JPS62263984A - Electrolytic protection method for concrete structure - Google Patents

Electrolytic protection method for concrete structure

Info

Publication number
JPS62263984A
JPS62263984A JP61106694A JP10669486A JPS62263984A JP S62263984 A JPS62263984 A JP S62263984A JP 61106694 A JP61106694 A JP 61106694A JP 10669486 A JP10669486 A JP 10669486A JP S62263984 A JPS62263984 A JP S62263984A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic protection
coat
concrete
reinforcing steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61106694A
Other languages
Japanese (ja)
Other versions
JPH0470397B2 (en
Inventor
Hiroshi Saito
弘 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Original Assignee
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAGAWA BOSHOKU KOGYO KK, Nakagawa Corrosion Protecting Co Ltd filed Critical NAKAGAWA BOSHOKU KOGYO KK
Priority to JP61106694A priority Critical patent/JPS62263984A/en
Publication of JPS62263984A publication Critical patent/JPS62263984A/en
Publication of JPH0470397B2 publication Critical patent/JPH0470397B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To carry out the electrolytic protection of a structure extending over the air and an electrolyte at low current density by forming an electrically conductive coat on the surface of the structure so that part of electric current for electrolytic protection flowing in a reinforcing steel material in the electrolyte is allowed to flow in the steel material in the air through the coat. CONSTITUTION:An electrically conductive coat 2 is formed on the surface of a concrete pile 1 from the top to an average tide level. A galvanic anode 5 of an Al alloy or the like is fitted to the surface of the pile 1 in the sea with anchor bolts 6 so that the anode 5 is brought into electrical contact with an iron reinforcing rod 4. The coat 2 is coated with a sheathing material 8 having holes 7 through which electric current for electrolytic protection flows in the lower part. When the electrolytic protection of the iron reinforcing rods (reinforcing steel material) 4 in the pile 1 in the seawater (electrolyte) is carried out, part of electric current for electrolytic protection flowing in the rods 4 in the seawater is allowed to flow in the rods 4 in the air through the coat 2. By this method, the electrolytic protection of the rods 4 in the air can be uniformly carried out over a wide range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鉄筋またはpcg材を補強鋼材とする大気
中と電解質中にまたがるコンクリート構造物、たとえば
、長大橋や湾岸道路の橋梁、沖合プラントフオーム、岸
壁、桟橋、消波施設などの電気防食法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to concrete structures that use reinforcing bars or PCG materials as reinforcing steel materials that span the atmosphere and electrolyte, such as long bridges, bridges on coastal roads, and offshore plants. Concerning cathodic protection methods for forms, quays, piers, wave-dissipating facilities, etc.

(従来の技術〕 鉄筋コンクリート構造物(以下、RC構造物という。)
は、コンクリ−1,と鋼とい・う材料的に優れた素材の
組合せにより構造上の頑丈さに加えて維持や保守のいら
ない半永久構造物とみなされてきた。ところが、海洋環
境におけるRC構造物においては海水飛沫や潮風に含ま
れる大量の塩う)が飛来し、付着するとコンクリ−1−
内部−・浸透して内部の鉄筋を腐食させることがわかっ
てきた。また、大気環境におけるRC構造物においても
、自動車や工場からの排出ガスの影響を受けてコンクリ
−1−の中性化が進み、さらに海砂の利用によるコンク
リ−1・中の塩分の増加によって鉄筋が腐食膨潤してか
ふりコンクリ−1−が剥落する事故が生じマスコミでも
大きくとりあげられるにいたった。
(Conventional technology) Reinforced concrete structure (hereinafter referred to as RC structure)
Due to the combination of superior materials such as concrete and steel, it has been considered a semi-permanent structure that is structurally robust and requires no upkeep or maintenance. However, in RC structures in the marine environment, a large amount of salt contained in seawater spray and sea breeze comes flying in, and if it adheres to it, it can damage the concrete.
Internal: It has been found that it penetrates and corrodes internal reinforcing steel. In addition, even in RC structures in the atmospheric environment, the neutralization of concrete 1 is progressing due to the influence of exhaust gas from automobiles and factories, and furthermore, due to the increase in salt content in concrete 1 due to the use of sea sand. An accident occurred in which the reinforcing steel corroded and swelled, causing concrete to fall off, and was widely reported in the media.

従来、このようなRC構造物に対する防食対策としては
、鉄筋に溶融亜鉛めっきを施す方法、あるいは防錆材を
コンクリ−1−の練り混ぜ時に混和剤として添加し、鉄
筋に強い酸化皮膜を作る方法などが実施され、また電気
防食による方法、たとえば、海水中のRC構造物にあっ
ては、流電陽極方式または外部電源方式による電気防食
法が、また大気中のRC構造物にあっては構造物表面を
導電性塗料で覆い、この面に直流電源に接続した白金線
電極を埋め込むことによって防食電流を供給する電気防
食が有効であることが海外の文献に紹介されている。
Traditionally, anti-corrosion measures for such RC structures include hot-dip galvanizing the reinforcing bars, or adding anti-rust materials as an admixture when mixing concrete to create a strong oxide film on the reinforcing bars. For example, for RC structures in seawater, cathodic protection methods using a galvanic anode method or external power supply method are used, and for RC structures in the atmosphere, cathodic protection methods are used. It has been introduced in foreign literature that cathodic protection is effective, in which the surface of a material is coated with conductive paint and a platinum wire electrode connected to a DC power supply is embedded in the surface to supply a protective current.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した亜鉛メ・ツキによる方法は、低
濃度塩分存在下では十分な耐食性を有するが、より高い
濃度の塩分存在下やひび割れ到達箇所では鉄筋が腐食す
る危険が大きい。また、防錆剤による方法は、防錆剤の
コンクリ−1−中一・の添加量が防食に要する量より少
ないと鉄筋に孔食が発生するなど使用規準を十分に守ら
ないとかえって危険なことになる。さらに、従来の電気
防食による方法は、大気中のRC構造物では電源の取れ
るところでしか実施できないという制約があり、また、
同一構造物でありながら、大気中と海水中とにそれぞれ
電極を設置して別々に防食設計・施工することは極めて
不経済といわねばならない。
However, although the above-mentioned galvanizing method has sufficient corrosion resistance in the presence of a low concentration of salt, there is a great risk that the reinforcing bars will corrode in the presence of a higher concentration of salt or in areas where cracks have been reached. In addition, the method using a rust preventive agent can be dangerous if the usage standards are not fully observed, such as pitting corrosion on reinforcing bars if the amount of the rust preventive agent added is less than the amount required for corrosion prevention. It turns out. Furthermore, the conventional cathodic protection method has the limitation that it can only be carried out in places where power is available for RC structures in the atmosphere.
It must be said that it is extremely uneconomical to install electrodes in the atmosphere and in seawater and design and construct corrosion protection separately for the same structure.

この発明は、従来のものがも一つ、以上のような問題点
を解消させ、大気中と電解質中とにまたがるコンクリ−
1構造物に対し、−貫して低防食電流密度による経済的
な電気防食を可能にしたコンクリ−1・構造物の電気防
食方法を提供することを目的とする。
This invention solves the above-mentioned problems of the conventional ones, and allows concrete to be used in both the atmosphere and the electrolyte.
An object of the present invention is to provide a method for cathodic protection of a concrete structure, which enables economical cathodic protection by applying a low corrosion protection current density throughout the structure.

し問題点を解決するための手段〕 この目的を達成するために、この発明は次のような構成
としている。
Means for Solving the Problem] To achieve this object, the present invention has the following configuration.

すなわち、この発明に係るコンクリ−1・構造物の電気
防食法は、少なくとも、電解質中の一部とこれに連続す
る大気中の前記構造物表面を導電性被覆物で被覆すると
共に、電解質中の前記構造物の補強鋼材を電気防食する
ことによって電解質中の前記補強鋼材に流入する一部の
防食電流が導電性被覆物を経由して大気中の前記補強鋼
材に流入するようにする。
That is, the cathodic protection method for concrete 1/structures according to the present invention covers at least a part of the structure in the electrolyte and the surface of the structure in the atmosphere that is continuous with the electrolyte, and also coats the structure in the electrolyte with a conductive coating. By electrolytically protecting the reinforcing steel of the structure, a part of the corrosion protection current flowing into the reinforcing steel in the electrolyte flows into the reinforcing steel in the atmosphere via the conductive coating.

〔作 用〕[For production]

このように構成された電気防食法においては、電気防食
による防食電流iは電解質中のコンクリ−1一層を直接
通過して補強鋼材に流入し、該表面を良好な防食状態に
保持する。この場合、コンクリート層を介して電流を流
入させるため、防食に必要な電流密度は海水中における
裸鋼材の場合のほぼ10分の1以下とかなり小さくて良
いことが知られている。一方、一部の防食電流i、は、
一旦電解質中の導電性被覆物の外表面に流入し、大気中
及びこの近傍の電解質中のコンクリ−]・層を通過して
補強鋼材に流入し、該表面に対し均一な電位分布を与え
る。
In the cathodic protection method configured as described above, the corrosion protection current i due to cathodic protection directly passes through the concrete 1 layer in the electrolyte and flows into the reinforcing steel material, thereby maintaining the surface in a good corrosion protection state. In this case, it is known that the current density required for corrosion protection can be quite small, approximately one-tenth or less of that for bare steel in seawater, since the current is passed through the concrete layer. On the other hand, some anticorrosion current i,
Once it flows into the outer surface of the conductive coating in the electrolyte, it passes through the atmosphere and the concrete layer in the electrolyte in the vicinity and flows into the reinforcing steel material, giving a uniform potential distribution to the surface.

導電性被覆物は、広範囲にわたる電流の分布型極として
働くから、陽極電流密度は低くなり、導電性被覆物の消
耗の度合は極度に少ないものになる。
Since the conductive coating acts as a distributed current pole over a wide area, the anodic current density is low and the degree of depletion of the conductive coating is extremely low.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面に基づい士説明する。 Hereinafter, one embodiment of the present invention will be explained based on the drawings.

第1図及び第2図は、それぞれ桟橋におけるコンクリー
ト杭の縦断面概略図である。第1図において、コンクリ
ート杭1の被覆が施される部分、すなわち、少なくとも
上端部より平均潮位(らいまでワイヤーブラシでコンク
リ−1・表面から海洋生物、藻類等を取り除き、この表
面に導電性被覆物2、たとえば導電性塗料を塗装する。
1 and 2 are schematic vertical cross-sectional views of concrete piles on a pier, respectively. In Fig. 1, the part of the concrete pile 1 to be coated, i.e., at least from the upper end up to the average tide level, remove marine organisms, algae, etc. from the concrete 1 surface with a wire brush, and apply a conductive coating to the surface. Applying material 2, for example, a conductive paint.

この導電性塗料は、導電性フィラーとしてゲラファーイ
ト粉、カーボン粉、ニッケル粉、過酸化鉛粉あるいは亜
鉛末等を混入したウレタン、エポキシ、アクリル系樹脂
バインダーからなる耐候性に優れた塗料を使用する。
This conductive paint uses a highly weather-resistant paint made of urethane, epoxy, or acrylic resin binder mixed with gelafite powder, carbon powder, nickel powder, lead peroxide powder, or zinc powder as a conductive filler.

これら塗料の塗膜厚は300〜500μ程度で良くまた
、この塗料を塗装する場合は、適宜の大きさ、間隔で電
位測定用の穴3を塗り残しておき、露出したコンクリー
ト表面に基準電極を押し当て、電位を計測することによ
って大気中の鉄筋4の防食効果の判定をする。
The film thickness of these paints is approximately 300 to 500 μm. When applying this paint, holes 3 for potential measurement are left unpainted at appropriate sizes and intervals, and a reference electrode is placed on the exposed concrete surface. The anticorrosion effect of the reinforcing bars 4 in the atmosphere is determined by pressing and measuring the potential.

前記導電性被覆物2は、導電性塗料の他、Zn溶Zn合
金、及びA1合金等が使用できる。
The conductive coating 2 may be made of a conductive paint, a Zn-molten Zn alloy, an A1 alloy, or the like.

一方、海中部におけるコンクリート杭1の表面に、A1
合金、Zn合金、Mg合金等の流電tXA極5を、予め
鉄筋4と電気的に接触させたアンカーボルト6によって
取り付ける。この流重陽極力式の電気防食の他、外部電
源方式の電気防食でも同等の効果を有することは言うま
でもない。
On the other hand, A1
A galvanic tXA pole 5 made of alloy, Zn alloy, Mg alloy, etc. is attached by an anchor bolt 6 that has been brought into electrical contact with the reinforcing bar 4 in advance. It goes without saying that in addition to this floating anode force type cathodic protection, an external power source type cathodic protection has the same effect.

また、前記導電性塗料2の外側を、下部に防食電流の流
入孔7を設けた##4維強化プラスチ/り製の外装材で
被覆して強化することは、導電性塗料の劣化や浮遊物の
衝突による塗膜の剥離が防止できるので有効である。
In addition, covering the outside of the conductive paint 2 with an exterior material made of ##4 fiber-reinforced plastic with anti-corrosion current inflow holes 7 at the bottom to strengthen it will prevent deterioration of the conductive paint and prevent floating This is effective because it prevents the paint film from peeling off due to collisions with objects.

第2図において、導電性被覆物2が自然電位の異なる二
層状の導電性複合被覆物である点を除いては第1図と同
様である。この導電性複合被覆物としては、耐食性金属
シートに導電性塗料を塗布したもの、耐食性金属シー1
にZn熔躬し、たもの、導電性樹脂シーl−と耐食性金
属シートをはり合わせたものなとを使用する。
2 is the same as FIG. 1 except that the conductive coating 2 is a two-layered conductive composite coating with different natural potentials. This conductive composite coating includes a corrosion-resistant metal sheet coated with conductive paint, a corrosion-resistant metal sheet 1
A material made of Zn melted and a material made of a conductive resin seal and a corrosion-resistant metal sheet are used.

この導電性複合被覆物は、自然電位のより卑な方の導電
性被覆物2 (たとえばZn)をコンクリ−1側に、ま
たより責な力の導電性被覆物2 (たとえばCu)を外
側になるように装着する。このように装着すると、電気
防食用陽極/Cuのガルバニ。
This conductive composite coating has a conductive coating 2 with a lower natural potential (for example, Zn) on the concrete 1 side, and a conductive coating 2 with a more negative potential (for example, Cu) on the outside. Attach it so that it looks like this. When installed in this way, the cathodic protection anode/Cu galvanic.

り系の起電力にZn/Fc系の起電力を加えて電気防食
を行うことになり、起電力が増加するので高抵抗環境中
にお()る使用に最適である。
Electrolytic protection is performed by adding the electromotive force of the Zn/Fc system to the electromotive force of the Zn/Fc system, which increases the electromotive force, making it ideal for use in a high resistance environment.

また、導電性被覆物2とコンクリ−1表面との間にバッ
クフィル材を存在させてもよい。
Further, a backfill material may be present between the conductive coating 2 and the surface of the concrete 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の電気防食法によれば、
導電性被覆物が電気防食の分布電極及び大気との遮蔽物
として作用するので大気中の補強鋼材を広範囲にわたっ
て均一に防食することができる。
As explained above, according to the cathodic protection method of this invention,
Since the conductive coating acts as a distributed electrode for cathodic protection and as a shield from the atmosphere, the reinforcing steel material in the atmosphere can be uniformly protected from corrosion over a wide range.

したがって、大気中と電解質中にまたがるコンクリート
構造物に対し、′1[wl資質中補強鋼材を電気防食す
るだけで大気中の補強鋼材まで一貫して電気防食効果が
得られるので、繁雑な電極の設置が電解質中だけですむ
と共に、電源のないところの大気中の電気防食が可能に
なり、また、施工後は電位を測定するだけで、防食状態
が維持されているかどうか簡単に確認できる。
Therefore, for concrete structures that span both the atmosphere and the electrolyte, it is possible to consistently provide cathodic protection to the reinforcing steel in the atmosphere by simply applying cathodic protection to the reinforcing steel in the atmosphere. It only needs to be installed in an electrolyte, and it is possible to perform cathodic corrosion protection in the atmosphere in areas where there is no power supply.Furthermore, after installation, it is easy to check whether corrosion protection is being maintained by simply measuring the electrical potential.

また、コンクリ−1・層や導電性被覆物によって酸素等
が遮断されるので、補強鋼材の防食電流密度が大幅に低
減される。
Furthermore, since oxygen and the like are blocked by the concrete layer and the conductive coating, the corrosion protection current density of the reinforcing steel material is significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

1−     コンクリ−I−杭 2−−−−−−   導電性被覆物 3 −    測定用穴 4     − 鉄筋 5       流電陽極 1- Concrete I-Pile 2------- Conductive coating 3 - Measurement hole 4     − Rebar 5 Galvanic anode

Claims (2)

【特許請求の範囲】[Claims] (1)、大気中と電解質中にまたがるコンクリート構造
物の防食方法であって、少なくとも、電解質中の一部と
、これに連続する大気中の前記構造物表面を導電性被覆
物で被覆すると共に、電解質中の前記構造物の補強鋼材
を電気防食することによって電解質中の前記補強鋼材に
流入する一部の防食電流が導電性被覆物を経由して大気
中の前記補強鋼材に流入するようにしたことを特徴とす
るコンクリート構造物の電気防食法。
(1) A corrosion prevention method for a concrete structure that spans both the atmosphere and an electrolyte, the method comprising coating at least a part of the electrolyte and the surface of the structure in the atmosphere that is continuous with the electrolyte with a conductive coating; , by applying cathodic protection to the reinforcing steel of the structure in the electrolyte, a part of the anti-corrosion current flowing into the reinforcing steel in the electrolyte flows into the reinforcing steel in the atmosphere via the conductive coating. A cathodic protection method for concrete structures that is characterized by:
(2)、導電性被覆物が、自然電位の異なる二層状の導
電性複合被覆物である特許請求の範囲第1項記載のコン
クリート構造物の電気防食法。
(2) The method for cathodic protection of concrete structures according to claim 1, wherein the conductive coating is a two-layer conductive composite coating having different natural potentials.
JP61106694A 1986-05-12 1986-05-12 Electrolytic protection method for concrete structure Granted JPS62263984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106694A JPS62263984A (en) 1986-05-12 1986-05-12 Electrolytic protection method for concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106694A JPS62263984A (en) 1986-05-12 1986-05-12 Electrolytic protection method for concrete structure

Publications (2)

Publication Number Publication Date
JPS62263984A true JPS62263984A (en) 1987-11-16
JPH0470397B2 JPH0470397B2 (en) 1992-11-10

Family

ID=14440139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106694A Granted JPS62263984A (en) 1986-05-12 1986-05-12 Electrolytic protection method for concrete structure

Country Status (1)

Country Link
JP (1) JPS62263984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394081A (en) * 1989-05-30 1991-04-18 Nakagawa Boshoku Kogyo Kk Method for fitting insoluble electrode to concrete structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394081A (en) * 1989-05-30 1991-04-18 Nakagawa Boshoku Kogyo Kk Method for fitting insoluble electrode to concrete structure

Also Published As

Publication number Publication date
JPH0470397B2 (en) 1992-11-10

Similar Documents

Publication Publication Date Title
CA2423116C (en) Doubly-protected reinforcing members in concrete
JPS6334192B2 (en)
US5341562A (en) Method for preventing corrosion of a reinforced concrete structure
CA2092304C (en) Prevention method of aquatic attaching fouling organisms and its apparatus
Ainakulova et al. Analytical Review of Conductive Coatings, Cathodic Protection, and Concrete
EP0591775B1 (en) Method for preventing corrosion of a reinforced concrete structure
JPS62263984A (en) Electrolytic protection method for concrete structure
JPS62263985A (en) Electrolytic protection method for concrete structure
JPH0454753B2 (en)
Martin et al. Sacrificial Anodes and Environmental Effects
JP3137771B2 (en) Corrosion protection method for concrete structures by thermal spray coating.
JPH06173287A (en) Corrosion resistant structure for offshore steel structure
JPH04297643A (en) Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
JP3090187B2 (en) Room temperature zinc sprayed coating for antifouling and antifouling management method of the sprayed coating
JP2003286591A (en) Process for protecting corrosion of offshore structure and offshore structure
JPH0224913B2 (en)
JPH0224914B2 (en)
JPH1129952A (en) Concrete structure, and its electric anticorrosion method
JP4201394B2 (en) Concrete steel structure covered with composite film electrode
JPS62196381A (en) Electric anticorrosive method for structure made of metal
Shinde et al. Review on Cathodic Protection of Embedded Steel Bars in Concrete by Sacrificial Anodes [J]
JPS6014793Y2 (en) Corrosion resistant hanger rope
RATCLIFFE THE BASIS AND ESSENTIALS OF MARINE CORROSION IN STEEL STRUCTURES.
Goodwin Overview of Zinc-Based Galvanic Corrosion Systems for Offshore Wind Energy Structures
Green Australasian Experiences with Cathodic Protection of Concrete Marine Structures

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term