JP4296740B2 - Manufacturing method of silicon single crystal wafer, silicon single crystal wafer and epitaxial wafer - Google Patents

Manufacturing method of silicon single crystal wafer, silicon single crystal wafer and epitaxial wafer Download PDF

Info

Publication number
JP4296740B2
JP4296740B2 JP2001584610A JP2001584610A JP4296740B2 JP 4296740 B2 JP4296740 B2 JP 4296740B2 JP 2001584610 A JP2001584610 A JP 2001584610A JP 2001584610 A JP2001584610 A JP 2001584610A JP 4296740 B2 JP4296740 B2 JP 4296740B2
Authority
JP
Japan
Prior art keywords
wafer
single crystal
silicon single
crystal
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001584610A
Other languages
Japanese (ja)
Inventor
誠 飯田
正弘 加藤
明浩 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Application granted granted Critical
Publication of JP4296740B2 publication Critical patent/JP4296740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

技術分野
本発明は結晶欠陥の少ないシリコン単結晶ウエーハとその製造方法に関し、特に直径300mm以上の大口径を有するシリコン単結晶ウエーハとその製造方法並びにそのウエーハを基板としたエピタキシャルウエーハに関する。
背景技術
デバイスの高集積化・微細化に伴い、高性能なウエーハの要求が強い。それに対し従来、シリコン単結晶ウエーハ(以下、単にシリコンウエーハ、ウエーハということがある)上にエピタキシャル層を成長させたエピタキシャルシリコン単結晶ウエーハ(以下、単にシリコンエピタキシャルウエーハ、エピタキシャルウエーハと呼ぶことがある)が利用されている。
また、デバイス工程のコストダウンのために、結晶の直径も大口径化してきており、現在では直径が300mm、さらには直径400mmのものまで製造、試作されている。そして、このような大直径ウエーハに対しても、品質への要求は高く、大口径エピタキシャルウエーハの製造も行われている。
ところで、300mm以上の直径をもつシリコンウエーハにエピタキシャル層(以下、単にエピ層と呼ぶことがある)を形成したエピタキシャルウエーハを作製し、そのエピタキシャル層を調査したところ、このような300mm以上の直径を持つ大口径エピタキシャルウエーハには、200mmまでのエピタキシャルウエーハには顕在化していなかった欠陥が発生するという問題があることがわかってきた。
この欠陥は、エピ層表面をパーティクルカウンターで測定すると0.09μmサイズ以上のLPD(Light Point Defect:レーザ光を用いたウエーハ表面検査装置で観察される輝点欠陥の総称)と称する結晶欠陥が約100個/直径300mmウエーハ(約14個/100cm)程度存在するというものであり、顕微鏡にて拡大観察した結果、これらの欠陥の多くはエピ層に形成された転位ループであることがわかった。一般的にこのような結晶欠陥がエピ層表面に存在すると、リーク特性を劣化させる等、デバイスに悪影響を及ぼすことが知られている。
そこで本発明者等は、これらエピ層に形成される欠陥について鋭意調査を行った。その結果、このようなエピ層の欠陥が発生している位置には、そのエピタキシャル成長用の基板表面に、微小な転位ループがある程度の密度で存在していることを確認した。通常の直径200mm以下の基板においては、このような基板表面に見られる欠陥は、引上げ速度を低下させた低速育成結晶のI−リッチ領域に発生し、セコエッチング等の選択エッチング(例えばFPDの評価に用いられる無攪拌セコエッチング)や銅デコレーション法等で観察されるもので、観察される欠陥のサイズは大変大きく、その大きさは最低でも10μm以上あり、転位クラスターとも呼ばれている。
しかし、300mm以上のエピタキシャルウエーハに転位ループを発生させていたエピタキシャル成長用の基板には、低速育成結晶から作製された基板ではなく、明らかに高速育成であるV−リッチ領域で育成されたものもあり、上記と同様にセコエッチング等の選択エッチング(例えばFPDの評価に用いられる無攪拌セコエッチング)や銅デコレーション法で欠陥が観察されるが、欠陥のサイズは片面30μm程度のエッチオフ量で無攪拌セコエッチングを行ったときに5μm程度の液滴形状のエッチピットとして観察されるものであり、最大でも10μmを超えることはなく、200mm以下の基板のI−リッチ領域に存在するものに比べて小さいことがわかった。このような欠陥は直径200mmまでの基板でも、極く僅かに観察されてはいた。しかし、その密度が極めて低いため、エピ成長を施しても殆ど目立たず、全く問題にはなっていなかった。しかし、直径300mm以上になると、このような欠陥がより高密度に発生してしまうことが明確となった。
ここでCZ法(チョクラルスキー法:Czochralski Method)結晶の引上げ条件とグローンイン(Grown in)欠陥領域との関係について説明しておく。
まず、CZシリコン単結晶を引上げる際に、結晶中に取り込まれる点欠陥には、原子空孔(Vacancy)と格子間シリコン(Interstitial−Si)とがあり、この両点欠陥の濃度は、結晶の引上げ速度V(成長速度)と結晶中の固液界面近傍の温度勾配Gとの関係(V/G)から決まることが知られている。そして、シリコン単結晶において、原子空孔が多く取り込まれた領域はV−リッチ領域と呼ばれ、シリコン原子の不足からボイド(Void)型のグローンイン欠陥が多く存在する。一方、格子間シリコンが多く取り込まれた領域はI−リッチ領域と呼ばれ、シリコン原子が余分に存在することにより発生する転位に起因して、転位クラスタ等の欠陥が多く存在する。
また、V−リッチ領域とI−リッチ領域の間には、原子の不足や余分の少ないN領域(Neutral領域)が存在することが知られており、さらにこのN領域中には酸化誘起積層欠陥(Oxidation−indused Stacking Fault:以下、OSFと略記する)がリング状に発生するOSF領域(OSFリング領域、リングOSF領域とも呼ばれる)の存在が確認されている。
図2は、縦軸を結晶引上げ速度、横軸を結晶中心からの距離とした場合のグローンイン欠陥領域の分布図を模式的に示したものである。この欠陥領域の分布形状は、結晶の引上げ条件や結晶成長装置の炉内構造(ホットゾーン:Hot Zone:HZ)等を調整してV/Gを制御することにより変化させることができる。
図2からわかる通り、一般的には、結晶の引上げ速度を上げることによりOSF領域が結晶の外周側に移動し、やがて結晶の外周部から消滅し、全面V−リッチ領域の結晶となる。反対に、引上げ速度を下げるとOSF領域は結晶の中心側に移動し、やがて結晶の中央部で消滅し、N領域を経て全面I−リッチ領域の結晶となる。なお窒素をドープした場合、OSF領域やN領域の幅や領域の境界位置が変化することが報告されている(1999年春季第46回応用物理学関係連合講演会予稿集No.1、p.471、29aZB−9、飯田他)。従って、窒素ドープ結晶において、OSF領域を制御する場合には、この窒素ドープ結晶育成時のV/Gと欠陥領域分布との関係を参考に行えばよい。
なお、本願出願人が先に出願した特願平11−294523号に記載したように、直径が200mm以下のCZ結晶のV−リッチ領域であっても、窒素をドープした結晶であれば、上記300mm以上の結晶に見られたようなエピ欠陥を発生させる微小な転位ループが存在することが確認されている。しかしながら、窒素ノンドープのCZ結晶のV−リッチ領域においてこのような微小な転位ループが多く発生することは、本発明者等によって初めて得られた知見である。
発明の開示
そこで、本発明は、このような問題点に鑑みてなされたもので、CZ法単結晶育成に際し、窒素ノンドープの場合に、微小転位ループが直径200mmまでは発生せず、300mm以上で発生する原因を究明し、結晶欠陥の発生を抑制可能な育成方法を確立し、これから得られるシリコン単結晶ウエーハにエピタキシャル成長を行う際、エピタキシャル層に発生する結晶欠陥を抑制することができるシリコン単結晶ウエーハを製造する方法およびそれから製造されるシリコン単結晶ウエーハ並びにエピタキシャルウエーハを提供することを主たる目的としている。
上記課題を解決するため本発明に係るシリコン単結晶ウエーハの製造方法は、チョクラルスキー法により直径が300mm以上のシリコン単結晶を育成する際に、少なくとも結晶の中心位置がV−リッチ領域となり、かつ1000〜900℃の温度帯の冷却速度を1.25℃/分以下となるように引上げたシリコン単結晶棒からシリコン単結晶ウエーハを作製することを特徴としている。
こうすることによって、従来の窒素ノンドープの育成方法では直径300mm以上になると高密度で発生した転位ループの発生を殆ど抑制することができるようになり、ウエーハの少なくとも中心位置がV−リッチ領域で、転位ループがない直径が300mm以上のシリコン単結晶ウエーハを製造することができる。
この場合、このシリコン単結晶ウエーハをエピタキシャル成長用ウエーハとすることができる。
このように、本発明のシリコン巣結晶ウエーハは、エピタキシャル成長用として極めて有効な基板となる。従って、該ウエーハにエピ層を形成するようにすれば、エピ欠陥のないデバイス用としてリーク特性等を劣化させることのない高品質のエピタキシャルウエーハを容易に低コストで作製することができる。
そして、本発明に係るシリコン単結晶ウエーハは、チョクラルスキー法により育成され、V−リッチ領域を有する直径300mm以上のシリコン単結晶ウェーハであって、転位ループがウエーハ全面に存在しないことを特徴としている。
このように、本発明のウエーハは、CZ法で育成された直径が300mm以上であっても、転位ループがウエーハ全面に存在しない高品質のシリコン単結晶ウエーハとなる。
この場合、このシリコン単結晶ウエーハをエピタキシャル成長用ウエーハとすることができる。
このように、V−リッチ領域を有し、転位ループがウエーハ全面に存在しないシリコン単結晶ウエーハは、エピタキシャル成長用として極めて有効な基板となる。
そして、本発明によれば、前記シリコン単結晶ウエーハの表面にエピ欠陥のないエピタキシャル層を形成したエピタキシャルウエーハが提供される。
さらに、本発明によれば、チョクラルスキー法により育成され、V−リッチ領域を有する直径300mm以上のシリコン単結晶ウエーハの表面にエピタキシャル層を形成したエピタキシャルウエーハであって、エピタキシャル層上に観察される0.09μmサイズ以上のLPD密度が4.3個/100cm以下である結晶欠陥の極めて少ないエピタキシャルウエーハが提供される。
このように、本発明のエピタキシャルウエーハは、結晶中心がV−リッチ領域で、転位ループがウエーハ全面に存在しないシリコン単結晶ウエーハの表面にエピタキシャル層を形成させたエピ層表面にエピ欠陥の極めて少ないエピタキシャルウエーハであって、デバイス用としてリーク特性等を劣化させることのない極めて高品質のエピタキシャルウエーハを高い歩留りと高い生産性で提供することができる。
以上に述べたように、本発明によれば、CZ法単結晶育成に際し、窒素ノンドープの場合に、直径200mmまでは発生せずに、300mm以上で発生してしまう微小転位ループの発生を抑制することができ、これから得られるシリコン単結晶ウエーハにエピタキシャル成長を行っても、エピタキシャル層に転位ループやLPD結晶欠陥等の発生を抑制した高品質エピタキシャルウエーハを作製することができる。従って、デバイス用としてリーク特性等を劣化させることのないエピタキシャルウエーハを高い生産性と高歩留りで提供することができる。
発明を実施するための最良の形態
以下、本発明につき詳細に説明するが、本発明はこれらに限定されるものではない。
本発明では、CZ法で窒素ノンドープでシリコン単結晶を育成する場合に、前述のような微小転位ループが直径200mmまでは発生せずに、直径300mm以上で発生するようになる原因について、引上げ結晶の熱履歴という観点から検討を加えた。
その結果、一般的な直径300mm以上の結晶育成というのは、引上げチャンバおよびHZの構造上、従来の直径200mmまでの結晶と比較して、1000℃以下の低温側の部分において冷却速度が速いことが一因となっていることが推察された。
そこで、低温域の中で、特にどの温度帯がこのような微小転位ループの形成に関与しているのかを調査した。その方法は、引上げ速度を急変させる方法である。具体的には、この結晶の育成に際し、肩から60cmまでの直胴部を引上げ速度1.0mm/minで引上げた後、同一速度で結晶を融液から切り離すために結晶尾部に丸めを付けた後、結晶を切り離す位置から、巻き上げ速度を0.5mm/minとして40cm巻き上げた。
このような方法で引上げれば、直胴部の位置により、冷却速度が低下した温度帯が異なる結晶が得られる。そして、この結晶の各部位からウエーハを切り出し、セコエッチングを行い、微小転位ループを評価したところ、約1000〜900℃の温度帯の位置(結晶肩部から42〜46cmの位置)で欠陥の密度が大きく変化し、冷却速度が遅いほど、転位ループが発生していなかった(図3参照)。こうして、微小転位ループの低減に効果的な温度帯が確認できた。また、約100℃の温度幅が4cmの結晶長さに相当し、その間を0.5mm/minで巻き上げていることから、約1000〜900℃の通過時間は約80分であり、冷却速度は約1.25℃/minとなる。従って、この温度帯の冷却速度を1.25℃/min以下にすれば、微小転位ループを低減できることが判った。また、この冷却速度の下限は少なくとも結晶の中心部がV−リッチ領域となる条件であれば特に限定されないが、実用上は0.4℃/分程度である。
次に、V−リッチ領域において微小転位ループが殆ど発生しない従来の窒素ノンドープで直径200mmまでの結晶の一般的な引上げ条件について調査したところ、1000〜900℃の温度帯の通過時間は、最も速い場合であっても80分程度の時間を要していることがわかった。従って、V−リッチ領域において微小転位ループを発生させないための条件として、1000〜900℃の温度帯の冷却速度を約1.25℃/分(100℃/80分)以下とすればよいことが確認できた。
そこで、直径300mm以上の結晶育成の場合にこの引上げ条件を適用して単結晶育成を試みた。単結晶引上げ装置のHZの上部空間に、適当な大きさの断熱材を設置し、かつ結晶育成後直ちに巻上げずに、1000〜900℃の温度帯の冷却速度が1.25℃/分以下になるような条件を設定し、その条件で結晶を育成したところ、微小転位ループは全く発生しないことが判った。
以下、本発明について、図面を参照しながら詳細に説明する。
先ず、本発明で使用するCZ法による単結晶引上げ装置の概略の構成例を図1により説明する。
図1に示すように、この単結晶引上げ装置30は、引上げ室31と、引上げ室31中に設けられたルツボ32と、ルツボ32の周囲に配置されたヒータ34と、ルツボ32を回転させるルツボ保持軸33およびその回転機構(図示せず)と、シリコンの種結晶5を保持するシードチャック6と、シードチャック6を引上げるワイヤ7と、ワイヤ7を回転又は巻き取る巻取機構(図示せず)を備えて構成されている。ルツボ32は、その内側のシリコン融液(湯)2を収容する側には石英ルツボが設けられ、その外側には黒鉛ルツボが設けられている。また、ヒータ34の外側周囲には断熱材35が配置されている。
また、本発明の製造方法に関わる製造条件を設定するために、結晶の固液界面4の外周に環状の固液界面断熱材8を設け、その上に上部囲繞断熱材9が配置されている。この固液界面断熱材8は、その下端とシリコン融液2の湯面3との間に小さい隙間10を設けて設置されている。上部囲繞断熱材9は条件によっては使用しないこともある。さらに、冷却ガスを吹き付けたり、輻射熱を遮って単結晶を冷却する不図示の筒状の冷却装置を設けてもよい。別に、最近では引上げ室31の水平方向の外側に、図示しない磁石を設置し、シリコン融液2に水平方向あるいは垂直方向等の磁場を印加することによって、融液の対流を抑制し、単結晶の安定成長をはかる、いわゆるMCZ法が用いられることも多い。
以下、本発明の実施例と比較例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
図1に示した引上げ装置で、直径32インチ(800mm)の石英ルツボに原料多結晶シリコンをチャージし、直径300mm、方位<100>、導電型p型のシリコン単結晶ウエーハを作製するためのシリコン単結晶棒1を複数本引上げた(窒素ドープなし)。
実際の引上げを行う前に、HZの上部空間に設置する上部囲繞断熱材9の位置や大きさを変化させて引上げる実験を繰り返し行い、引上げ速度が1.0mm/minで1000〜900℃の温度帯の冷却速度が1.25℃/分になるようなHZを設定した。
引上げられたシリコン単結晶棒のそれぞれから直径300mmのシリコン単結晶ウエーハを切り出し、鏡面研磨ウエーハを作製した。作製された鏡面シリコン単結晶ウエーハのグローンイン欠陥及び転位ループを確認するため、シリコン単結晶ウエーハに無攪拌セコエッチングを行い、その後電子顕微鏡を用いて観察を行った。その結果、ボイド型欠陥が多く観察され全面V−リッチ領域であることが確認できたが、ウエーハ表面に転位ループは全く観察されなかった。
次に、これらのウエーハ表面に1125℃で3μmのエピタキシャル層を形成したエピタキシャルウエーハを複数枚作製し、表面検査装置SP1(KLAテンコール社製商品名)を用いて、0.09μmサイズ以上のLPDを測定した。その結果、LPD密度は平均30個/直径300mmウエーハ(0.0425個/cm=4.3個/100cm)であった。
このように、1000〜900℃の温度帯の冷却速度を1.25℃/分以下とすれば、エピ層上のLPD密度を大巾に改善できることがわかる。特に、1.25℃/分より、より一層冷却速度を遅くすれば、4.3個/100cmよりさらに欠陥が減少する。
(比較例1)
実施例1と同一の引上げ装置を用い、引上げ速度が1.0mm/minで、1000〜900℃の温度帯の冷却速度は1.3℃/分以上となるようにHZを設定し、複数本のシリコン単結晶棒を引上げた。
引上げられたシリコン単結晶棒のそれぞれからシリコン単結晶ウエーハを作製し、実施例1と同一条件でエピタキシャルウエーハを作製し、0.09μmサイズ以上のLPDを測定した。その結果、いずれのウエーハでもウエーハ全面(直径300mm)で100個以上のLPDが観察された。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
例えば、上記実施形態においては、チョクラルスキー法(CZ法)によりシリコン単結晶を育成する場合につき例を挙げて説明したが、本発明はこれには限定されず、シリコン融液に水平磁場、縦磁場、カスプ磁場等を印加するいわゆるMCZ法にも適用できることは言うまでもない。
また、本発明はシリコン単結晶(ウエーハ)の直径が300mm以上であり、冷却速度が所定値以下であれば、単結晶の導電型、抵抗率、酸素濃度等に関わらず適用することが可能であり、さらに、例えば酸素析出を促進するために炭素がドープされたシリコン単結晶にも同様に適用できる。
【図面の簡単な説明】
図1は、本発明で使用したCZ法による単結晶引上げ装置の概略説明図である。
図2は、シリコン単結晶における、結晶の径方向位置を横軸とし、結晶引上げ速度を縦軸とした場合のグローンイン欠陥領域の分布図である(窒素ノンドープ結晶)。
図3は、結晶肩部からの長さと転位ループ密度との関係を表す結果図である。
TECHNICAL FIELD The present invention relates to a silicon single crystal wafer having few crystal defects and a method for manufacturing the same, and more particularly to a silicon single crystal wafer having a large diameter of 300 mm or more, a method for manufacturing the same, and an epitaxial wafer using the wafer as a substrate.
With the high integration and miniaturization of background technology devices, there is a strong demand for high-performance wafers. On the other hand, an epitaxial silicon single crystal wafer obtained by growing an epitaxial layer on a silicon single crystal wafer (hereinafter sometimes simply referred to as a silicon wafer or a wafer) (hereinafter sometimes simply referred to as a silicon epitaxial wafer or an epitaxial wafer). Is being used.
In addition, the diameter of the crystal has been increased to reduce the cost of the device process. At present, a crystal having a diameter of 300 mm and further a diameter of 400 mm has been manufactured and prototyped. Even for such a large-diameter wafer, the demand for quality is high, and a large-diameter epitaxial wafer is also manufactured.
By the way, when an epitaxial wafer in which an epitaxial layer (hereinafter sometimes referred to simply as an epi layer) is formed on a silicon wafer having a diameter of 300 mm or more is fabricated and the epitaxial layer is investigated, such a diameter of 300 mm or more is obtained. It has been found that large-diameter epitaxial wafers have a problem that defects that have not been manifested in epitaxial wafers up to 200 mm occur.
When the epilayer surface is measured with a particle counter, this defect is approximately about 0.09 μm size LPD (Light Point Defect: a general term for bright spot defects observed with a wafer surface inspection apparatus using laser light). There are about 100 wafers / 300 mm diameter wafers (about 14/100 cm 2 ). As a result of magnifying observation with a microscope, it was found that most of these defects were dislocation loops formed in the epilayer. . In general, it is known that when such crystal defects exist on the surface of the epi layer, the device has an adverse effect such as deterioration of leakage characteristics.
Therefore, the present inventors conducted extensive investigations on defects formed in these epi layers. As a result, it was confirmed that minute dislocation loops were present at a certain density on the surface of the substrate for epitaxial growth at the position where such defects in the epi layer were generated. In a normal substrate having a diameter of 200 mm or less, such defects appearing on the surface of the substrate are generated in the I-rich region of the slow-growing crystal with a reduced pulling rate, and selective etching such as seco etching (for example, evaluation of FPD) The size of the observed defect is very large, which is at least 10 μm or more, and is also called a dislocation cluster.
However, some epitaxial growth substrates in which dislocation loops have been generated in an epitaxial wafer of 300 mm or more are not grown from a low-speed grown crystal, but are grown in a V-rich region, which is clearly a high-speed growth. Similar to the above, defects are observed by selective etching such as Secco etching (for example, non-stirring Secco etching used for evaluation of FPD) and copper decoration method, but the size of the defect is not stirred with an etch-off amount of about 30 μm on one side It is observed as an etch pit having a droplet shape of about 5 μm when Secco etching is performed, does not exceed 10 μm at the maximum, and is smaller than that present in the I-rich region of a substrate of 200 mm or less. I understood it. Such defects were observed only slightly even on substrates up to 200 mm in diameter. However, since its density is extremely low, it was hardly noticeable even when epi-growth was performed, and it was not a problem at all. However, it has become clear that such defects occur at a higher density when the diameter is 300 mm or more.
Here, the relationship between the pulling condition of the CZ method (Czochralski method) crystal and the grown-in defect region will be described.
First, when pulling up a CZ silicon single crystal, the point defects taken into the crystal include atomic vacancies and interstitial silicon (Interstitial-Si). It is known that it is determined from the relationship (V / G) between the pulling rate V (growth rate) of the crystal and the temperature gradient G near the solid-liquid interface in the crystal. In a silicon single crystal, a region in which many atomic vacancies are taken in is called a V-rich region, and there are many void-type grow-in defects due to a shortage of silicon atoms. On the other hand, a region where a large amount of interstitial silicon is taken in is called an I-rich region, and there are many defects such as dislocation clusters due to dislocations generated by the presence of extra silicon atoms.
Further, it is known that an N region (neutral region) with a shortage of atoms and a small excess exists between the V-rich region and the I-rich region, and further, oxidation-induced stacking faults are present in the N region. The existence of an OSF region (also referred to as an OSF ring region or a ring OSF region) in which a ring-shaped (Oxidation-Induced Stacking Fault: hereinafter abbreviated as OSF) has been confirmed.
FIG. 2 schematically shows a distribution map of a grown-in defect region where the vertical axis is the crystal pulling speed and the horizontal axis is the distance from the crystal center. The distribution shape of the defect region can be changed by controlling V / G by adjusting the crystal pulling conditions, the in-furnace structure of the crystal growth apparatus (hot zone: HZ), and the like.
As can be seen from FIG. 2, generally, the OSF region moves toward the outer periphery of the crystal by increasing the pulling speed of the crystal, and eventually disappears from the outer periphery of the crystal, so that the entire surface becomes a V-rich region crystal. On the other hand, when the pulling rate is lowered, the OSF region moves toward the center of the crystal, eventually disappears at the center of the crystal, and becomes an entire I-rich region crystal through the N region. In addition, it has been reported that, when nitrogen is doped, the width of the OSF region and the N region and the boundary position of the region change (No. 1, p. 471, 29aZB-9, Iida et al.). Therefore, when controlling the OSF region in a nitrogen-doped crystal, the relationship between the V / G and the defect region distribution during the growth of the nitrogen-doped crystal may be referred to.
In addition, as described in Japanese Patent Application No. 11-294523 filed earlier by the applicant of the present application, even if it is a V-rich region of a CZ crystal having a diameter of 200 mm or less, if the crystal is doped with nitrogen, the above It has been confirmed that there are minute dislocation loops that cause epi defects as found in crystals of 300 mm or more. However, the fact that many such dislocation loops are generated in the V-rich region of a nitrogen-non-doped CZ crystal is a knowledge obtained for the first time by the present inventors.
DISCLOSURE OF THE INVENTION Accordingly, the present invention has been made in view of such problems, and in the case of nitrogen non-doping when growing a CZ method single crystal, a small dislocation loop does not occur up to a diameter of 200 mm, and is 300 mm or more. Investigate the cause of the occurrence, establish a growth method that can suppress the generation of crystal defects, and when performing epitaxial growth on the resulting silicon single crystal wafer, a silicon single crystal that can suppress crystal defects generated in the epitaxial layer The main object is to provide a method of manufacturing a wafer and a silicon single crystal wafer and an epitaxial wafer manufactured therefrom.
In order to solve the above problems, the method for producing a silicon single crystal wafer according to the present invention, when growing a silicon single crystal having a diameter of 300 mm or more by the Czochralski method, at least the center position of the crystal becomes a V-rich region, In addition, a silicon single crystal wafer is produced from a silicon single crystal rod pulled up so that the cooling rate in the temperature range of 1000 to 900 ° C. is 1.25 ° C./min or less.
In this way, in the conventional nitrogen non-doping growth method, the generation of dislocation loops generated at a high density can be suppressed when the diameter is 300 mm or more, and at least the center position of the wafer is the V-rich region. A silicon single crystal wafer having a diameter of 300 mm or more without dislocation loops can be produced.
In this case, this silicon single crystal wafer can be used as a wafer for epitaxial growth.
Thus, the silicon nest crystal wafer of the present invention is a very effective substrate for epitaxial growth. Therefore, if an epitaxial layer is formed on the wafer, a high-quality epitaxial wafer can be easily produced at low cost without deteriorating leakage characteristics and the like for devices having no epi defects.
The silicon single crystal wafer according to the present invention is a silicon single crystal wafer having a diameter of 300 mm or more having a V-rich region grown by the Czochralski method, wherein dislocation loops do not exist on the entire surface of the wafer. Yes.
As described above, the wafer of the present invention is a high-quality silicon single crystal wafer in which dislocation loops do not exist on the entire surface of the wafer even when the diameter grown by the CZ method is 300 mm or more.
In this case, this silicon single crystal wafer can be used as a wafer for epitaxial growth.
As described above, a silicon single crystal wafer having a V-rich region and having no dislocation loop on the entire surface of the wafer is a very effective substrate for epitaxial growth.
And according to this invention, the epitaxial wafer which formed the epitaxial layer without an epi defect on the surface of the said silicon single crystal wafer is provided.
Furthermore, according to the present invention, there is provided an epitaxial wafer formed by a Czochralski method and having an epitaxial layer formed on the surface of a silicon single crystal wafer having a V-rich region and having a diameter of 300 mm or more, which is observed on the epitaxial layer. An epitaxial wafer having a very low crystal defect in which the LPD density of 0.09 μm size or more is 4.3 pieces / 100 cm 2 or less is provided.
Thus, the epitaxial wafer of the present invention has very few epi defects on the surface of the epitaxial layer in which the epitaxial layer is formed on the surface of the silicon single crystal wafer in which the crystal center is the V-rich region and the dislocation loop does not exist on the entire wafer surface. It is an epitaxial wafer that can provide an extremely high quality epitaxial wafer with high yield and high productivity without deteriorating leakage characteristics and the like for devices.
As described above, according to the present invention, in the case of growing a CZ method single crystal, in the case of nitrogen non-doping, it does not occur up to a diameter of 200 mm but suppresses the occurrence of a micro dislocation loop that occurs at 300 mm or more. Even if the silicon single crystal wafer obtained from this is epitaxially grown, a high-quality epitaxial wafer in which generation of dislocation loops, LPD crystal defects, and the like is suppressed in the epitaxial layer can be produced. Therefore, it is possible to provide an epitaxial wafer for a device that does not deteriorate the leakage characteristics and the like with high productivity and high yield.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
In the present invention, when a silicon single crystal is grown by nitrogen non-doping by the CZ method, the above-described micro dislocation loop does not occur up to a diameter of 200 mm but occurs at a diameter of 300 mm or more. Considered from the viewpoint of heat history of.
As a result, the general growth of crystals with a diameter of 300 mm or more means that, due to the structure of the pulling chamber and the HZ, the cooling rate is faster in the low temperature side portion of 1000 ° C. or lower than the conventional crystals with a diameter of 200 mm or less. It was inferred that this is part of the reason.
Therefore, we investigated which temperature zone in the low temperature region is particularly involved in the formation of such micro-dislocation loops. That method is a method of suddenly changing the pulling speed. Specifically, when growing this crystal, the straight body from the shoulder to 60 cm was pulled up at a pulling speed of 1.0 mm / min, and then the crystal tail was rounded to separate the crystal from the melt at the same speed. Thereafter, from the position where the crystal was cut off, the winding speed was 0.5 mm / min and the film was wound up by 40 cm.
By pulling up by such a method, crystals with different temperature zones in which the cooling rate is lowered can be obtained depending on the position of the straight body portion. Then, the wafer was cut out from each part of the crystal, subjected to Secco etching, and the micro-dislocation loop was evaluated. The density of defects at a temperature zone of about 1000 to 900 ° C. (position of 42 to 46 cm from the crystal shoulder). As the cooling rate changed greatly, the dislocation loop did not occur (see FIG. 3). In this way, an effective temperature zone for reducing microdislocation loops was confirmed. In addition, since the temperature width of about 100 ° C. corresponds to a crystal length of 4 cm, and the interval is wound up at 0.5 mm / min, the passing time of about 1000 to 900 ° C. is about 80 minutes, and the cooling rate is About 1.25 ° C./min. Therefore, it has been found that if the cooling rate in this temperature zone is 1.25 ° C./min or less, the microdislocation loop can be reduced. The lower limit of the cooling rate is not particularly limited as long as at least the center of the crystal is in the V-rich region, but is practically about 0.4 ° C./min.
Next, when a general pulling condition of a crystal up to a diameter of 200 mm with conventional nitrogen non-doping that hardly generates micro dislocation loops in the V-rich region was investigated, the transit time in the temperature range of 1000 to 900 ° C. was the fastest. Even in this case, it was found that it took about 80 minutes. Therefore, as a condition for preventing the occurrence of microdislocation loops in the V-rich region, the cooling rate in the temperature range of 1000 to 900 ° C. may be about 1.25 ° C./min (100 ° C./80 min) or less. It could be confirmed.
Therefore, in the case of crystal growth having a diameter of 300 mm or more, single crystal growth was attempted by applying this pulling condition. A heat insulating material of an appropriate size is installed in the upper space of the HZ of the single crystal pulling apparatus, and the cooling rate in the temperature zone of 1000 to 900 ° C. is 1.25 ° C./min or less without winding immediately after crystal growth. It was found that no micro-dislocation loops were generated at all when the crystal was grown under such conditions.
Hereinafter, the present invention will be described in detail with reference to the drawings.
First, a schematic configuration example of a single crystal pulling apparatus using the CZ method used in the present invention will be described with reference to FIG.
As shown in FIG. 1, the single crystal pulling apparatus 30 includes a pulling chamber 31, a crucible 32 provided in the pulling chamber 31, a heater 34 disposed around the crucible 32, and a crucible for rotating the crucible 32. Holding shaft 33 and its rotating mechanism (not shown), seed chuck 6 holding silicon seed crystal 5, wire 7 pulling up seed chuck 6, and winding mechanism (not shown) for rotating or winding wire 7 Z). The crucible 32 is provided with a quartz crucible on the inner side containing the silicon melt (hot water) 2 and on the outer side with a graphite crucible. A heat insulating material 35 is disposed around the outside of the heater 34.
Moreover, in order to set the manufacturing conditions related to the manufacturing method of the present invention, an annular solid-liquid interface heat insulating material 8 is provided on the outer periphery of the crystal solid-liquid interface 4, and an upper surrounding heat insulating material 9 is disposed thereon. . This solid-liquid interface heat insulating material 8 is installed with a small gap 10 between its lower end and the molten metal surface 3 of the silicon melt 2. The upper surrounding heat insulating material 9 may not be used depending on conditions. Further, a cylindrical cooling device (not shown) that cools the single crystal by blowing cooling gas or blocking radiant heat may be provided. In addition, recently, a magnet (not shown) is installed outside the pulling chamber 31 in the horizontal direction, and a magnetic field in the horizontal direction or the vertical direction is applied to the silicon melt 2 to suppress the convection of the melt. The so-called MCZ method is often used to achieve stable growth.
EXAMPLES Hereinafter, although an Example and comparative example of this invention are given and this invention is demonstrated concretely, this invention is not limited to these.
Example 1
Silicon for producing a silicon single crystal wafer having a diameter of 300 mm, an orientation <100>, and a conductivity type p-type by charging a raw material polycrystalline silicon into a quartz crucible having a diameter of 32 inches (800 mm) with the pulling apparatus shown in FIG. A plurality of single crystal rods 1 were pulled up (no nitrogen doping).
Before the actual pulling up, the experiment was repeated by changing the position and size of the upper surrounding heat insulating material 9 installed in the upper space of the HZ, and the pulling rate was 1000 to 900 ° C. at 1.0 mm / min. HZ was set such that the cooling rate in the temperature zone was 1.25 ° C./min.
A silicon single crystal wafer having a diameter of 300 mm was cut out from each of the pulled silicon single crystal rods to produce a mirror-polished wafer. In order to confirm the grown-in defects and dislocation loops of the produced mirror-surface silicon single crystal wafer, the silicon single crystal wafer was subjected to non-stirring Secco etching and then observed using an electron microscope. As a result, many void-type defects were observed and it was confirmed that the entire surface was a V-rich region, but no dislocation loop was observed on the wafer surface.
Next, a plurality of epitaxial wafers each having a 3 μm epitaxial layer formed at 1125 ° C. on these wafer surfaces were produced, and an LPD of 0.09 μm size or larger was formed using a surface inspection apparatus SP1 (trade name, manufactured by KLA Tencor). It was measured. As a result, the LPD density was an average of 30 wafers / diameter of 300 mm (0.0425 wafers / cm 2 = 4.3 wafers / 100 cm 2 ).
Thus, it can be seen that if the cooling rate in the temperature range of 1000 to 900 ° C. is 1.25 ° C./min or less, the LPD density on the epi layer can be greatly improved. In particular, if the cooling rate is further reduced from 1.25 ° C./min, defects are further reduced from 4.3 / 100 cm 2 .
(Comparative Example 1)
Using the same pulling apparatus as in Example 1, HZ is set so that the pulling rate is 1.0 mm / min, and the cooling rate in the temperature range of 1000 to 900 ° C. is 1.3 ° C./min or more. The silicon single crystal rod was pulled up.
A silicon single crystal wafer was prepared from each of the pulled silicon single crystal rods, an epitaxial wafer was prepared under the same conditions as in Example 1, and an LPD of 0.09 μm size or more was measured. As a result, 100 or more LPDs were observed on the entire wafer surface (diameter: 300 mm) in any wafer.
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
For example, in the above-described embodiment, the case where a silicon single crystal is grown by the Czochralski method (CZ method) has been described as an example. However, the present invention is not limited to this, and a horizontal magnetic field is applied to the silicon melt. Needless to say, the present invention can also be applied to the so-called MCZ method in which a longitudinal magnetic field, a cusp magnetic field, or the like is applied.
Further, the present invention can be applied regardless of the conductivity type, resistivity, oxygen concentration, etc. of the single crystal as long as the diameter of the silicon single crystal (wafer) is 300 mm or more and the cooling rate is a predetermined value or less. Furthermore, the present invention can be similarly applied to, for example, a silicon single crystal doped with carbon to promote oxygen precipitation.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of a single crystal pulling apparatus using the CZ method used in the present invention.
FIG. 2 is a distribution diagram of a grown-in defect region (nitrogen non-doped crystal) in a silicon single crystal where the horizontal axis is the radial position of the crystal and the vertical axis is the crystal pulling rate.
FIG. 3 is a result diagram showing the relationship between the length from the crystal shoulder and the dislocation loop density.

Claims (6)

チョクラルスキー法により、窒素ノンドープであり、直径が300mm以上のシリコン単結晶を育成する際に、全面V−リッチ領域の結晶となり、かつ1000〜900℃の温度帯の冷却速度を1.25℃/分以下となるように引上げたシリコン単結晶棒からシリコン単結晶ウエーハを作製することを特徴とするシリコン単結晶ウエーハの製造方法。When growing a silicon single crystal having a diameter of 300 mm or more by Czochralski method , the entire surface becomes a V-rich region crystal and the cooling rate in the temperature range of 1000 to 900 ° C. is 1.25 ° C. A method for producing a silicon single crystal wafer, comprising producing a silicon single crystal wafer from a silicon single crystal rod pulled so as to be less than / min. 前記シリコン単結晶ウエーハは、エピタキシャル成長用ウエーハであることを特徴とする請求項1に記載したシリコン単結晶ウエーハの製造方法。  2. The method for producing a silicon single crystal wafer according to claim 1, wherein the silicon single crystal wafer is a wafer for epitaxial growth. チョクラルスキー法により育成され、窒素ノンドープであり、全面V−リッチ領域であり、直径300mm以上のシリコン単結晶ウエーハであって、転位ループがウエーハ全面に存在しないことを特徴とするシリコン単結晶ウエーハ。A silicon single crystal wafer which is grown by the Czochralski method , is nitrogen non-doped, is an entire V-rich region , has a diameter of 300 mm or more , and has no dislocation loop on the entire surface of the wafer. . 前記シリコン単結晶ウエーハは、エピタキシャル成長用ウエーハであることを特徴とする請求項3に記載したシリコン単結晶ウエーハ。  4. The silicon single crystal wafer according to claim 3, wherein the silicon single crystal wafer is an epitaxial growth wafer. 請求項3または請求項4に記載したシリコン単結晶ウエーハの表面にエピタキシャル層を形成したものであることを特徴とするエピタキシャルウエーハ。  An epitaxial wafer, wherein an epitaxial layer is formed on the surface of the silicon single crystal wafer according to claim 3 or 4. チョクラルスキー法により育成され、窒素ノンドープであり、全面V−リッチ領域であり、直径300mm以上のシリコン単結晶ウエーハの表面にエピタキシャル層を形成したエピタキシャルウエーハであって、エピタキシャル層上に観察される0.09μmサイズ以上のLPD密度が4.3個/100cm以下であることを特徴とするエピタキシャルウエーハ。An epitaxial wafer which is grown by the Czochralski method , is nitrogen non-doped, is an entire V-rich region , has an epitaxial layer formed on the surface of a silicon single crystal wafer having a diameter of 300 mm or more, and is observed on the epitaxial layer An epitaxial wafer having an LPD density of 0.09 μm size or more and 4.3 pieces / 100 cm 2 or less.
JP2001584610A 2000-05-17 2001-05-11 Manufacturing method of silicon single crystal wafer, silicon single crystal wafer and epitaxial wafer Expired - Fee Related JP4296740B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000144503 2000-05-17
PCT/JP2001/003946 WO2001088230A1 (en) 2000-05-17 2001-05-11 Silicon single-crystal wafer manufacturing method, silicon single-crystal wafer, and epitaxial wafer

Publications (1)

Publication Number Publication Date
JP4296740B2 true JP4296740B2 (en) 2009-07-15

Family

ID=18651150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001584610A Expired - Fee Related JP4296740B2 (en) 2000-05-17 2001-05-11 Manufacturing method of silicon single crystal wafer, silicon single crystal wafer and epitaxial wafer

Country Status (3)

Country Link
JP (1) JP4296740B2 (en)
TW (1) TWI282379B (en)
WO (1) WO2001088230A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032342B2 (en) * 2002-03-27 2008-01-16 株式会社Sumco Manufacturing method of semiconductor silicon substrate
JP4236243B2 (en) 2002-10-31 2009-03-11 Sumco Techxiv株式会社 Silicon wafer manufacturing method
CN104630880A (en) * 2015-02-15 2015-05-20 英利集团有限公司 Czochralski system for forming single crystal bar and technology method of growing single crystal bar
JP6447351B2 (en) * 2015-05-08 2019-01-09 株式会社Sumco Method for manufacturing silicon epitaxial wafer and silicon epitaxial wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233651B2 (en) * 1998-10-29 2009-03-04 信越半導体株式会社 Silicon single crystal wafer
JP4442955B2 (en) * 1999-07-28 2010-03-31 株式会社Sumco Epitaxial wafer manufacturing method

Also Published As

Publication number Publication date
TWI282379B (en) 2007-06-11
WO2001088230A1 (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP4224966B2 (en) Manufacturing method of silicon single crystal wafer, manufacturing method of epitaxial wafer, evaluation method of silicon single crystal wafer
KR100582240B1 (en) Silicon single crystal wafer and a method for producing it
EP1310583B1 (en) Method for manufacturing of silicon single crystal wafer
JP3747123B2 (en) Method for producing silicon single crystal with few crystal defects and silicon single crystal wafer
JP3994665B2 (en) Silicon single crystal wafer and method for producing silicon single crystal
US6299982B1 (en) Silicon single crystal wafer and method for producing silicon single crystal wafer
KR20000005886A (en) Silicon Single Crystal Wafer having few defects wherein nitrogen is doped and a method for producing it
JP2001146498A (en) Silicon single crystal wafer, method for producing the same and soi wafer
JP3787472B2 (en) Silicon wafer, method for manufacturing the same, and method for evaluating silicon wafer
JP3634133B2 (en) Method for producing silicon single crystal with few crystal defects and silicon single crystal wafer
KR20020019025A (en) Silicon wafer and method for producing silicon single crystal
JP2003327493A (en) Silicon single crystal wafer, epitaxial wafer, and method for manufacturing silicon single crystal
JP4634553B2 (en) Silicon single crystal wafer and manufacturing method thereof
JP4102988B2 (en) Method for producing silicon wafer and epitaxial wafer, and epitaxial wafer
JP4296740B2 (en) Manufacturing method of silicon single crystal wafer, silicon single crystal wafer and epitaxial wafer
JP4218080B2 (en) Silicon single crystal wafer and manufacturing method thereof
JP3353681B2 (en) Silicon wafer and crystal growing method
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
JP4002721B2 (en) Silicon single crystal wafer for Ga-doped solar cell and method for producing the same
JP4082394B2 (en) Evaluation method of silicon wafer
JPH11199380A (en) Silicon wafer and crystal growth
JP3724535B2 (en) High quality silicon single crystal
JP4007193B2 (en) Method for producing silicon single crystal
JPH11217296A (en) High-quality silicon single crystal wafer
JP2005119964A (en) Nitrogen-doped silicon single crystal wafer having few defects and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4296740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees