JPH06136573A - Corrosion preventive method for concrete structure by thermally sprayed film - Google Patents

Corrosion preventive method for concrete structure by thermally sprayed film

Info

Publication number
JPH06136573A
JPH06136573A JP4291098A JP29109892A JPH06136573A JP H06136573 A JPH06136573 A JP H06136573A JP 4291098 A JP4291098 A JP 4291098A JP 29109892 A JP29109892 A JP 29109892A JP H06136573 A JPH06136573 A JP H06136573A
Authority
JP
Japan
Prior art keywords
concrete
alloy
thermally sprayed
sprayed film
spray coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4291098A
Other languages
Japanese (ja)
Other versions
JP3137771B2 (en
Inventor
Toshiya Uchibori
利也 内堀
Toyofumi Tanaka
豊文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP04291098A priority Critical patent/JP3137771B2/en
Publication of JPH06136573A publication Critical patent/JPH06136573A/en
Application granted granted Critical
Publication of JP3137771B2 publication Critical patent/JP3137771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To exhibit the corrosion preventive performance of a thermally sprayed film to the max. extent by bringing a metallic film for electric corrosion protection into tight contact with the surface of concrete confirmed to have prescribed pH and soluble chloride concn. and electrically connecting this film to the reinforcing bars, etc., in the concrete. CONSTITUTION:The surface of the concrete is confirmed to have <=pH11 and <=0.01wt.% (in terms of NaCl) soluble chloride concn. The thermally sprayed film of metal (high-purity Zn, Zn alloy, Zn-Al alloy, Al alloy or Mg alloy) baser than iron is brought into tight contact with the surface of this concrete by using an arc system or flame system. The thermally sprayed film and the reinforcing bars embedded into the concrete or steel structure are electrically connected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、桟橋、道路橋、橋脚、
建築構造物などの鉄筋又は鉄系構造物を金属溶射皮膜で
電気防食する方法に関する。
The present invention relates to a pier, a road bridge, a pier,
The present invention relates to a method of performing galvanic protection of a reinforcing bar or an iron-based structure such as a building structure with a metal spray coating.

【0002】[0002]

【従来の技術】近年、鉄筋コンクリート構造物中の鉄筋
が、細骨材に含まれる塩分や海塩粒子の侵入などによっ
て腐食されることが問題となっている。その防食対策と
して電気防食法が注目されており、白金被覆の線状又は
メッシュ状電極をコンクリート構造物中に又は表面に張
りめぐらせ、直流電源装置の正極を該電極に接続し、負
極をコンクリート構造物中の鉄筋等に接続して該電極か
ら該鉄筋等に直流電流を供給する外部電源方式、又は、
コンクリート構造物の表面に鉄筋等より電位の卑な金属
溶射皮膜又は金属シートを密着し、コンクリート構造物
中の鉄筋と電気的に接続する流電陽極方式がある。
2. Description of the Related Art In recent years, there has been a problem that the reinforcing bars in a reinforced concrete structure are corroded by the intrusion of salt contained in fine aggregates or sea salt particles. As an anticorrosion measure, the electrocorrosion method has been attracting attention.A platinum-coated linear or mesh electrode is spread in or on a concrete structure, the positive electrode of a DC power supply device is connected to the electrode, and the negative electrode is made of concrete. An external power supply method for supplying a direct current from the electrode to the reinforcing bar or the like by connecting to the reinforcing bar or the like in the structure, or
There is a galvanic anode method in which a surface of a concrete structure is sprayed with a metal spray coating or a metal sheet having a lower electric potential than the reinforcing bars to electrically connect with the reinforcing bars in the concrete structure.

【0003】また、流電陽極方式の一方法である特開平
2─282569号公報記載の方法は、コンクリート構
造物内の鋼材にボルトを植設してコンクリート外に突出
させ、上記コンクリートと亜鉛等の流電陽極シートの間
に保水材を介在させ、あるいは、介在させずに上記ボル
トに亜鉛等の流電陽極シートを装着し、ナットで締めつ
けて上記流電陽極材をコンクリート表面に固定するもの
である。
Further, a method described in Japanese Patent Application Laid-Open No. 2-282569, which is one method of galvanic anode method, is that a bolt is planted in a steel material in a concrete structure to project it out of the concrete, and the concrete, zinc, etc. With or without a water retention material between the galvanic anode sheets, the galvanic anode sheets such as zinc are attached to the bolts, and the nuts are tightened to fix the galvanic anode materials to the concrete surface. Is.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の外部電
源方式は、白金被覆の線状又はメッシュ状電極や直流電
源装置が高価であり、また、施工にも手間がかかりコス
ト高になる。さらに、電源が得難い場所では発電装置が
必要になる。また、流電陽極方式では、コンクリート表
面の金属溶射皮膜又は金属シートがコンクリート中のア
ルカリによって早期に不動態化し、十分な防食効果が得
られない場合があった。
However, in the conventional external power supply system, the platinum-coated linear or mesh electrode or the DC power supply device is expensive, and the construction is time-consuming and costly. Furthermore, a power generator is required in places where it is difficult to obtain power. Further, in the galvanic anode method, the metal sprayed coating or the metal sheet on the surface of the concrete is prematurely passivated by the alkali in the concrete, so that a sufficient anticorrosion effect may not be obtained.

【0005】さらに、流電陽極方式の一方法である特開
平2─282569号公報の方法には、次のような問題
がある。 (1)広いコンクリート構造物を防食するためには多数
のZnシートを取り付ける必要があり、コンクリート構
造物内の鋼材に植設するボルトが多くなるため、取り付
けに手間がかかる。 (2)コンクリートの凹凸面に合わせて硬いZnシート
を密着させることは、その加工、取り付けに手間がかか
る。 (3)粘性電解質中の高濃度塩化物がコンクリート中に
浸透し、鉄筋の腐食を促進する恐れがある。 (4)Znシートを取り付けるには、プラスチック板又
はスレート板により圧着してボルトを埋め込みナットで
固定するため、手間がかかる上、特に建築構造物では美
観を損なう恐れがある。
Further, the method disclosed in Japanese Patent Laid-Open No. 2-282569, which is one of the galvanic anode methods, has the following problems. (1) It is necessary to attach a large number of Zn sheets in order to prevent corrosion of a wide concrete structure, and since many bolts are planted in the steel material in the concrete structure, attachment is troublesome. (2) Adhering a hard Zn sheet to the uneven surface of concrete requires time and labor for its processing and mounting. (3) High-concentration chloride in the viscous electrolyte may penetrate into the concrete and accelerate corrosion of the reinforcing bar. (4) Since the Zn sheet is attached by crimping with the plastic plate or the slate plate and fixing the bolt with the embedded nut, it takes time and labor, and particularly in a building structure, the aesthetic appearance may be impaired.

【0006】本発明は、上記の問題点を解消し、金属皮
膜をコンクリート表面に確実に密着させることができ、
広いコンクリート構造物についても施工の容易な電気防
食方法を提供しようとするものである。
The present invention solves the above-mentioned problems and allows a metal film to be reliably adhered to the concrete surface,
It aims to provide a method of cathodic protection that is easy to construct even for wide concrete structures.

【0007】[0007]

【課題を解決するための手段】本発明は、コンクリート
表面のpHが11以下で、可溶性塩化物濃度がNaCl
重量百分率で0.01%以上であることを確認した後、
コンクリート中において鉄よりも電位が卑なる金属溶射
皮膜を、コンクリート表面に密着させ、この溶射皮膜と
上記コンクリート中に埋め込まれた鉄筋又は鉄系構造物
を電気的に接続することを特徴とするコンクリート構造
物の電気防食方法である。
According to the present invention, the concrete surface has a pH of 11 or less and a soluble chloride concentration of NaCl.
After confirming that the weight percentage is 0.01% or more,
Concrete that is characterized in that a metal spray coating having a potential lower than that of iron in concrete is adhered to the concrete surface, and the spray coating and the reinforcing bars or iron-based structures embedded in the concrete are electrically connected. It is a method of cathodic protection of structures.

【0008】なお、本発明で用いる金属溶射皮膜は、高
純度Zn、Zn系合金、Zn−Al合金、Al系合金又
はMg系合金で形成することができる。また、溶射法と
しては、アーク方式、フレーム方式などを採用すること
ができる。
The metal spray coating used in the present invention can be formed of high-purity Zn, Zn-based alloy, Zn-Al alloy, Al-based alloy or Mg-based alloy. Further, as the thermal spraying method, an arc method, a flame method or the like can be adopted.

【0009】[0009]

【作用】本発明は、溶射法で形成された電気防食用金属
皮膜を用いるため、コンクリート表面の凹凸に左右され
ることなく簡単にかつ確実に金属皮膜を密着させること
ができる。また、広いコンクリート構造物を防食する際
にも、溶射皮膜とコンクリート中に埋め込まれた鉄筋又
は鉄系構造物を電気的に接続する箇所が一か所で済むた
め、Znコートをコンクリート表面に多数取り付ける従
来方法と比較すると、非常に少ない手間で施工すること
ができる。
In the present invention, since the metal film for cathodic protection formed by the thermal spraying method is used, the metal film can be adhered easily and surely without being influenced by the irregularities on the concrete surface. In addition, even when corrosion protection is applied to a wide concrete structure, there is only one place to electrically connect the thermal spray coating and the reinforcing bar or iron-based structure embedded in the concrete, so there are many Zn coats on the concrete surface. Compared with the conventional method of attachment, it can be installed with very little effort.

【0010】一方、従来の溶射方式では、コンクリート
中のアルカリ分により溶射皮膜が不動態化し、防食効果
が得られない場合があった。そこで、本発明者等は、溶
射皮膜が不動態化しない環境条件を、組成及び溶射方式
の異なる皮膜について研究したところ、pHが11以
下、塩分濃度が溶液として0.01%以上の範囲にあれ
ばいずれの場合も皮膜の貴電位化が抑制されることが分
かった。コンクリート中の塩化物濃度をNaClで表示
すると、コンクリートの比重を2.3とすれば0.00
4%に相当する。本発明では、このようにコンクリート
表面と溶射皮膜の間に粘性電解質物を介在させる必要が
なくなり、施工が簡単になるとともに、粘性電解質中の
高濃度塩化物がコンクリート中に浸透し、鉄筋の腐食を
促進する恐れもない。
On the other hand, in the conventional thermal spraying method, the thermal spray coating may be passivated by the alkali content in the concrete, and the anticorrosive effect may not be obtained. Then, the inventors of the present invention studied the environmental conditions under which the thermal sprayed coating was not passivated for coatings having different compositions and thermal spraying methods, and found that the pH was 11 or less and the salt concentration was 0.01% or more as a solution. In each case, it was found that the noble potential of the film was suppressed. When the chloride concentration in concrete is expressed by NaCl, if the specific gravity of concrete is 2.3, it is 0.00
Equivalent to 4%. In the present invention, it is not necessary to interpose a viscous electrolyte between the concrete surface and the sprayed coating in this way, and the construction becomes simple, and high concentration chloride in the viscous electrolyte permeates into the concrete, resulting in corrosion of the rebar. There is no fear of promoting.

【0011】上記のように形成された溶射皮膜とコンク
リート中の鉄筋を電線等で電気的に接続すると、コンク
リートを通して溶射皮膜から鉄筋に防食電流が流れる。
この防食電流の大きさは、溶射皮膜の電位をEL、鉄筋
の電位をERとすると(EL−ER)をコンクリートの
抵抗Rで除した値、即ち、(EL−ER)/Rとなる。
健全なコンクリート中の鉄筋の電位は、−100〜−2
00mVを示すが、塩害を受けて腐食した鉄筋の電位
は、−500mV程度を示す。したがって、溶射皮膜の
電位が上記の電極の電位に近いと防食電流は流れ難くな
り、防食効果を損なうため、溶射皮膜の電位は、海水中
の電位−1000〜−1100mVに近いほうが良く、
−920mV以下であれば防食効果を十分に発揮させる
ことができる。
When the thermal spray coating formed as described above and the reinforcing bars in the concrete are electrically connected by an electric wire or the like, an anticorrosive current flows from the thermal spray coating to the reinforcing bars through the concrete.
The magnitude of this anticorrosion current is a value obtained by dividing (EL-ER) by the resistance R of the concrete, where EL is the potential of the sprayed coating and ER is the potential of the reinforcing bar, that is, (EL-ER) / R.
The electric potential of the reinforcing bar in healthy concrete is -100 to -2.
Although it shows 00 mV, the electric potential of the reinforcing bar corroded by salt damage shows about -500 mV. Therefore, when the potential of the thermal spray coating is close to the potential of the above electrode, the anticorrosion current becomes difficult to flow, and the anticorrosion effect is impaired. Therefore, the potential of the thermal spray coating is preferably close to the potential in seawater of −1000 to −1100 mV.
If it is −920 mV or less, the anticorrosion effect can be sufficiently exhibited.

【0012】[0012]

【実施例】 アーク方式による純Zn(99.995%)溶射皮
膜、アーク方式により形成したAl−Zn(容量比A
l/Zn:50/50、重量比Al/Zn:72/2
8)擬合金皮膜(ZnとAlの同一径の線を一本づつ使
ってアーク溶射によりコンクリート表面にZn粒子とA
l粒子を重なり合わせて形成した皮膜)、並びに、フ
レーム方式による純Zn(99.995%)溶射皮膜を
それぞれ有するコンクリート試験片を、Ca(OH)2
及びNaClでpH及び塩化物濃度を調整した各種溶液
中に浸漬して陰分極電位(mV)を測定し、表1の結果
を得た。なお、表中の値は実用範囲の防食電流を皮膜か
ら流出させた場合の各皮膜の示す平均的電位である。通
常、コンクリートは空気中の炭酸ガスを吸収して徐々に
アルカリ分を消失し、pHは12から低下する。表1か
ら明らかなように、pHが11以下に移行する間に塩化
物濃度が0.01%以上の範囲においては、溶射皮膜の
電位が、全て−920mV以下となっており、海水中の
電位に近いため、防食効果を十分に発揮させられること
が分かった。
[Examples] Pure Zn (99.995%) thermal spray coating by the arc method, Al-Zn formed by the arc method (capacity ratio A
1 / Zn: 50/50, weight ratio Al / Zn: 72/2
8) Pseudo-alloy film (Zn and Al wires with the same diameter are used one by one, and the Zn particles and A
(a coating formed by laminating 1 particle) and a concrete test piece having a pure Zn (99.995%) sprayed coating by the flame method, respectively, were Ca (OH) 2
And the negative polarization potential (mV) was measured by immersing in various solutions whose pH and chloride concentration were adjusted with NaCl and NaCl, and the results shown in Table 1 were obtained. The values in the table are average potentials of the respective coatings when an anticorrosion current in a practical range is flown out from the coatings. Normally, concrete absorbs carbon dioxide gas in the air to gradually lose alkali content, and the pH drops from 12. As is clear from Table 1, in the range where the chloride concentration is 0.01% or more while the pH shifts to 11 or less, the potential of the thermal spray coating is all -920 mV or less, and the potential in seawater is It was found that the anticorrosion effect can be fully exerted because it is close to.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】本発明は、上記の構成を採用し、コンク
リート構造物表面のpH及び塩化物濃度が上記範囲を満
たすことを確認した上で、コンクリート表面に溶射皮膜
を形成することにより、溶射皮膜の貴電位化を抑制する
ことができ、溶射皮膜の防食性能を最高に発揮させるこ
とができるようになった。
EFFECTS OF THE INVENTION The present invention employs the above-mentioned constitution, and after confirming that the pH and chloride concentration of the surface of the concrete structure satisfy the above-mentioned ranges, a thermal spray coating is formed on the concrete surface, thereby performing thermal spraying. It is possible to suppress the noble potential of the coating and maximize the anticorrosion performance of the thermal spray coating.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート表面のpHが11以下で、
可溶性塩化物濃度がNaCl重量百分率で0.01%以
上であることを確認した後、コンクリート中において鉄
よりも電位が卑なる金属溶射皮膜を、コンクリート表面
に密着させ、この溶射皮膜と上記コンクリート中に埋め
込まれた鉄筋又は鉄系構造物を電気的に接続することを
特徴とするコンクリート構造物の電気防食方法。
1. The pH of the concrete surface is 11 or less,
After confirming that the concentration of soluble chloride is 0.01% or more in terms of NaCl weight percentage, a metal spray coating having a potential lower than that of iron in concrete is adhered to the concrete surface. A method for galvanic protection of a concrete structure, comprising electrically connecting reinforcing bars or iron-based structures embedded in the structure.
【請求項2】 溶射皮膜が高純度Zn、Zn系合金、Z
n−Al合金、Al系合金又はMg系合金であることを
特徴とする請求項1記載の電気防食方法。
2. A high-purity Zn, Zn-based alloy, Z
The cathodic protection method according to claim 1, which is an n-Al alloy, an Al alloy, or a Mg alloy.
【請求項3】 アーク方式又はフレーム方式で形成され
た溶射皮膜を用いることを特徴とする請求項1又は2記
載の電気防食方法。
3. The cathodic protection method according to claim 1, wherein a thermal spray coating formed by an arc method or a flame method is used.
JP04291098A 1992-10-29 1992-10-29 Corrosion protection method for concrete structures by thermal spray coating. Expired - Fee Related JP3137771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04291098A JP3137771B2 (en) 1992-10-29 1992-10-29 Corrosion protection method for concrete structures by thermal spray coating.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04291098A JP3137771B2 (en) 1992-10-29 1992-10-29 Corrosion protection method for concrete structures by thermal spray coating.

Publications (2)

Publication Number Publication Date
JPH06136573A true JPH06136573A (en) 1994-05-17
JP3137771B2 JP3137771B2 (en) 2001-02-26

Family

ID=17764430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04291098A Expired - Fee Related JP3137771B2 (en) 1992-10-29 1992-10-29 Corrosion protection method for concrete structures by thermal spray coating.

Country Status (1)

Country Link
JP (1) JP3137771B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144203A (en) * 2006-12-07 2008-06-26 Denki Kagaku Kogyo Kk Construction method for preventing corrosion of concrete, and concrete structure made with the same
JP2009097049A (en) * 2007-10-18 2009-05-07 Denki Kagaku Kogyo Kk Method for electrochemical corrosion prevention of concrete using sacrificial anode material
JP2017066655A (en) * 2015-09-29 2017-04-06 デンカ株式会社 Cross-section repair method of concrete structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200494992Y1 (en) 2019-12-09 2022-02-09 임선규 Combination structure of electrical cable protection pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144203A (en) * 2006-12-07 2008-06-26 Denki Kagaku Kogyo Kk Construction method for preventing corrosion of concrete, and concrete structure made with the same
JP4641025B2 (en) * 2006-12-07 2011-03-02 電気化学工業株式会社 Concrete anticorrosion method and concrete structure obtained by implementing the same
JP2009097049A (en) * 2007-10-18 2009-05-07 Denki Kagaku Kogyo Kk Method for electrochemical corrosion prevention of concrete using sacrificial anode material
JP2017066655A (en) * 2015-09-29 2017-04-06 デンカ株式会社 Cross-section repair method of concrete structure

Also Published As

Publication number Publication date
JP3137771B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
US4647353A (en) Cathodic protection system
Zhang Corrosion of zinc and zinc alloys
JP3137771B2 (en) Corrosion protection method for concrete structures by thermal spray coating.
US4828665A (en) Cathodic protection system using carbosil anodes
EP0591775B1 (en) Method for preventing corrosion of a reinforced concrete structure
US5102514A (en) Cathodic protection system using carbosil anodes
JP2006063439A (en) Sprayed coating for corrosion prevention to reinforcing bar in concrete structure
JPS6220490Y2 (en)
JPH0133552B2 (en)
JPH04297643A (en) Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
US4987037A (en) Galvanic coating with ternary alloys containing aluminum and magnesium
EP3030697B1 (en) Structure for use in a corrosive environment
JPH0813528A (en) Anticorrosion method of metal column concrete buried part
JPS62263985A (en) Electrolytic protection method for concrete structure
JP3090187B2 (en) Room temperature zinc sprayed coating for antifouling and antifouling management method of the sprayed coating
JPS6296684A (en) Fitting method for anticorrosive plate
JPS6014793Y2 (en) Corrosion resistant hanger rope
JPS62263984A (en) Electrolytic protection method for concrete structure
JP2001335973A (en) Method for protecting corrosion of base post type aluminum construction
JPH0454753B2 (en)
JPH02190487A (en) Method for assembling metallic product
JP3962312B2 (en) Method for improving corrosion resistance of road reflector and road reflector
US4921588A (en) Cathodic protection using carbosil anodes
JPH1129886A (en) Electric corrosion protection device of coated metallic body in atmospheric environment
JP2000169982A (en) Method and film for electric corrosion protection of steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees