JPS62263985A - Electrolytic protection method for concrete structure - Google Patents

Electrolytic protection method for concrete structure

Info

Publication number
JPS62263985A
JPS62263985A JP61106695A JP10669586A JPS62263985A JP S62263985 A JPS62263985 A JP S62263985A JP 61106695 A JP61106695 A JP 61106695A JP 10669586 A JP10669586 A JP 10669586A JP S62263985 A JPS62263985 A JP S62263985A
Authority
JP
Japan
Prior art keywords
electrolyte
concrete
coat
concrete structure
conductive coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61106695A
Other languages
Japanese (ja)
Other versions
JPH0454752B2 (en
Inventor
Hiroshi Saito
弘 齊藤
Noriyasu Mochizuki
紀保 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Original Assignee
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAGAWA BOSHOKU KOGYO KK, Nakagawa Corrosion Protecting Co Ltd filed Critical NAKAGAWA BOSHOKU KOGYO KK
Priority to JP61106695A priority Critical patent/JPS62263985A/en
Publication of JPS62263985A publication Critical patent/JPS62263985A/en
Publication of JPH0454752B2 publication Critical patent/JPH0454752B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To carry out the electrolytic protection of a structure extending over the air and an electrolyte at low current density by forming an electrically conductive coat on the structure in the air and connecting an electrolytic protector fitted to the structure in the electrolyte to the coat with an electric current sucking material in-between. CONSTITUTION:An electrically conductive coat 1 is fixed on the rear side of the floor of a pier with anchor bolts 2. An electric current sucking material 5 such as a Cu sheet is attached to a metallic structure such as a steel pipe pile 3 or a concrete structure in the upper part of the sea (electrolyte) with an insulating material 4 in-between and the material 5 is connected to the coat 1. A galvanic anode 8 is fitted to the pile 3 in the vicinity of the material 5 with a core metal 9 in-between. Part of electric current for electrolytic protection flowing in the pile 3 in the electrolyte is allowed to flow in reinforcing steel material 10 in the concrete structure in the air through the material 5 and the coat 1. By this method, the electrolytic protection of the steel material 10 in the air can be uniformly carried out over a wide range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鉄筋またはPC鋼月を補強鋼材とするコン
クリ−1構造物、たとえば、長大橋や湾岸道路の橋梁、
沖合プラン1−フオーム、岸壁、桟橋、消波施設などの
電気防食法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to concrete structures using reinforcing bars or PC steel as reinforcing steel, such as long bridges and bridges on coastal roads;
Offshore Plan 1 - Concerning cathodic protection methods for forms, quays, piers, wave-dissipating facilities, etc.

〔従来の技術〕[Conventional technology]

鉄筋コンクリート構造物(以下、RC構造物という。)
は、コンクリートと鋼という材料的に濃れた素材の組合
せにより構造上の頑丈さに加えて維持や保守のいらない
半永久構造物とみなされてきた。ところが、海洋環境に
おけるRC構造物においては海水飛沫や潮風に含まれる
大量の塩分が飛来し、付着するとコンクリート内部−1
浸透して内部の鉄筋を腐食させることがわかってきた。
Reinforced concrete structures (hereinafter referred to as RC structures)
It has been considered a semi-permanent structure that requires no upkeep or maintenance in addition to its structural sturdiness due to its combination of materials such as concrete and steel. However, in RC structures in the marine environment, a large amount of salt contained in seawater spray and sea breeze comes flying in, and if it adheres to it, it can damage the inside of the concrete.
It has been found that it penetrates and corrodes internal reinforcing steel.

また、大気環境におけるRC構造物においても、自動車
や工場からの排出ガスの影響を受けてコンクリートの中
性化が進み、さらに海砂の利用によるコンクリ−1−中
の塩分の増加によって鉄筋が腐食膨潤してかぶりコンク
リ−1−が剥落する事故が生しマスコミでも大きくとり
あげられるにいたった。
In addition, even in RC structures in the atmospheric environment, the neutralization of concrete is progressing due to the influence of exhaust gas from automobiles and factories, and the reinforcing bars are corroded due to the increase in salt content in concrete due to the use of sea sand. An accident occurred in which cover concrete 1- swelled and fell off, and it was widely reported in the media.

従来、このようなRC構造物に対する防食対策としては
、鉄筋に熔融亜鉛めっきを施す方法、あるいは防錆材を
コンクリ゛−1・の練り混ぜ時に混和剤として添加し、
鉄筋に強い酸化皮膜を作る方法などが実施され、また電
気防食による方法、たとえば、海水中のRC構造物にあ
っては、流電陽極方式または外部電源方式による電気防
食法が、また大気中のRC構造物にあっては構造物表面
を導電性塗料で覆い、この面に直流電源に接続した白金
線電極を埋め込むことによって防食電流を供給する電気
防食が有効であることが海外の文献に紹介されている。
Conventionally, anti-corrosion measures for such RC structures include hot-dip galvanizing the reinforcing bars, or adding anti-rust materials as an admixture when mixing concrete.
Methods such as creating a strong oxide film on reinforcing bars have been implemented, and methods using cathodic protection such as galvanic anode method or external power supply method are used for RC structures in seawater, and For RC structures, overseas literature has shown that cathodic protection is effective by covering the surface of the structure with conductive paint and embedding a platinum wire electrode connected to a DC power supply in order to supply a protective current. has been done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した亜鉛メッキによる方法は、低濃
度塩分存在下では十分な耐食性を有するが、より高い濃
度の塩分存在下やひび割れ到達箇所では鉄筋が腐食する
危険が大きい。また、防錆剤による方法は、防錆剤のコ
ンクリ−1中・、の添加量が防食に要する量より少ない
と鉄筋に孔食が発生するなど使用規準を十分に守らない
とかえって危険なことになる。さらに、従来の電気防食
による方法は、大気中のr< c構造物では電源の取れ
るところ、すなわち、外部電源方式しか実施できないと
いう制約かあり、また、同一・構造物でありながら、大
気中と海水中とにそれぞれ電極を設置して別々に防食設
計・施工することは極めて不経済といわねばならない。
However, although the method using zinc plating described above has sufficient corrosion resistance in the presence of a low concentration of salt, there is a great risk that the reinforcing steel will corrode in the presence of a higher concentration of salt or in a location where cracks have been reached. In addition, the method using rust preventive agents can be dangerous if the usage standards are not fully observed, such as pitting corrosion occurring in reinforcing bars if the amount of rust preventive added in Concrete 1 is less than the amount required for corrosion prevention. become. Furthermore, the conventional cathodic protection method has the limitation that it can only be implemented where the power source is available, that is, an external power source method, for structures with r < c in the atmosphere. It must be said that it is extremely uneconomical to install electrodes in seawater and separately in corrosion protection design and construction.

この発明は、従来のものかも一つ、以上のような問題点
を解消させるためになされたもので、電解質中の構造物
を電気防食した防食電流の・部を利用して、大気中のコ
ンクリ−1構造物の補強鋼材の防食を可能にしたコンク
リ−1、構造物の電気防食法を提供することを目的とす
る。
This invention was made in order to solve the above-mentioned problems, which may be related to conventional ones. -1 The purpose of the present invention is to provide concrete-1 which makes it possible to prevent corrosion of reinforcing steel materials for structures, and a method for cathodic protection of structures.

c問題点を解決するための手段〕 この目的を達成するために、この発明は次のような構成
としている。
Means for Solving Problem c] In order to achieve this object, the present invention has the following configuration.

すなわち、この発明に係るコンクリート構造物の電気防
食法は、大気中におけるコンクリ−1構造物を導電性被
覆物で被覆すると共に、電解質中における前記コンクリ
ート構造物に連続する金属構造物またはコンクリート構
造物に電気防食装置を装着し、さらに、この近傍のすく
なくとも電解質中に電流吸上げ材を設置し、この電流吸
上げ材と前記導電性被覆物を電気的に接続することによ
って、電解質中の金属構造物またはコンクリート構造物
に流入する防食電流の一部を電流吸上げ材、導電性被覆
物を経由して大気中のコンクリート構造物の補強鋼材に
流入するようにする。
That is, the cathodic protection method for concrete structures according to the present invention covers a concrete structure in the atmosphere with a conductive coating, and protects a metal structure or concrete structure continuous to the concrete structure in an electrolyte. A cathodic protection device is attached to the metal structure in the electrolyte, and a current absorption material is installed in the electrolyte at least in the vicinity, and the metal structure in the electrolyte is electrically connected to the current absorption material and the conductive coating. A part of the anticorrosion current flowing into objects or concrete structures is made to flow into the reinforcing steel of the concrete structure in the atmosphere via the current absorption material and conductive coating.

〔作 用〕[For production]

このように構成された電気防食法においては、電気防食
による防食電流iは電解質中の金属構造物またはコンク
リート構造物に流入し、該表面を良好な防食状態に保持
する。一方、一部の防食電流i、は一旦電解質中の電流
吸上げ材に流入し、電線、大気中の導電性被覆物及びコ
ンクリート層を通過して補強鋼材に流入し、該表面に2
1シ均一・な電位分布を与える。
In the cathodic protection method configured in this way, the anticorrosion current i due to cathodic protection flows into the metal structure or concrete structure in the electrolyte, and maintains the surface in a good corrosion protection state. On the other hand, a part of the anti-corrosion current i flows into the current absorbing material in the electrolyte, passes through the electric wire, the conductive coating in the atmosphere, and the concrete layer, flows into the reinforcing steel material, and flows onto the surface of the reinforcing steel material.
Provides a uniform potential distribution.

すなわち、この発明は電解質中に電気防食用電極/電流
吸上げ材のガルバニック系を存在ざ仕、防食対象となる
補強鋼材(Fe)と導電性被覆物は直接短絡させず、ガ
ルバニ、り系のアノ−1(電気防食用電極)と補強鋼材
(re)を、カッ−1−(電流吸上げ材)と導電性被覆
物を短絡させることによって導電性被覆物/1?e系の
起電力にガルバニック系の起電力を加えて電気防食を行
う。
In other words, this invention involves the presence of a galvanic system of electrodes for cathodic protection/current absorption material in the electrolyte, and the reinforcing steel material (Fe) to be protected against corrosion is not directly short-circuited with the conductive coating. By short-circuiting Anno-1 (electrode for cathodic protection) and reinforcing steel material (re), and short-circuiting Ka-1- (current absorption material) and the conductive coating, conductive coating/1? Electrolytic protection is performed by adding galvanic electromotive force to e-system electromotive force.

また、導電性被覆物は、広範囲にわたる電流分布電極と
して働くから、陽極電流密度は低くなり導電性被覆物の
消耗の度合は極度に少ないものになる。
Furthermore, since the conductive coating acts as a wide current distribution electrode, the anode current density is low and the degree of wear of the conductive coating is extremely low.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図及び第2図は、それぞれ桟橋鋼的杭及び橋梁コン
クリート杭の縦断面概略図である。
FIG. 1 and FIG. 2 are schematic vertical cross-sectional views of a pier steel pile and a bridge concrete pile, respectively.

第1図において、桟橋床版裏面に導電性被覆物1、たと
えば、複数の亜鉛シート(50x 1,000 xl)
を被覆し、それぞれアンカーポルト2で固定する。この
導電性被覆物1は亜鉛シートの他、亜鉛溶剤、アルミ溶
射、導電性塗料、導電性コンク−I・、導電性樹脂シー
ト、アルミニウムシート等が使用できる。
In Figure 1, a conductive coating 1, for example a plurality of zinc sheets (50 x 1,000 xl), is placed on the back side of the pier deck.
are covered and fixed with anchor ports 2 respectively. As the conductive coating 1, in addition to a zinc sheet, zinc solvent, aluminum spraying, conductive paint, conductive concrete I, conductive resin sheet, aluminum sheet, etc. can be used.

つぎに、海中上部の鋼管杭3にペトロラタムテープ等の
絶縁材4を介して電流吸上げ材5、たとえば銅シートを
ポルドナ・ノド等の止具で装着する。
Next, a current absorbing material 5, such as a copper sheet, is attached to the steel pipe pile 3 in the upper part of the sea via an insulating material 4 such as petrolatum tape using a fastener such as a poldona knot.

この時、電流吸上げ材5の全部が電解質中に没している
必要はかならずしもない。この電流吸上げる。
At this time, it is not always necessary that the entire current absorption material 5 is submerged in the electrolyte. Pick up this current.

また、電流吸上げ材5は、ビニール管6に収納した電線
によって前記被覆物1と接続する。このビニール管6は
へン1−7などで鋼管杭3に固定する。
Further, the current absorbing material 5 is connected to the covering 1 by an electric wire housed in a vinyl tube 6. This vinyl pipe 6 is fixed to the steel pipe pile 3 with the hinges 1-7.

さらに、上記電流吸上げ材5の近傍の鋼管杭lにアルミ
ニウム合金、亜鉛合金、マグネシウム合金等の流電陽極
8をその鋼製心金9を溶接することによって取り付ける
。ごの流電陽極式の電気防食装置の他、外部電源式の電
気防食装置でも同等の効果を有することはいうまでもな
い。
Further, a galvanic anode 8 made of aluminum alloy, zinc alloy, magnesium alloy, etc. is attached to the steel pipe pile l near the current absorbing member 5 by welding its steel core 9. It goes without saying that, in addition to the current galvanic anode type cathodic protection device, an external power source type cathodic protection device has the same effect.

尚、前記導電性被覆物1の外側を繊維強化プラスチック
等の外装材11で被覆して強化することは有効である。
Note that it is effective to cover the outside of the conductive coating 1 with an exterior material 11 such as fiber-reinforced plastic to strengthen it.

第2図において、満潮位より上のコンクリ−)−杭12
に亜鉛ジー1−1を、またその外側に洞ソー1−5を装
着し、この銅シー1−の下端部が少なくとも平均潮位の
位置になるように海中に浸漬さ吐る。
In Figure 2, concrete above the high tide level - pile 12
A zinc sear 1-1 is attached to the copper sear 1-1, and a hollow saw 1-5 is attached to the outside thereof, and the copper sear 1-1 is immersed in the sea so that the lower end thereof is at least at the average tide level.

一方、海中部のコンクリ−1−抗に、予め鉄筋等の補強
鋼材lOと電気的に接触させた流電陽極8をアンカーホ
ル)・2によって取り1」りる。尚13は、電位側走用
の穴である。
On the other hand, a galvanic anode 8, which has been brought into electrical contact with a reinforcing steel material such as a reinforcing bar, is removed from the concrete pit in the sea by means of an anchor hole 2. Note that 13 is a hole for potential side running.

また、導電性被覆物1とコンクリート層の間にハックフ
ィル材を介在させることは有効である。
Furthermore, it is effective to interpose a hackfill material between the conductive coating 1 and the concrete layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の電気防食法によれば、
導電性被覆物が電気防食の分布電極及び大気との遮蔽物
として作用するので大気中の補強鋼材を広範囲にわたっ
て均一に防食することができる。
As explained above, according to the cathodic protection method of this invention,
Since the conductive coating acts as a distributed electrode for cathodic protection and as a shield from the atmosphere, the reinforcing steel material in the atmosphere can be uniformly protected from corrosion over a wide range.

したがって、大気中のコンクリート構造物に対し、これ
に連続する電解質中の補強鋼材または鋼管杭を電気防食
するだけで大気中の補強鋼材まで一貫して電気防食効果
が得られるので、繁雑な電極の設置が電解質中だけです
むと共に、電源のないところの大気中の電気防食が可能
になる。
Therefore, for concrete structures exposed to the atmosphere, by simply applying electrolytic protection to the reinforcing steel materials or steel pipe piles in the electrolyte that are connected to them, the effect of electrolytic corrosion can be obtained consistently to the reinforcing steel materials in the atmosphere. Installation is only required in an electrolyte, and cathodic protection in the atmosphere is possible in areas without power supply.

また、コンクリート層や導電性被覆物によって酸素等が
遮断されるので、補強鋼材の防食電流密度が大幅に低減
される。
Furthermore, since oxygen and the like are blocked by the concrete layer and the conductive coating, the corrosion protection current density of the reinforcing steel material is significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、この発明の一実施例を示す断面概
略図である。 ■  −−−導電性被覆物 3       鋼管杭 5   −   電流吸上げ材 8−     流電陽極 10?!強鋼月
FIGS. 1 and 2 are schematic cross-sectional views showing one embodiment of the present invention. ■ --- Conductive covering 3 Steel pipe pile 5 - Current absorption material 8 - Galvanic anode 10? ! strong steel moon

Claims (2)

【特許請求の範囲】[Claims] (1)、大気中におけるコンクリート構造物を導電性被
覆物で被覆すると共に、電解質中における前記コンクリ
ート構造物に連続する金属構造物またはコンクリート構
造物に電気防食装置を装着し、さらにこの近傍の少なく
とも電解質中に電流吸上げ材を設置し、この電流吸上げ
材と前記導電性被覆物を電気的に接続することによって
、電解質中の金属構造物またはコンクリート構造物に流
入する防食電流の一部を電流吸上げ材、導電性被覆物を
経由して大気中のコンクリート構造物の補強鋼材に流入
するようにしたことを特徴とするコンクリート構造物の
電気防食法。
(1) A concrete structure in the atmosphere is coated with a conductive coating, and a cathodic protection device is installed on a metal structure or concrete structure that is continuous with the concrete structure in an electrolyte, and at least By installing a current absorption material in the electrolyte and electrically connecting the current absorption material and the conductive coating, a part of the anticorrosion current flowing into the metal structure or concrete structure in the electrolyte can be absorbed. A cathodic protection method for concrete structures characterized by allowing current to flow into the reinforcing steel of concrete structures in the atmosphere via an electrically conductive coating.
(2)、電流吸上げ材が、導電性被覆物より貴な自然電
位を有するものである特許請求の範囲第1項記載のコン
クリート構造物の電気防食法。
(2) The cathodic protection method for concrete structures according to claim 1, wherein the current absorbing material has a higher natural potential than the conductive coating.
JP61106695A 1986-05-12 1986-05-12 Electrolytic protection method for concrete structure Granted JPS62263985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106695A JPS62263985A (en) 1986-05-12 1986-05-12 Electrolytic protection method for concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106695A JPS62263985A (en) 1986-05-12 1986-05-12 Electrolytic protection method for concrete structure

Publications (2)

Publication Number Publication Date
JPS62263985A true JPS62263985A (en) 1987-11-16
JPH0454752B2 JPH0454752B2 (en) 1992-09-01

Family

ID=14440165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106695A Granted JPS62263985A (en) 1986-05-12 1986-05-12 Electrolytic protection method for concrete structure

Country Status (1)

Country Link
JP (1) JPS62263985A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209494A (en) * 1989-02-10 1990-08-20 Nakagawa Boshoku Kogyo Kk Galvanic anode material for preventing corrosion of reinforced concrete and method for electrolytically protecting reinforced concrete structure with the same
JPH0394081A (en) * 1989-05-30 1991-04-18 Nakagawa Boshoku Kogyo Kk Method for fitting insoluble electrode to concrete structure
JPH055859U (en) * 1991-07-11 1993-01-26 日本防蝕工業株式会社 Galvanic anode for cathodic protection
CN104975297A (en) * 2015-06-08 2015-10-14 中国海洋石油总公司 Bio-based calcium and magnesium depositing layer, forming method of bio-based calcium and magnesium depositing layer, special sea creature gathering bait and calcium and magnesium rich material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209494A (en) * 1989-02-10 1990-08-20 Nakagawa Boshoku Kogyo Kk Galvanic anode material for preventing corrosion of reinforced concrete and method for electrolytically protecting reinforced concrete structure with the same
JPH0572476B2 (en) * 1989-02-10 1993-10-12 Nakagawa Corrosion Protect
JPH0394081A (en) * 1989-05-30 1991-04-18 Nakagawa Boshoku Kogyo Kk Method for fitting insoluble electrode to concrete structure
JPH055859U (en) * 1991-07-11 1993-01-26 日本防蝕工業株式会社 Galvanic anode for cathodic protection
CN104975297A (en) * 2015-06-08 2015-10-14 中国海洋石油总公司 Bio-based calcium and magnesium depositing layer, forming method of bio-based calcium and magnesium depositing layer, special sea creature gathering bait and calcium and magnesium rich material

Also Published As

Publication number Publication date
JPH0454752B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
US4196064A (en) Marine fouling control
US5341562A (en) Method for preventing corrosion of a reinforced concrete structure
CA2092304C (en) Prevention method of aquatic attaching fouling organisms and its apparatus
EP0239349A2 (en) Improved method for applying protective coatings
JPS62263985A (en) Electrolytic protection method for concrete structure
CA2106012A1 (en) Method for preventing corrosion of a reinforced concrete structure
JPH0454753B2 (en)
JPH06173287A (en) Corrosion resistant structure for offshore steel structure
WO2013062233A1 (en) Cathodic protection system for a concrete structure using an underwater sacrificial anode and a sacrificial anode attached to a protective jacket
JPS62263984A (en) Electrolytic protection method for concrete structure
JP3137771B2 (en) Corrosion protection method for concrete structures by thermal spray coating.
JP3090187B2 (en) Room temperature zinc sprayed coating for antifouling and antifouling management method of the sprayed coating
CN220247187U (en) Novel anti-corrosion building steel structure
JP2003286591A (en) Process for protecting corrosion of offshore structure and offshore structure
Klinge Altered specifications for the protection of Norwegian steel bridges and offshore structures against corrosion
RATCLIFFE THE BASIS AND ESSENTIALS OF MARINE CORROSION IN STEEL STRUCTURES.
JP2809351B2 (en) Antifouling and anticorrosion methods for hull skin in contact with seawater
Green Australasian Experiences with Cathodic Protection of Concrete Marine Structures
Gagné Duplex Zinc Corrosion Protection for Marine Structures
Martin et al. Sacrificial Anodes and Environmental Effects
Goodwin Overview of Zinc-Based Galvanic Corrosion Systems for Offshore Wind Energy Structures
JPH07300833A (en) Method of fixing electrode plate into underwater structure
JPH0224913B2 (en)
Cook The Role of Zinc in the Corrosion Protection of Offshore Structures
JPS62196381A (en) Electric anticorrosive method for structure made of metal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term