislocation loops existed at a certain density on the surface of the substrate for epitaxy growth at the location where such an epilayer defect was generated. In a normal substrate with a diameter of 200 mm or less, such defects found on the substrate surface are generated in the I-rich region of the low-speed grown crystal with a reduced pulling speed, and are subjected to selective etching (eg, seco etching). For example, these are observed by non-stirring seco etching used in FPD evaluation) and copper decoration methods. The size of the observed defects is very large, and the size is at least 1 μμπι or more. Also called.
しかし、 3 0 0 mm以上のェピタキシャルゥエーハに転位ループを発生させて いたェピタキシャル成長用の基板には、 低速育成結晶から作製された基板ではな く、 明らかに高速育成である V—リ ツチ領域で育成されたものもあり、 上記と同 様にセコエッチング等の選択ェツチング (例えば F P Dの評価に用いられる無攪 拌セコエッチング) や銅デコレーション法で欠陥が観察されるが、 欠陥のサイズ は片面 3 0 μ m程度のエッチオフ量で無攪拌セコエッチングを行ったときに 5 μ m程度の液滴形状のエッチピッ トとして観察されるものであり、 最大でも 1 0 μ mを超えることはなく、 2 0 0 mm以下の基板の I ーリ ツチ領域に存在するもの に比べて小さいことがわかった。 このような欠陥は直径 2 0 0 mmまでの基板で も、 極く僅かに観察されてはいた。 しかし、 その密度が極めて低いため、 ェピ成 長を施しても殆ど目立たず、 全く問題にはなっていなかった。 しかし、 直径 3 0 O mm以上になると、 このような欠陥がより高密度に発生してしまうことが明確 となった。  However, the epitaxy growth substrate that had generated dislocation loops in the epitaxy wafer of 300 mm or more was not a substrate made from a low-speed growth crystal, but was obviously a high-speed growth. Some of them were grown in the touch area. Similar to the above, defects were observed by selective etching such as Secco etching (for example, non-stirred Secco etching used for FPD evaluation) and copper decoration method. Is observed as an etch pit in the shape of a droplet of about 5 μm when non-stirred seco etching is performed with an etch-off amount of about 30 μm on one side, and it is impossible to exceed 10 μm at the maximum. And smaller than those present in the I-rich region of the substrate of 200 mm or less. Such defects were very slight, even on substrates up to 200 mm in diameter. However, due to its extremely low density, even when epi growth was performed, it was hardly noticeable and had no problem at all. However, it became clear that when the diameter was 30 O mm or more, such defects were generated at a higher density.
ここで C Z法 (チヨクラルスキー法: C z o c h r a l s k i M e t h o d ) 結晶の引上げ条件とグローンイン (G r o w n i n ) 欠陥領域との関係につい て説明しておく。 Here, the relationship between the CZ method (Czochralski Method) crystal pulling conditions and the growth-in (Grownin) defect region is described. I will explain.
まず、 C Zシリ コン単結晶を引上げる際に、結晶中に取り込まれる点欠陥には、 原子空孔 (V a c a n c y ) と格子間シリ コン ( I n t e r s t i t i a l — S i ) とがあり、 この両点欠陥の濃度は、 結晶の引上げ速度 V (成長速度) と結晶 中の固液界面近傍の温度勾配 Gとの関係 (V/G) から決まることが知られてい る。 そして、 シリ コン単結晶において、 原子空孔が多く取り込まれた領域は V— リ ッチ領域と呼ばれ、 シリ コン原子の不足からボイ ド ( V o i d ) 型のグロ一ン イン欠陥が多く存在する。 一方、 格子間シリ コンが多く取り込まれた領域は I _ リ ツチ領域と呼ばれ、 シリ コン原子が余分に存在することにより発生する転位に 起因して、 転位クラスタ等の欠陥が多く存在する。  First, when a CZ silicon single crystal is pulled, the point defects incorporated into the crystal include atomic vacancies (Vacancy) and interstitial silicon (Interstitial — Si). It is known that the concentration of is determined by the relationship (V / G) between the crystal pulling rate V (growth rate) and the temperature gradient G near the solid-liquid interface in the crystal. In a silicon single crystal, a region where many vacancies are taken in is called a V-rich region, and there are many void-type green-in defects due to lack of silicon atoms. I do. On the other hand, the region in which a large amount of interstitial silicon is incorporated is called an I_rich region, and many defects such as dislocation clusters exist due to dislocations caused by the presence of extra silicon atoms.
また、 V—リ ッチ領域と I —リ ッチ領域の間には、 原子の不足や余分の少ない N領域 (N e u t r a 1領域) が存在することが知られており、 さらにこの N領 域中には酸化誘起積層欠陥 (O x i d a t i o n— i n d u s e d S t a c k i n g F a u l t : 以下、 O S Fと略記する) がリ ング状に発生する O S F領 域 (O S F リ ング領域、 リ ング O S F領域とも呼ばれる) の存在が確認されてい る。  It is known that there is an N region (Neutra 1 region) between the V-rich region and the I-rich region, which has a shortage of atoms and a small number of atoms. Among them, there is an OSF region (also called an OSF ring region, also called a ring OSF region) in which oxidation induced stacking faults (hereinafter, abbreviated as OSF) occur in a ring shape. Confirmed.
図 2は、 縦軸を結晶引上げ速度、 横軸を結晶中心からの距離とした場合のグロ ーンィン欠陥領域の分布図を模式的に示したものである。 この欠陥領域の分布形 状は、 結晶の引上げ条件や結晶成長装置の炉内構造 (ホッ トゾーン : H o t Z o n e : H Z) 等を調整して Vノ Gを制御することにより変化させることができ る。  FIG. 2 schematically shows a distribution diagram of a green-in defect region when the vertical axis is the crystal pulling speed and the horizontal axis is the distance from the crystal center. The distribution of this defect region can be changed by adjusting the crystal pulling conditions and the structure inside the furnace of the crystal growth apparatus (hot zone: Hot Z one: HZ) and controlling the VNO G. You.
図 2からわかる通り、 一般的には、 結晶の引上げ速度を上げることにより O S F領域が結晶の外周側に移動し、 やがて結晶の外周部から消滅し、 全面 V—リ ツ チ領域の結晶となる。 反対に、 引上げ速度を下げると O S F領域は結晶の中心側 に移動し、 やがて結晶の中央部で消滅し、 N領域を経て全面 I ーリ ツチ領域の結 晶となる。 なお窒素をドープした場合、 O S F領域や N領域の幅や領域の境界位 置が変化することが報告されている ( 1 9 9 9年春季第 4 6回応用物理学関係連 合講演会予稿集 N o . 1、 . 4 7 1、 2 9 a Z B— 9、 飯田他)。 従って、 窒 素ドープ結晶において、 O S F領域を制御する場合には、 この窒素ドープ結晶育 成時の VZGと欠陥領域分布との関係を参考に行えばよい。 As can be seen from Fig. 2, in general, the OSF region moves toward the outer periphery of the crystal by increasing the pulling speed of the crystal, and eventually disappears from the outer periphery of the crystal, and the entire surface becomes a crystal in the V-rich region. . Conversely, when the pulling speed is reduced, the OSF region moves toward the center of the crystal, and eventually disappears at the center of the crystal, and passes through the N region to become a crystal of the entire I-rich region. It has been reported that when nitrogen is doped, the width of the OSF region and the N region and the boundary position of the region change. (Proceedings of the 46th Applied Physics Joint Lecture Meeting, Spring 1997) No.1, .471, 29a ZB-9, Iida et al.). Therefore, when controlling the OSF region in a nitrogen-doped crystal, this nitrogen-doped crystal growth What is necessary is just to refer to the relationship between the VZG at the time of formation and the defect area distribution.
なお、 本願出願人が先に出願した特願平 1 1 一 2 9 4 5 2 3号に記載したよう に、 直径が 2 0 0 mm以下の C Z結晶の V—リ ツチ領域であっても、 窒素をドー プした結晶であれば、 上記 3 0 0 mm以上の結晶に見られたようなェピ欠陥を発 生させる微小な転位ループが存在することが確認されている。 しかしながら、 窒 素ノ ンドープの C Z結晶の V—リ ツチ領域においてこのような微小な転位ループ が多く発生することは、 本発明者等によって初めて得られた知見である。 発明の開示  In addition, as described in Japanese Patent Application No. 11-92453 filed earlier by the applicant of the present application, even in the case of a V-lithic region of a CZ crystal having a diameter of 200 mm or less, It has been confirmed that a crystal with nitrogen doping has a small dislocation loop that generates an epi defect as seen in the crystal having a diameter of 300 mm or more. However, it is the first knowledge obtained by the present inventors that many such small dislocation loops are generated in the V-rich region of a nitrogen-doped CZ crystal. Disclosure of the invention
そこで、 本発明は、 このような問題点に鑑みてなされたもので、 ' C Z法単結晶 育成に際し、 窒素ノ ンドープの場合に、 微小転位ループが直径 2 0 0 mmまでは 発生せず、 3 0 0 mm以上で発生する原因を究明し、 結晶欠陥の発生を抑制可能 な育成方法を確立し、 これから得られるシリ コン単結晶ゥエーハにェピタキシャ ル成長を行う際、 ェピタキシャル層に発生する結晶欠陥を抑制することができる シリ コン単結晶ゥエーハを製造する方法およびそれから製造されるシリ コン単結 晶ゥエーハ並びにェピタキシャルゥエーハを提供することを主たる目的としてい る。  Therefore, the present invention has been made in view of such a problem. In growing a CZ single crystal, in the case of nitrogen non-doping, micro dislocation loops do not occur up to a diameter of 200 mm. Investigate the causes that occur at 0 mm or more, establish a growth method that can suppress the generation of crystal defects, and crystal defects that occur in the epitaxial layer when epitaxially growing silicon single crystal wafers obtained from this. It is a main object of the present invention to provide a method for producing a silicon single crystal wafer capable of suppressing the occurrence of a silicon single crystal wafer, and a silicon single crystal wafer and an epitaxial wafer produced therefrom.
上記課題を解決するため本発明に係るシリ コン単結晶ゥエーハの製造方法は、 チヨクラルスキー法により直径が 3 0 O mm以上のシリ コン単結晶を育成する際 に、少なく とも結晶の中心位置が V—リ ツチ領域となり、かつ 1 0 0 0〜 9 0 0 °C の温度帯の冷却速度を 1. 2 5°C/分以下となるように引上げたシリ コン単結晶 棒からシリ コン単結晶ゥエーハを作製することを特徴としている。  In order to solve the above-mentioned problems, the method for producing a silicon single crystal wafer according to the present invention is characterized in that, when growing a silicon single crystal having a diameter of 30 O mm or more by the Czochralski method, at least the center position of the crystal is adjusted. A silicon single crystal rod is drawn from the silicon single crystal rod, which is in the V-rich region and whose cooling rate in the temperature range of 1000 to 900 ° C is pulled up to 1.25 ° C / min or less. (4) It is characterized in that an e-ha is manufactured.
こうすることによって、 従来の窒素ノ ンドープの育成方法では直径 3 0 0 mm 以上になると高密度で発生した転位ループの発生を殆ど抑制することができるよ うになり、 ゥエーハの少なく とも中心位置が V—リ ッチ領域で、 転位ループがな い直径が 3 0 0 mm以上のシリ コン単結晶ゥエーハを製造することができる。 この場合、 このシリコン単結晶ゥエーハをェピタキシャル成長用ゥエーハとす ることができる。  In this way, in the conventional method of growing nitrogen non-doped, it is possible to almost suppress the occurrence of dislocation loops generated at a high density when the diameter is 300 mm or more. —In the rich region, a silicon single crystal wafer with a dislocation loop free diameter of 300 mm or more can be manufactured. In this case, the silicon single crystal wafer can be used as an epitaxial growth wafer.
このように、 本発明のシリ コン举結晶ゥエーハは、 ェピタキシャル成長用とし て極めて有効な基板となる。 従って、 該ゥエーハにヱピ層を形成するようにすれ ば、 ェピ欠陥のないデパイス用としてリーク特性等を劣化させることのない高品 質のェピタキシャルゥエーハを容易に低コス トで作製することができる。 As described above, the silicon crystal wafer of the present invention is suitable for epitaxial growth. It is an extremely effective substrate. Therefore, if an epi layer is formed on the wafer, a high-quality epitaxy wafer without deteriorating the leak characteristics and the like for a device having no epi defects can be easily manufactured at low cost. be able to.
そして、 本発明に係るシリ コン単結晶ゥエーハは、 チヨクラルスキー法により 育成され、 V—リ ツチ領域を有する直径 3 0 O m m以上のシリ コン単結晶ゥエー ハであって、 転位ループがゥエーハ全面に存在しないことを特徴としている。  The silicon single crystal wafer according to the present invention is a silicon single crystal wafer having a V-rich region and a diameter of 30 Omm or more, which is grown by the Czochralski method, wherein the dislocation loop has an entire surface of the silicon wafer. It is characterized by not being present.
このように、 本発明のゥエーハは、 C Z法で育成された直径が 3 0 0 m m以上 であっても、 転位ループがゥエーハ全面に存在しない高品質のシリ コン単結晶ゥ エーハとなる。  As described above, the wafer of the present invention is a high-quality silicon single crystal wafer in which dislocation loops are not present on the entire surface of the wafer even when the diameter grown by the CZ method is 300 mm or more.
この場合、 このシリコン単結晶ゥエーハをェピタキシャル成長用ゥエーハとす ることができる。  In this case, the silicon single crystal wafer can be used as an epitaxial growth wafer.
このように、 V—リ ッチ領域を有し、 転位ループがゥエーハ全面に存在しない シリコン単結晶ゥエーハは、 ェピタキシャル成長用として極めて有効な基板とな る。  Thus, a silicon single crystal wafer having a V-rich region and having no dislocation loops over the entire surface of the wafer is a very effective substrate for epitaxial growth.
そして、 本発明によれば、 前記シリ コン単結晶ゥエーハの表面にェピ欠陥のな いェピタキシャル層を形成したェピタキシャルゥエーハが提供される。  According to the present invention, there is provided an epitaxy wafer in which an epitaxy layer having no epi defects is formed on the surface of the silicon single crystal wafer.
さらに、 本発明によれば、 チヨクラルスキー法により育成され、 V—リ ツチ領 域を有する直径 3 0 0 m m以上のシリ コン単結晶ゥエーハの表面にェピタキシャ ル層を形成したェピタキシャルゥエーハであって、 ェピタキシャル層上に観察さ れる 0 . 0 9 mサイズ以上の L P D密度が 4 . 3個/ 1 0 0 c m 2以下である 結晶欠陥の極めて少ないェピタキシャルゥエーハが提供される。 Further, according to the present invention, an epitaxy wafer formed by the Czochralski method and having an epitaxy layer formed on the surface of a silicon single crystal wafer having a diameter of 300 mm or more and having a V-rich region. The present invention provides an epitaxy wafer having an extremely small number of crystal defects having an LPD density of 0.09 m or more observed on the epitaxy layer of 4.3 pieces / 100 cm 2 or less.
このように、 本発明のェピタキシャルゥエーハは、 結晶中心が V—リ ッチ領域 で、 転位ループがゥエーハ全面に存在しないシリ コン単結晶ゥエーハの表面にェ ピタキシャル層を形成させたェピ層表面にェピ欠陥の極めて少ないェピタキシャ ルゥエーハであって、 デバイス用としてリーク特性等を劣化させることのない極 めて高品質のェピタキシャルゥエーハを高い歩留りと高い生産性で提供すること ができる。  As described above, the epitaxial wafer of the present invention has an epitaxial layer in which a crystal center is a V-rich region and dislocation loops do not exist on the entire surface of the silicon. An epitaxy wafer having extremely few epi defects on its surface, and capable of providing an extremely high quality epitaxy wafer for a device without deteriorating the leak characteristics and the like with high yield and high productivity.
以上に述べたように、 本発明によれば、 C Z法単結晶育成に際し、 窒素ノ ンド ープの場合に、 直径 2 0 0 m mまでは発生せずに、 3 0 0 m m以上で発生してし まう微小転位ループの発生を抑制することができ、 これから得られるシリ コン単 結晶ゥエーハにェピタキシャル成長を行っても、 ェピタキシャル層に転位ループ や P D結晶欠陥等の発生を抑制した高品質ェピタキシャルゥエーハを作製する ことができる。 従って、 デバイス用としてリーク特性等を劣化させることのない ェピタキシャルゥエーハを高い生産性と高歩留りで提供することができる。 図面の簡単な説明 As described above, according to the present invention, when growing a CZ method single crystal, in the case of a nitrogen pump, it does not occur up to a diameter of 200 mm, but occurs at a diameter of 300 mm or more. I The formation of micro dislocation loops can be suppressed, and even if epitaxy is performed on silicon single crystal wafers obtained from this, high-quality epitaxy that suppresses the occurrence of dislocation loops, PD crystal defects, etc. in the epitaxy layerゥ Each can be manufactured. Therefore, it is possible to provide an epitaxial wafer without deteriorating leak characteristics and the like for a device, with high productivity and high yield. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明で使用した C Z法による単結晶引上げ装置の概略説明図である。 図 2は、 シリ コン単結晶における、 結晶の径方向位置を横軸とし、 結晶引上げ 速度を縦軸とした場合のグローンィン欠陥領域の分布図である (窒素ノンドープ 結晶)。  FIG. 1 is a schematic explanatory view of a single crystal pulling apparatus by the CZ method used in the present invention. Fig. 2 is a distribution diagram of a grown-in defect region in a silicon single crystal where the horizontal position is the radial position of the crystal and the vertical axis is the crystal pulling rate (non-doped nitrogen crystal).
図 3は、 結晶肩部からの長さと転位ループ密度との関係を表す結果図である。 発明を実施するための最良の形態  FIG. 3 is a result diagram showing the relationship between the length from the crystal shoulder and the dislocation loop density. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明につき詳細に説明するが、 本発明はこれらに限定されるものでは ない。  Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
本発明では、 C Z法で窒素ノンドープでシリコン単結晶を育成する場合に、 前 述のような微小転位ループが直径 2 0 0 m mまでは発生せずに、 直径 3 0 0 m m 以上で発生するようになる原因について、 引上げ結晶の熱履歴という観点から検 討を加えた。  In the present invention, when growing a silicon single crystal with nitrogen non-doping by the CZ method, the micro dislocation loop as described above does not occur up to a diameter of 200 mm, but occurs at a diameter of 300 mm or more. The cause was changed from the viewpoint of the thermal history of the pulled crystal.
その結果、 一般的な直径 3 0 0 m m以上の結晶育成というのは、 引上げチャン パぉよび H Zの構造上、従来の直径 2 0 0 m mまでの結晶と比較して、 1 0 0 0 °C 以下の低温側の部分において冷却速度が速いことがー因となっていることが推察 された。  As a result, the growth of a crystal with a diameter of 300 mm or more is more than that of a conventional crystal with a diameter of up to 200 mm due to the structure of the pulling champ and HZ. It was presumed that the high cooling rate was the cause in the following low-temperature part.
そこで、 低温域の中で、 特にどの温度帯がこのような微小転位ループの形成に 関与しているのかを調査した。 その方法は、 引上げ速度を急変させる方法である。 具体的には、 この結晶の育成に際し、 肩から 6 0 c mまでの直胴部を引上げ速度 1 . 0 m m / m i nで引上げた後、 同一速度で結晶を融液から切り離すために結 晶尾部に丸めを付けた後、 結晶を切り離す位置から、 巻き上げ速度を 0 . 5 m m ノ; m i nとして 4 0 c m巻き上げた。 Therefore, we investigated which temperature zone, especially in the low-temperature region, is involved in the formation of such a small dislocation loop. The method is to change the pulling speed suddenly. Specifically, in growing this crystal, after raising the straight body from the shoulder to 60 cm from the shoulder at a pulling speed of 1.0 mm / min, the crystal tail was cut at the same speed to separate it from the melt. After rounding, the winding speed is 0.5 mm from the position where the crystal is cut off. No: min was wound up by 40 cm.
このような方法で引上げれば、 直胴部の位置により、 冷却速度が低下した温度 帯が異なる結晶が得られる。 そして、 この結晶の各部位からゥエーハを切り出し、 セコェツチングを行い、微小転位ループを評価したところ、約 1 0 0 0〜 9 0 0 °C の温度帯の位置 (結晶肩部から 4 2 ~ 4 6 c mの位置) で欠陥の密度が大きく変 化し、 冷却速度が遅いほど、 転位ループが発生していなかった (図 3参照)。 こ うして、微小転位ループの低減に効果的な温度帯が確認できた。また、約 1 0 0 °C の温度幅が 4 c mの結晶長さに相当し、 その間を 0. 5 mm/m i nで卷き上げ ていることから、 約 1 0 0 0〜 9 0 0 °Cの通過時間は約 8 0分であり、 冷却速度 は約 1. 2 5 °CZm i IIとなる。 従って、 この温度帯の冷却速度を 1. 2 5 °C/ m i n以下にすれば、 微小転位ループを低減できることが判った。 また、 この冷 却速度の下限は少なく とも結晶の中心部が V—リ ツチ領域となる条件であれば特 に限定されないが、 実用上は 0. 4°C/分程度である。  By pulling up in this way, crystals with different cooling temperature ranges can be obtained depending on the position of the straight body. Then, a wafer was cut out from each part of the crystal, Seccoetching was performed, and a small dislocation loop was evaluated. The position of the temperature band of about 1000 to 900 ° C (42 to 46 from the crystal shoulder) (cm position), the defect density changed greatly, and as the cooling rate was slower, dislocation loops did not occur (see Fig. 3). Thus, a temperature zone effective for reducing the small dislocation loop was confirmed. Also, the temperature width of about 100 ° C corresponds to the crystal length of 4 cm, and the interval between them is wound up at 0.5 mm / min. The transit time is about 80 minutes, and the cooling rate is about 1.25 ° CZm i II. Therefore, it was found that the micro dislocation loop could be reduced by setting the cooling rate in this temperature range to 1.25 ° C / min or less. The lower limit of the cooling rate is not particularly limited as long as at least the center of the crystal is in the V-rich region, but is practically about 0.4 ° C / min.
次に、 V—リ ツチ領域において微小転位ループが殆ど発生しない従来の窒素ノ ンドープで直径 2 0 0 mmまでの結晶の一般的な引上げ条件について調査したと ころ、 1 0 0 0〜 9 0 0 °Cの温度帯の通過時間は、 最も速い場合であっても 8 0 分程度の時間を要していることがわかった。 従って、 V—リ ッチ領域において微 小転位ループを発生させないための条件として、 1 0 0 0〜 9 0 0 °Cの温度帯の 冷却速度を約 1 · 2 5°CZ分 (1 0 0°C/ 8 0分) 以下とすればよいこ が確認 できた。  Next, the general pulling conditions of conventional nitrogen non-doped crystals up to a diameter of 200 mm with little occurrence of small dislocation loops in the V-rich region were investigated. It was found that the transit time in the temperature zone of ° C required about 80 minutes even at the fastest. Therefore, as a condition for preventing the generation of small dislocation loops in the V-rich region, the cooling rate in the temperature range of 1000 to 900 ° C is set to about 1 · 25 ° CZ (100 ° CZ). (° C / 80 min) It was confirmed that the following conditions should be satisfied.
そこで、 直径 3 0 0 mm以上の結晶育成の場合にこの引上げ条件を適用して単 結晶育成を試みた。 単結晶引上げ装置の H Zの上部空間に、 適当な大きさの断熱 材を設置し、 かつ結晶育成後直ちに卷上げずに、 1 0 0 0〜 9 00 °Cの温度帯の 冷却速度が 1. 2 5 °C/分以下になるような条件を設定し、 その条件で結晶を育 成したところ、 微小転位ループは全く発生しないことが判った。  Therefore, in the case of growing a crystal having a diameter of 300 mm or more, an attempt was made to grow a single crystal by applying these pulling conditions. In the upper space of the HZ of the single crystal pulling device, install a heat insulating material of an appropriate size and do not wind it up immediately after growing the crystal, and the cooling rate in the temperature range of 100 to 900 ° C is 1. When the crystal was grown under the conditions of 25 ° C / min or less, it was found that no microscopic dislocation loops occurred.
以下、 本癸明について、 図面を参照しながら詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the drawings.
先ず、 本発明で使用する C Z法による単結晶引上げ装置の概略の構成例を図 1 により説明する。  First, a schematic configuration example of an apparatus for pulling a single crystal by the CZ method used in the present invention will be described with reference to FIG.
図 1に示すように、 この単結晶引上げ装置 3 0は、 引上げ室 3 1 と、 引上げ室 3 1中に設けられたルツボ 3 2と、ルツボ 3 2の周囲に配置されたヒータ 3 4と、 ルツボ 3 2を回転させるルツボ保持軸 3 3およびその回転機構 (図示せず) と、 シリコンの種結晶 5を保持するシードチヤック 6 と、 シードチヤック 6を引上げ るワイヤ 7と、 ワイヤ 7を回転又は巻き取る卷取機構 (図示せず) を備えて構成 されている。 ルツボ 3 2は、 その内側のシリ コン融液 (湯) 2を収容する側には ^英ルツボが設けられ、 その外側には黒鉛ルツボが設けられている。 また、 ヒー タ 34の外側周囲には断熱材 3 5が配置されている。 As shown in FIG. 1, the single crystal pulling apparatus 30 includes a pulling chamber 31 and a pulling chamber 31. A crucible 32 provided in the crucible 32, a heater 34 disposed around the crucible 32, a crucible holding shaft 33 for rotating the crucible 32, and a rotation mechanism thereof (not shown); A seed chuck 6 for holding the seed crystal 5, a wire 7 for pulling up the seed chuck 6, and a winding mechanism (not shown) for rotating or winding the wire 7 are provided. The crucible 32 is provided with an English crucible on the inner side for containing the silicon melt (hot water) 2 and a graphite crucible on the outer side. Further, a heat insulating material 35 is disposed around the outside of the heater 34.
また、 本発明の製造方法に関わる製造条件を設定するために、 結晶の固液界面 4の外周に環状の固液界面断熱材 8を設け、 その上に上部囲繞断熱材 9が配置さ れている。 この固液界面断熱材 8は、 その下端とシリ コン融液 2の湯面 3 との間 に小さい隙間 1 0を設けて設置されている。 上部囲繞断熱材 9は条件によっては 使用しないこともある。 さらに、 冷却ガスを吹き付けたり、 輻射熱を遮って単結 晶を冷却する不図示の筒状の冷却装置を設けてもよい。 別に、 最近では引上げ室 3 1の水平方向の外側に、 図示しない磁石を設置し、 シリ コン融液 2に水平方向 あるいは垂直方向等の磁場を印加することによって、 融液の対流を抑制し、 単結 晶の安定成長をはかる、 いわゆる MC Z法が用いられることも多い。  Further, in order to set the manufacturing conditions relating to the manufacturing method of the present invention, an annular solid-liquid interface heat insulator 8 is provided on the periphery of the solid-liquid interface 4 of the crystal, and an upper surrounding heat insulator 9 is disposed thereon. I have. The solid-liquid interface heat insulating material 8 is provided with a small gap 10 between its lower end and the molten metal surface 3 of the silicon melt 2. The upper surrounding insulation 9 may not be used depending on the conditions. Further, a cylindrical cooling device (not shown) that blows a cooling gas or blocks radiant heat to cool the single crystal may be provided. Separately, recently, a magnet (not shown) is installed outside the pulling chamber 31 in the horizontal direction, and a magnetic field in the horizontal or vertical direction is applied to the silicon melt 2 to suppress the convection of the melt. The so-called MCZ method for stable growth of single crystals is often used.
以下、 本発明の実施例と比較例を挙げて本発明を具体的に説明するが、 本発明 はこれらに限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited thereto.
(実施例 1 ) (Example 1)
図 1に示した引上げ装置で、 直径 3 2インチ ( 8 0 0 mm) の石英ルツポに原 料多結晶シリ コンをチャージし、 直径 3 0 0 mm, 方位 < 1 0 0 >、 導電型 p型 のシリコン単結晶ゥエーハを作製するためのシリ コン単結晶棒 1を複数本引上げ た (窒素ドープなし)。  Using the pulling device shown in Fig. 1, a raw material polycrystalline silicon is charged into a 32 inch (800 mm) quartz crucible, and the diameter is 300 mm, the orientation is <100>, and the conductivity type is p-type. A plurality of silicon single crystal rods 1 for producing silicon single crystal wafers were pulled up (no nitrogen doping).
実際の引上げを行う前に、 H Zの上部空間に設置する上部囲繞断熱材 9の位置 や大きさを変化させて引上げる実験を繰り返し行い、 引上げ速度が 1. O mmZ m i nで 1 0 0 0 ~ 9 0 0 °Cの温度帯の冷却速度が 1. 2 5 °C /分になるような H Zを設定した。  Before the actual pulling, the pulling experiment was repeated by changing the position and size of the upper surrounding heat insulating material 9 installed in the upper space of the HZ, and the pulling speed was 100 mm0 min at 100 mm0 min. The HZ was set so that the cooling rate in the 900 ° C temperature zone was 1.25 ° C / min.
引上げられたシリコン単結晶棒のそれぞれから直径 3 0 O mmのシリ コン単結 晶ゥエーハを切り出し、 鏡面研磨ゥエーハを作製した。 作製された鏡面シリ コン 単結晶ゥエーハのグローンィン欠陥及び転位ループを確認するため、 シリ コン単 結晶ゥエーハに無攪拌セコエッチングを行い、 その後電子顕微鏡を用いて観察を 行った。 その結果、 ボイ ド型欠陥が多く観察され全面 V—リ ッチ領域であること が確認できたが、 ゥエーハ表面に転位ループは全く観察されなかった。 30 Omm diameter silicon single bond from each of the pulled silicon single crystal rods A crystal wafer was cut out to produce a mirror-polished wafer. In order to confirm the grown-in defects and dislocation loops of the fabricated mirror-surface silicon single crystal wafer, the silicon single crystal wafer was subjected to non-stirring seco etching, and then observed using an electron microscope. As a result, many void-type defects were observed and it was confirmed that the entire region was in a V-rich region, but no dislocation loop was observed on the surface of the wafer.
次に、 これらのゥエーハ表面に 1 1 2 5 °Cで 3 μ πιのェピタキシャル層を形成 したェピタキシャルゥエーハを複数枚作製し、 表面検査装置 S P 1 (KLAテン コール社製商品名) を用いて、 0. 0 9 μ mサイズ以上の L P Dを測定した。 そ の結果、 L P D密度は平均 3 0個 Z直径 3 0 0 mmゥエーハ (0. 0 4 2 5個 Z c m2 = 4. 3個 Z l O O c m2) であった。 Next, a plurality of epitaxy wafers having a 3 μπι epitaxy layer formed on the surface of these wafers at 112 ° C were manufactured, and a surface inspection device SP 1 (trade name of KLA-Tencor Corporation) was manufactured. Using this, LPDs with a size of 0.09 μm or more were measured. As a result, the LPD density was an average of 30 pieces and a Z diameter of 300 mm ゥ a wafer (0.0425 pieces Zcm 2 = 4.3 pieces ZOO cm 2 ).
このよ うに、 1 0 0 0〜 90 0 °Cの温度帯の冷却速度を 1. 2 5°C/分以下と すれば、 ェピ層上の L P D密度を大巾に改善できることがわかる。 特に、 1. 2 5°CZ分より、 より一層冷却速度を遅くすれば、 4. 3個/ 1 0 0 c m2より さ らに欠陥が減少する。 Thus, it can be seen that the LPD density on the epi layer can be greatly improved by setting the cooling rate in the temperature range of 1000 to 900 ° C to 1.25 ° C / min or less. In particular, if the cooling rate is further reduced more than 1.25 ° CZ, the number of defects is further reduced from 4.3 pieces / 100 cm 2 .
(比較例 1 ) (Comparative Example 1)
実施例 1 と同一の引上げ装置を用い、 引上げ速度が 1. OmmZm i nで、 1 0 0 0〜 9 0 0 °Cの温度帯の冷却速度は 1. 3で 分以上となるように H Zを設 定し、 複数本のシリ コン単結晶棒を引上げた。  Using the same pulling device as in Example 1, the HZ was set so that the pulling speed was 1.OmmZmin and the cooling rate in the temperature range of 1000 to 900 ° C was 1.3, which was more than one minute. Then, several silicon single crystal rods were pulled up.
引上げられたシリ コン単結晶棒のそれぞれからシリ コン単結晶ゥエーハを作製 し、 実施例 1 と同一条件でェピタキシャルゥエーハを作製し、 0. 0 9 ί ΐηサイ ズ以上の L P Dを測定した。 その結果、 いずれのゥエーハでもゥエーハ全面 (直 径 3 0 0 mm) で 1 0 0個以上の L P Dが観察された。 なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態は、 例示であり、 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な 構成を有し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の 技術的範囲に包含される。  A silicon single crystal wafer was fabricated from each of the pulled silicon single crystal rods, an epitaxy wafer was fabricated under the same conditions as in Example 1, and an LPD of at least 0.09 ΐ η was measured. As a result, 100 or more LPDs were observed on the entire surface of the wafer (diameter: 300 mm) for each wafer. Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
例えば、 上記実施形態においては、 チヨクラルスキー法 (C Z法) によりシリ コン単結晶を育成する場合につき例を挙げて説明したが、 本発明はこれには限定 されず、 シリ コン融液に水平磁場、 縦磁場、 カスプ磁場等を印加するいわゆる M c Z法にも適用できることは言うまでもない。 For example, in the above-described embodiment, the Czochralski method (CZ method) Although the case of growing a single crystal of silicon has been described with reference to an example, the present invention is not limited to this, and the so-called McZ method of applying a horizontal magnetic field, a vertical magnetic field, a cusp magnetic field, or the like to the silicon melt can be used. It goes without saying that it can be applied.
また、 本発明はシリコン単結晶 (ゥエーハ) の直径が 3 0 0 m m以上であり、 冷却速度が所定値以下であれば、 単結晶の導電型、 抵抗率、 酸素濃度等に関わら ず適用することが可能であり、 さらに、 例えば酸素析出を促進するために炭素が ドープされたシリ コン単結晶にも同様に適用できる。  In addition, the present invention is applicable regardless of the conductivity type, resistivity, oxygen concentration, etc. of the single crystal as long as the diameter of the silicon single crystal (ゥ wafer) is 300 mm or more and the cooling rate is a predetermined value or less. Further, the present invention can be similarly applied to, for example, a silicon single crystal doped with carbon to promote oxygen precipitation.

Claims

請 求 の 範 囲 The scope of the claims
1. チヨクラルスキー法により直径が 3 0 O mm以上のシリ コン単結晶を育成 する際に、 少なく とも結晶の中心位置が V—リ ッチ領域となり、 かつ 1 0 0 0〜 9 0 0 °Cの温度帯の冷却速度を 1. 2 5 °C/ /分以下となるように引上げたシリ コ ン単結晶棒からシリ コン単結晶ゥエーハを作製することを特徴とするシリ コン単 結晶ゥエーハの製造方法。 1. When growing a silicon single crystal with a diameter of 30 O mm or more by the Czochralski method, at least the center position of the crystal becomes a V-rich region, and 100 to 900 °. the C rate of cooling temperature zone 1. 2 5 ° C / / min Ass co down single crystal ingot was pulled as to become the following silicon single crystal Ueha, characterized in that to produce the silicon single crystal Ueha Production method.
2. 前記シリ コン単結晶ゥエーハは、 ェピタキシャル成長用ゥエーハであるこ とを特徴とする請求項 1に記載したシリ コン単結晶ゥエーハの製造方法。. 2. The method for producing a silicon single crystal wafer according to claim 1, wherein the silicon single crystal wafer is an epitaxial growth wafer. .
3. チヨクラルスキー法により育成され、 V—リ ッチ領域を有する直径 3 0 0 mm以上のシリ コン単結晶ゥエーハであって、 転位ループがゥエーハ全面に存在 しないことを特徴とするシリ コン単結晶ゥエーハ。 3. A silicon single crystal silicon wafer having a V-rich region and a diameter of 300 mm or more grown by the Czochralski method, wherein dislocation loops do not exist on the entire surface of the silicon wafer. Crystal @ eha.
4. 前記シリ コン単結晶ゥエーハは、 ェピタキシャル成長用ゥエーハであるこ とを特徴とする請求項 3に記載したシリ コン単結晶ゥエーハ。 4. The silicon single crystal wafer according to claim 3, wherein the silicon single crystal wafer is an epitaxial growth wafer.
5. 請求項 3または請求項 4に記載したシリ コン単結晶ゥエーハの表面にェピ タキシャル層を形成したものであることを特徴とするェピタキシャルゥエーハ。 5. An epitaxy wafer wherein the epitaxy layer is formed on the surface of the silicon single crystal as described in claim 3 or claim 4.
6. チヨクラルスキー法により育成され、 V—リ ッチ領域を有する直径 3 0 0 mm以上のシリ コン単結晶ゥエーハの表面にェピタキシャル層を形成したェピタ キシャルゥエーハであって、 ェピタキシャル層上に観察される 0. 0 9 /x mサイ ズ以上の L P D密度が 4. 3個 1 0 0 c m2以下であることを特徴とするェピ タキシヤノレゥエーノ、。 6. An epitaxy wafer formed by the Czochralski method and having a V-rich region and a silicon single crystal wafer having a diameter of at least 300 mm and an epitaxy layer formed on the surface of the epitaxy layer. E Pi Taki shear Honoré © er Roh, characterized in that LPD density of 0. 0 9 / xm or size to be observed 4. is three 1 0 0 cm 2 or less.
PCT/JP2001/003946 2000-05-17 2001-05-11 Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer WO2001088230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001584610A JP4296740B2 (en) 2000-05-17 2001-05-11 Manufacturing method of silicon single crystal wafer, silicon single crystal wafer and epitaxial wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000144503 2000-05-17
JP2000-144503 2000-05-17

Publications (1)

Publication Number Publication Date
WO2001088230A1 true WO2001088230A1 (en) 2001-11-22

Family

ID=18651150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003946 WO2001088230A1 (en) 2000-05-17 2001-05-11 Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer

Country Status (3)

Country Link
JP (1) JP4296740B2 (en)
TW (1) TWI282379B (en)
WO (1) WO2001088230A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286094A (en) * 2002-03-27 2003-10-07 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor silicon substrate
WO2004040045A1 (en) * 2002-10-31 2004-05-13 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for producing silicon wafer
CN104630880A (en) * 2015-02-15 2015-05-20 英利集团有限公司 Czochralski system for forming single crystal bar and technology method of growing single crystal bar
CN107532325A (en) * 2015-05-08 2018-01-02 胜高股份有限公司 Silicon epitaxial wafer and its manufacture method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128690A (en) * 1998-10-29 2000-05-09 Shin Etsu Handotai Co Ltd Silicon single crystal wafer
JP2001039797A (en) * 1999-07-28 2001-02-13 Mitsubishi Materials Silicon Corp Silicon wafer for laminating epitaxial layer and epitaxial wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128690A (en) * 1998-10-29 2000-05-09 Shin Etsu Handotai Co Ltd Silicon single crystal wafer
JP2001039797A (en) * 1999-07-28 2001-02-13 Mitsubishi Materials Silicon Corp Silicon wafer for laminating epitaxial layer and epitaxial wafer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286094A (en) * 2002-03-27 2003-10-07 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor silicon substrate
WO2004040045A1 (en) * 2002-10-31 2004-05-13 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for producing silicon wafer
US7329317B2 (en) 2002-10-31 2008-02-12 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for producing silicon wafer
CN100385046C (en) * 2002-10-31 2008-04-30 小松电子金属股份有限公司 Method for producing silicon wafer
CN104630880A (en) * 2015-02-15 2015-05-20 英利集团有限公司 Czochralski system for forming single crystal bar and technology method of growing single crystal bar
CN107532325A (en) * 2015-05-08 2018-01-02 胜高股份有限公司 Silicon epitaxial wafer and its manufacture method
CN107532325B (en) * 2015-05-08 2019-01-11 胜高股份有限公司 Silicon epitaxial wafer and its manufacturing method
US10211066B2 (en) 2015-05-08 2019-02-19 Sumco Corporation Silicon epitaxial wafer and method of producing same

Also Published As

Publication number Publication date
TWI282379B (en) 2007-06-11
JP4296740B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4224966B2 (en) Manufacturing method of silicon single crystal wafer, manufacturing method of epitaxial wafer, evaluation method of silicon single crystal wafer
KR100582240B1 (en) Silicon single crystal wafer and a method for producing it
KR100582239B1 (en) Silicon Single Crystal Wafer and Method for Producing Silicon Single Crystal Wafer
KR20000005886A (en) Silicon Single Crystal Wafer having few defects wherein nitrogen is doped and a method for producing it
JP2001146498A (en) Silicon single crystal wafer, method for producing the same and soi wafer
WO2002002852A1 (en) Silicon single crystal wafer and method for manufacturing the same
JP3787472B2 (en) Silicon wafer, method for manufacturing the same, and method for evaluating silicon wafer
JP5568431B2 (en) Epitaxial wafer and method for manufacturing the same
US7048796B2 (en) Silicon single crystal wafer fabricating method and silicon single crystal wafer
JP4061906B2 (en) Heat treatment method for silicon single crystal wafer
JP3634133B2 (en) Method for producing silicon single crystal with few crystal defects and silicon single crystal wafer
EP1605510B1 (en) Soi wafer and method for manufacturing same
JP4102988B2 (en) Method for producing silicon wafer and epitaxial wafer, and epitaxial wafer
JP2007070131A (en) Method of manufacturing epitaxial wafer, and epitaxial wafer
WO2001088230A1 (en) Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer
WO2004065666A1 (en) Process for producing p doped silicon single crystal and p doped n type silicon single crystal wafe
JP5223513B2 (en) Single crystal manufacturing method
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP4463950B2 (en) Method for manufacturing silicon wafer
JP2007210820A (en) Method of manufacturing silicon single crystal
JP4082394B2 (en) Evaluation method of silicon wafer
JP4007193B2 (en) Method for producing silicon single crystal
JP2002160995A (en) Ga-DOPED SILICON SINGLE CRYSTAL WAFER AND METHOD FOR PRODUCING THE SAME
JP5652232B2 (en) Manufacturing method of silicon epitaxial wafer
JP2002093814A (en) Substrate single crystal of silicon epitaxial wafer, and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 584610

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase