JP4201394B2 - Concrete steel structure covered with composite film electrode - Google Patents

Concrete steel structure covered with composite film electrode Download PDF

Info

Publication number
JP4201394B2
JP4201394B2 JP21043398A JP21043398A JP4201394B2 JP 4201394 B2 JP4201394 B2 JP 4201394B2 JP 21043398 A JP21043398 A JP 21043398A JP 21043398 A JP21043398 A JP 21043398A JP 4201394 B2 JP4201394 B2 JP 4201394B2
Authority
JP
Japan
Prior art keywords
coating
electrode
film
coating layer
steel structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21043398A
Other languages
Japanese (ja)
Other versions
JP2000026173A (en
Inventor
芳範 松田
一弘 井川
健一郎 田中
秀治 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP21043398A priority Critical patent/JP4201394B2/en
Publication of JP2000026173A publication Critical patent/JP2000026173A/en
Application granted granted Critical
Publication of JP4201394B2 publication Critical patent/JP4201394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Building Environments (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート鋼構造物の劣化を防止するために電気防食法が施された外部電極方式による複合皮膜電極で被覆されたコンクリート鋼構造物に関する。
【0002】
【従来の技術】
一般に、コンクリート鋼構造物は、補強鋼材(鉄筋、PC鋼線、鉄骨等)間のマクロセル、含有塩分、飛来塩分の侵入等によって補強鋼材が腐食する。その結果、鋼材の体積が膨張してコンクリートにひび割れが発生し、ひび割れによりさらに鋼材の腐食が促進され、ひび割れが拡大してコンクリート鋼構造物の強度が著しく低下する。このようなコンクリート鋼構造物の劣化を防止する手段としては、(1)コンクリート鋼構造物表面を防水性の塗料で塗装する防食塗装法、(2)該表面を流電陽極で覆う流電陽極方式による電気防食法、(3)該表面に不溶性の電極を取り付ける外部電源方式による電気防食法等が開発、実用化されてきた。
【0003】
しかし、防食塗装法は新設の場合でも塗膜欠陥部、塗膜損傷部からの塩分の侵入、酸素の拡散を防止できず、既設の場合はさらにコンクリート中の塩分のために長期的な防食性は期待できない。また、流電陽極方式の電気防食法は、亜鉛等の流電陽極材と鉄筋等間の電位差により防食電流を得ているためにコンクリートの電気抵抗が高いと防食電流が不十分となるきらいがある。さらに、外部電源方式による電気防食法には、従来より白金めっきチタン線を一次電極とし、カーボン等を主成分とした導電性塗膜を二次電極とする導電塗膜システムや、白金めっきまたは白金族酸化物を被覆したメッシュ状のチタン電極を用いるメッシュ電極システムがある。しかし、いずれのシステムとも施工性、作業性に劣るとともに導電性塗膜電極システムでは塗膜のふくれや剥離が生じやすく、メッシュ電極システムではオーバーレイ材として用いるモルタルのコンクリート面への付着強度が小さく、外的要因のみならず、時間の経過にともなって剥離、脱落する欠点を有することもあった。
【0004】
これら従来の外部電源方式による電気防食法の欠点を解消するものとして、近年耐食性金属溶射皮膜(特開平7-291769号)が開発された。この耐食性金属溶射システムは、粗面化処理したコンクリート鋼構造物表面にチタン等の耐食性金属を溶射により被覆し、被覆したチタン等の耐食性金属に硝酸コバルト水溶液または硫酸マンガン水溶液等を塗布した後、加熱または通電による活性化処理により電極とし、この電極と電源装置の正極との接続(アノード接点)は、コンクリート鋼構造物の電極部にチタン製ボルト、ナットによって取付けられたチタンプレートを用いて行い、一方、電源装置の負極はコンクリート鋼構造物の鉄筋等に接続させることによって防食回路を形成させ、上記電源装置より鉄筋等に電流を流すことにより該鉄筋等を防食しようとするものである。
【0005】
【発明が解決しようとする問題点】
前記した耐食性金属溶射膜システムは、従来の外部電源方式による電気防食法の欠点であった施工性、作業性をある程度改善したものであり、また高価な金属材料である白金または白金族金属を使用しないことにおいてある程度価格の低減も図られたものの、次の如き問題点、改善されるべき点が依然として残されていた。すなわち、(1)チタン等の耐食性金属材料は、電気伝導度が小さく、また溶射膜厚も薄いために溶射皮膜の電気抵抗が大きくなり、その結果鉄筋の電位分布が悪くなる;(2)この電位分布を改善するためには、耐食性金属溶射皮膜の膜厚を大きくする必要があるが、その分材料費が高くなるとともに溶射膜とコンクリート面との付着強度が低下するという問題点がある;(3)また、電位分布を改善するための他の方法としては、多数のアノード接点を設置する方法があるが、施工性が悪くなる;等である。本発明は耐食性金属溶射皮膜システムの電位分布、施工性を改善して、このシステムの信頼性を高めるとともに低価格の外部電源方式による電気防食法を施すための被膜電極が被覆されたコンクリート鋼構造物を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、前記した耐食性金属溶射皮膜システムの問題点を解決するためになされたものである。
すなわち、本発明は、コンクリート鋼構造物表面に被覆された外部電源方式に用いるための皮膜電極が該コンクリート鋼構造物表面に被覆され、該皮膜電極が、耐食性金属溶射皮膜に活性化処理が施された厚さ30〜90μmの第一皮膜層の上に、第一皮膜層よりも電気伝導度の高い金属体皮膜からなる厚さ50〜250μmの第二皮膜層が被覆されてなる複合皮膜電極で構成され、かつ該第一皮膜層の材質は、チタン、タンタル、ニオブおよびジルコニウムよりなる群から選ばれたものであり、該第二皮膜層の材質は、亜鉛、アルミニウム、銅およびそれらの合金の1種または2種以上からなる群から選ばれたものであることを特徴とする複合皮膜電極で被覆されたコンクリート鋼構造物に関するものであり、これにより、前記課題を達成したものである。
【0007】
【発明の実施の形態】
上記のように、本反発明においては、第一皮膜層の膜厚を30〜90μmとしたことにより耐食性金属溶射皮膜とコンクリート面との付着強度が膜厚が120μmのものに比べて約2倍となって密着性が向上し、この第一皮膜層上に、電気伝導度の大きい第二皮膜層(例えば亜鉛溶射膜の電気伝導度はチタン溶射膜の約8倍である)を被覆したものであるため、第一皮膜層だけのものに比べて著しく電気伝導度が向上ししかもこれら第一皮膜層の電極作用とともにコンクリート面に複合被覆されることにより、密着性とともに電位分布を均一化させ得たものである。このような本発明に係る複合皮膜電極としたことにより比較的高価で電気伝導度のあまり良好ではないチタン溶射皮膜の弊害を第二皮膜層が補填することができ、これらによりコンクリート鉄筋の電位分布がより以上に均一となる。また高価な耐食性金属材料の使用量の減少にも繋がり安価となる。
【0008】
本発明で使用される第一皮膜層の材質は、チタンの他にタンタル、ニオブおよびジルコニウムでもよく、その膜厚は30μmより薄いと、多孔質となるとともに膜厚が不均一となり電極としての機能に劣り、逆に90μmを越えると前述したようにコンクリート面との付着力が低下する。
【0009】
第二皮膜層の材質は、亜鉛の他にアルミニウム、銅およびそれらの合金のいずれか1種または2種以上からなり、通常は溶射手段により第一皮膜層上に形成する。しかし施工作業が可能ならば薄板状体のものを貼り付けてもよい。いずれにしろ、これら第二皮膜層の膜厚は、50μm〜250μmとする。第二皮膜層の膜厚が50μmより薄いと電気伝導度が低下して電位分布に悪影響をもたらし、250μmより厚いと第一皮膜層との付着性が低下し、耐久性、信頼性に欠けるようになる。
【0010】
なお、本発明で使用される第二皮膜層の外側に、ガス抜きのための通気性と遮水性を兼ね備えた塗料、例えば商品名ジェイナー(JR東日本商事社製;シリカゾル系)や商品名ハイバロン(デュポン社製:クロロスルホン化ポリエチレン)等の塗料で塗装することは、複合皮膜電極を保護するためやその耐久性を向上させるためにさらに有効な手段となる。
【0011】
本発明に係る複合電極は外部電極方式により適用されるものであり、コンクリート面に取付けた複合皮膜電極側を外部電源装置の正極に接続し、一方外部電源装置の負極はコンクリート鋼構造物の鉄筋と接続することにより、防食回路を形成させ、前記電源装置から鉄筋等に防食電流を流すことにより鉄筋等を防食し、コンクリート鋼構造物の劣化を長期的に防止するものである。
【0012】
【実施例1】
以下、実施例に基づき本発明を説明するが、本発明はこれら実施例に限定されるものではない。図1は本発明で使用される複合皮膜電極のアノード接点部の断面及び側面の概略説明図である。図1において、1はチタン等の第一皮膜層、2は亜鉛等の第二皮膜層、3は第二皮膜層と同材質の金属製プレート、4は合成樹脂製ボルト、5はコンクリート面をそれぞれ示す。図1において、まず、第一皮膜層1の膜厚を変えてチタン溶射皮膜とコンクリート面5との付着力を測定した。その結果を表1に示す。第一皮膜層1として焼鈍した高純度φ16mmチタン線をアーク溶射機(ターファ社、M-8850型)を用い、予めサンドブラスト処理したコンクリート面へ膜厚を30μm、60μm、90μm、120μm、180μmと変えて溶射した。付着力の測定は40mm×40mmの鋼製アタッチメントを粘稠性、速硬化性エポキシ樹脂で被膜表面に張付け、建研式接着力試験機(山本こう重機社製、LPT-1500)を用いて測定した。それらの結果を表1に示す。
【0013】
【表1】

Figure 0004201394
【0014】
表1の結果より、付着力は膜厚の増加に伴って減少し、例えば膜厚30μm、60μmにおける付着力は膜厚120μmの2倍以上の値を示した。なお、この付着力は土木学会編纂のコンクリート構造物の維持管理指針案に記載されている品質規格の付着力である10kg/cm2以上とすることが望ましいことから、第一皮膜層1の膜厚は90μmまでとすべきであることがわかる。
【0015】
【実施例2、3】
次に、図2に示されるような劣化したコンクリート製の橋桁8を切り出し、その両側面をサンドブラスト処理して供試面A及びBとした。その後、これら両供試面に下記のような皮膜を形成した。
Figure 0004201394
皮膜形成後、アノード接点7及び、このアノード接点7からの距離が、0.5m、1.0m、1.5m、2.5m、3.5mに位置する測定点a,b,c,d,eに電位計測用基準電極9を設置して、各測定点おける分極量の値(インスタントオフ電位と不通電24時間後の電位差)を計測した。なお、第一皮膜層の形成は実施例1と同様に行い、そのチタン溶射膜の活性化は、30%硝酸コバルト水溶液を400g/m2塗布した後、電流密度10mA/m2で3日通電することにより行った。また、第二皮膜層は、高純度φ16mm亜鉛線を実施例1で用いたアーク溶射機を用いて前記活性化チタン皮膜上に所定の厚さで溶射した。それらの計測結果を表2に示す。
【0016】
【表2】
Figure 0004201394
【0017】
表2より、各例ともアノード接点7から離れるにつれて鉄筋の分極量は減少したが、本発明実施例に従う実施例2及び3における分極量の減少は比較例1のそれに比べて格段に小さく、また面Aと面Bとの分極量の差異も比較例1より小さいものであった。
【0018】
【実施例4】
コンクリート鉄筋の電位分布を有限要素法により検討した。有限要素法は解析領域を有限の要素に分割して離散化方程式を解くことにより、それぞれの要素の状態量を求めるものである。図3は有限要素法によるコンクリート鉄筋の電位分布解析条件(境界条件)を示す。図3において、10は活性化されたチタン溶射皮膜またはチタンと亜鉛の複合溶射膜であり、そのアノード分極パラメーターを1×(1/105)kΩ・cm2とし、5はコンクリート面であり、その抵抗値を20kΩ・cmとし、6は鉄筋であり、そのカソード分極パラメーターを50kΩ・cm2とした。このような条件下で、複合溶射膜またはチタン溶射被膜10と鉄筋6の間に1Vの電圧を印加した時の鉄筋6の電位分布を表3に示す。なお、溶射膜厚に関する解析条件は、実施例3及び比較例1と同一とした。表3より、コンクリート鉄筋の電位分布は、複合皮膜電極によって均一化されることが確認された。
【0019】
【表3】
Figure 0004201394
【0020】
【発明の効果】
以上のような本発明によれば、以下のような効果を有する。
(1) 耐食性金属溶射膜の膜厚を減少させることができるので、耐食性金属溶射皮膜の付着力が向上するとともに、高価なチタン等の材料費が低減する。
(2) コンクリート鉄筋の電位分布が改善されるとともに、分極量の変動要因となる施工のバラツキ(耐食性金属溶射膜厚のバラツキ)の影響が抑制される。
(3) 電位分布の均一化により、防食効果に優れた信頼性の高い電気防食法の施工が可能になる。
【図面の簡単な説明】
【図1】本発明にかかる複合溶射皮膜電極とアノード接点の構成を示す説明図である。
【図2】本発明実施例2における供試体形状と電位測定位置を示す説明図であり、(a)は供試体の断面を示し、(b)は側面を示す。
【図3】本発明実施例3における有限要素法による鉄筋電位分布解析条件を示す説明図である。
【符号の説明】
1 第一皮膜層
2 第二皮膜層
3 金属製プレート
4 合成樹脂製ボルト
5 コンクリート面
6 鉄筋
7 アノード接点
8 橋桁
9 電位計測用基準電極
10 複合溶射膜またはチタン溶射被膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a concrete steel structure covered with a composite film electrode by an external electrode system to which an anticorrosion method is applied in order to prevent deterioration of the concrete steel structure.
[0002]
[Prior art]
Generally, in a concrete steel structure, the reinforcing steel material corrodes due to macrocells between the reinforcing steel materials (reinforcing bars, PC steel wires, steel frames, etc.), contained salt content, intrusion salt content, and the like. As a result, the volume of the steel material expands and cracks are generated in the concrete. The cracks further promote corrosion of the steel material, and the cracks expand to significantly reduce the strength of the concrete steel structure. As means for preventing such deterioration of the concrete steel structure, (1) an anticorrosion coating method in which the surface of the concrete steel structure is coated with a waterproof paint, (2) an galvanic anode covering the surface with a galvanic anode An anti-corrosion method based on a method, and (3) an anti-corrosion method based on an external power source method in which an insoluble electrode is attached to the surface have been developed and put into practical use.
[0003]
However, even if the anticorrosion coating method is newly installed, it cannot prevent the intrusion of salt from the defective part of the paint film, the damaged part of the paint film, and the diffusion of oxygen. Cannot be expected. In addition, the galvanic anode type cathodic protection method obtains a galvanic protection current due to the potential difference between the galvanic anode material such as zinc and the reinforcing bars, etc. is there. Furthermore, for the anti-corrosion method using an external power supply method, a conductive coating system that uses a platinum-plated titanium wire as a primary electrode and a conductive coating mainly composed of carbon or the like as a secondary electrode, or platinum plating or platinum. There is a mesh electrode system using a mesh titanium electrode coated with a group oxide. However, both systems are inferior in workability and workability, and the conductive coating electrode system tends to cause blistering and peeling, and the mesh electrode system has low adhesion strength to the concrete surface of the mortar used as an overlay material. In addition to external factors, there were also drawbacks of peeling and dropping over time.
[0004]
In recent years, a corrosion-resistant metal sprayed coating (Japanese Patent Laid-Open No. 7-291769) has been developed to eliminate the drawbacks of these conventional anticorrosion methods using an external power supply system. This corrosion-resistant metal spraying system coats the surface of a roughened concrete steel structure with a corrosion-resistant metal such as titanium by spraying, and coats the coated corrosion-resistant metal such as titanium with a cobalt nitrate aqueous solution or a manganese sulfate aqueous solution. An electrode is formed by activation treatment by heating or energization, and the connection between the electrode and the positive electrode of the power supply device (anode contact) is performed using a titanium plate attached to the electrode part of the concrete steel structure with a titanium bolt and nut. On the other hand, the negative electrode of the power supply device is intended to form a corrosion prevention circuit by being connected to a reinforcing steel bar or the like of a concrete steel structure, and to prevent corrosion of the reinforcing steel bar or the like by passing a current from the power supply device to the reinforcing steel bar or the like.
[0005]
[Problems to be solved by the invention]
The above-mentioned corrosion-resistant metal spray coating system has improved the workability and workability, which were the disadvantages of the conventional anti-corrosion method using an external power supply method, and uses platinum or platinum group metals, which are expensive metal materials. Although the price was reduced to a certain extent, the following problems and points to be improved still remained. That is, (1) Corrosion-resistant metal materials such as titanium have low electrical conductivity and thin sprayed film, so the electrical resistance of the sprayed coating increases, resulting in poor potential distribution of the reinforcing bars; (2) In order to improve the electric potential distribution, it is necessary to increase the film thickness of the corrosion-resistant metal sprayed coating, but there is a problem that the material cost increases and the adhesion strength between the sprayed coating and the concrete surface decreases accordingly. (3) Further, as another method for improving the potential distribution, there is a method of installing a large number of anode contacts, but the workability is deteriorated; The present invention improves the potential distribution and workability of a corrosion-resistant metal spray coating system to increase the reliability of the system and to provide a concrete steel structure coated with a coating electrode for performing an anticorrosion method by a low-cost external power supply system. The purpose is to provide goods.
[0006]
[Means for Solving the Problems]
The present invention has been made to solve the problems of the corrosion-resistant metal spray coating system described above.
That is, according to the present invention, a coating electrode for use in an external power supply system coated on the surface of a concrete steel structure is coated on the surface of the concrete steel structure, and the coating electrode performs an activation treatment on the corrosion-resistant metal spray coating. A composite film electrode in which a second film layer having a thickness of 50 to 250 μm made of a metal film having a higher electrical conductivity than the first film layer is coated on the first film layer having a thickness of 30 to 90 μm. And the material of the first coating layer is selected from the group consisting of titanium, tantalum, niobium and zirconium, and the material of the second coating layer is zinc, aluminum, copper and alloys thereof The present invention relates to a concrete steel structure coated with a composite film electrode, which is selected from the group consisting of one or more of the following: It is a thing.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As described above, in the present invention, the film thickness of the first coating layer is 30 to 90 μm, so that the adhesion strength between the corrosion-resistant metal sprayed coating and the concrete surface is about twice that of the 120 μm film thickness. The first coating layer is coated with a second coating layer having a high electrical conductivity (for example, the electrical conductivity of the zinc sprayed coating is about eight times that of the titanium sprayed coating). Therefore, the electrical conductivity is remarkably improved compared to the one with only the first coating layer, and the concrete coating is applied to the concrete surface together with the electrode action of these first coating layers, thereby making the potential distribution uniform with the adhesion. It is obtained. By using the composite coating electrode according to the present invention, the second coating layer can compensate for the adverse effects of the titanium spray coating, which is relatively expensive and the electrical conductivity is not very good. Becomes more uniform. Moreover, it leads to a decrease in the amount of expensive corrosion-resistant metal material used, and the cost is reduced.
[0008]
The material of the first coating layer used in the present invention may be tantalum, niobium, and zirconium in addition to titanium. If the film thickness is less than 30 μm, the film becomes porous and the film thickness becomes non-uniform so that it functions as an electrode. On the other hand, if it exceeds 90 μm, the adhesion to the concrete surface decreases as described above.
[0009]
The material of the second coating layer is composed of one or more of aluminum, copper and their alloys in addition to zinc, and is usually formed on the first coating layer by a thermal spraying means. However, a thin plate may be attached if construction work is possible. In any case, the film thickness of these second coating layers is 50 μm to 250 μm. If the film thickness of the second film layer is less than 50 μm, the electrical conductivity decreases and adversely affects the potential distribution. If the film thickness is greater than 250 μm, the adhesion to the first film layer decreases, and durability and reliability may be lacking. become.
[0010]
In addition, on the outer side of the second film layer used in the present invention, a paint having both air permeability and water shielding for degassing, for example, trade name “Janer” (manufactured by JR East Corporation; silica sol type) and trade name “HIVALON” ( Painting with a paint such as DuPont (chlorosulfonated polyethylene) is a more effective means for protecting the composite film electrode and improving its durability.
[0011]
The composite electrode according to the present invention is applied by the external electrode system, and the composite film electrode side attached to the concrete surface is connected to the positive electrode of the external power supply device, while the negative electrode of the external power supply device is a reinforcing bar of a concrete steel structure. Are connected to each other to form an anticorrosion circuit, and an anticorrosion current is passed from the power supply device to the reinforcing bars to prevent corrosion of the reinforcing bars and prevent deterioration of the concrete steel structure in the long term.
[0012]
[Example 1]
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples. FIG. 1 is a schematic explanatory view of a cross section and a side surface of an anode contact portion of a composite film electrode used in the present invention. In FIG. 1, 1 is a first coating layer such as titanium, 2 is a second coating layer such as zinc, 3 is a metal plate made of the same material as the second coating layer, 4 is a synthetic resin bolt, and 5 is a concrete surface. Each is shown. In FIG. 1, first, the adhesion between the titanium sprayed coating and the concrete surface 5 was measured by changing the film thickness of the first coating layer 1. The results are shown in Table 1. The film thickness was changed to 30μm, 60μm, 90μm, 120μm, and 180μm on the concrete surface that had been sandblasted in advance using an arc sprayer (Turfa Co., Ltd., M-8850 type). And sprayed. Adhesion is measured by sticking a 40mm x 40mm steel attachment to the coating surface with a viscous, fast-curing epoxy resin and using a Kenken-type adhesive strength tester (manufactured by Komoto Yamamoto, LPT-1500) did. The results are shown in Table 1.
[0013]
[Table 1]
Figure 0004201394
[0014]
From the results shown in Table 1, the adhesive force decreased as the film thickness increased. For example, the adhesive force at a film thickness of 30 μm and 60 μm showed a value more than twice that of the film thickness of 120 μm. It is desirable that this adhesive strength be 10 kg / cm 2 or higher, which is the adhesive strength of the quality standards described in the draft guidelines for maintenance and management of concrete structures compiled by the Japan Society of Civil Engineers. It can be seen that the thickness should be up to 90 μm.
[0015]
[Examples 2 and 3]
Next, a deteriorated concrete bridge girder 8 as shown in FIG. 2 was cut out, and both side surfaces thereof were sandblasted to obtain test surfaces A and B. Thereafter, the following films were formed on both test surfaces.
Figure 0004201394
After the film is formed, the anode contact 7 and the distance from the anode contact 7 are measured at potentials a, b, c, d and e at positions 0.5 m, 1.0 m, 1.5 m, 2.5 m and 3.5 m. The reference electrode 9 was installed, and the value of polarization at each measurement point (instant-off potential and potential difference after 24 hours of de-energization) was measured. The first coating layer was formed in the same manner as in Example 1. The titanium sprayed film was activated by applying a 30% cobalt nitrate aqueous solution at 400 g / m 2 , and then energizing for 3 days at a current density of 10 mA / m 2. It was done by doing. The second coating layer was sprayed with a high purity φ16 mm zinc wire on the activated titanium coating at a predetermined thickness using the arc spraying machine used in Example 1. Table 2 shows the measurement results.
[0016]
[Table 2]
Figure 0004201394
[0017]
From Table 2, the polarization amount of the reinforcing bars decreased with distance from the anode contact 7 in each example, but the decrease in the polarization amount in Examples 2 and 3 according to the examples of the present invention was much smaller than that in Comparative Example 1, The difference in the polarization amount between the surface A and the surface B was also smaller than that of Comparative Example 1.
[0018]
[Example 4]
The potential distribution of concrete reinforcing bars was studied by the finite element method. In the finite element method, the analysis region is divided into finite elements and the discretization equation is solved to obtain the state quantities of the respective elements. FIG. 3 shows the potential distribution analysis conditions (boundary conditions) of a concrete rebar by the finite element method. In FIG. 3, 10 is an activated titanium spray coating or a composite spray coating of titanium and zinc, the anode polarization parameter is 1 × (1/10 5 ) kΩ · cm 2, and 5 is a concrete surface. The resistance value was 20 kΩ · cm, 6 was a reinforcing bar, and the cathode polarization parameter was 50 kΩ · cm 2 . Table 3 shows the potential distribution of the reinforcing bar 6 when a voltage of 1 V is applied between the composite sprayed coating 10 or the titanium sprayed coating 10 and the reinforcing bar 6 under such conditions. The analysis conditions for the sprayed film thickness were the same as those in Example 3 and Comparative Example 1. From Table 3, it was confirmed that the potential distribution of the concrete rebar is made uniform by the composite film electrode.
[0019]
[Table 3]
Figure 0004201394
[0020]
【The invention's effect】
The present invention as described above has the following effects.
(1) Since the film thickness of the corrosion-resistant metal sprayed film can be reduced, the adhesion of the corrosion-resistant metal sprayed film is improved and the cost of materials such as expensive titanium is reduced.
(2) The electric potential distribution of the concrete rebar is improved and the influence of the variation in construction (the variation in the corrosion-resistant metal sprayed film thickness) that causes the fluctuation of the polarization amount is suppressed.
(3) By making the potential distribution uniform, it is possible to construct a highly reliable anti-corrosion method with an excellent anti-corrosion effect.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a configuration of a composite sprayed coating electrode and an anode contact according to the present invention.
FIGS. 2A and 2B are explanatory views showing a specimen shape and a potential measurement position in Example 2 of the present invention, in which FIG. 2A shows a cross section of the specimen and FIG.
FIG. 3 is an explanatory diagram showing rebar potential distribution analysis conditions by a finite element method in Example 3 of the present invention.
[Explanation of symbols]
1 First coating layer 2 Second coating layer 3 Metal plate 4 Synthetic resin bolt 5 Concrete surface 6 Reinforcing bar 7 Anode contact 8 Bridge girder 9 Reference electrode for potential measurement
10 Composite spray coating or titanium spray coating

Claims (1)

コンクリート鋼構造物表面が外部電源方式の電気防食法に用いるための複合皮膜電極により被覆されたコンクリート鋼構造物において、
前記複合皮膜電極が第一皮膜層と第二皮膜層の二層からなり、
前記第一皮膜層が、チタン、タンタル、ニオブおよびジルコニウムよりなる群から選ばれた耐食性金属を溶射することにより前記構造物表面に生成された厚さ30〜90μmの溶射皮膜に活性化処理が施された皮膜層であり、
前記第二皮膜層が、前記第一皮膜層よりも電気伝導度の高い亜鉛、アルミニウム、銅およびそれらの合金の1種または2種以上からなる群から選ばれた金属体を該第一皮膜層上に被覆された厚さ50〜250μmの皮膜層であり、
更に、前記複合皮膜電極における前記第二皮膜層がコンクリート鋼構造物の鉄筋と電気的に接続されていることを特徴とする複合皮膜電極で被覆されたコンクリート鋼構造物。
In a concrete steel structure where the surface of the concrete steel structure is coated with a composite coating electrode for use in an external power-source-type anticorrosion method,
The composite coating electrode consists of two layers, a first coating layer and a second coating layer,
The first coating layer is subjected to an activation treatment on a 30-90 μm thick sprayed coating formed on the surface of the structure by spraying a corrosion resistant metal selected from the group consisting of titanium, tantalum, niobium and zirconium. A coated film layer,
The first coating layer is a metal body selected from the group consisting of one or more of zinc, aluminum, copper and alloys thereof, wherein the second coating layer has a higher electrical conductivity than the first coating layer. A film layer having a thickness of 50 to 250 μm coated thereon,
Furthermore, the concrete film structure covered with the composite film electrode, wherein the second film layer in the composite film electrode is electrically connected to a reinforcing bar of the concrete steel structure.
JP21043398A 1998-07-09 1998-07-09 Concrete steel structure covered with composite film electrode Expired - Fee Related JP4201394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21043398A JP4201394B2 (en) 1998-07-09 1998-07-09 Concrete steel structure covered with composite film electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21043398A JP4201394B2 (en) 1998-07-09 1998-07-09 Concrete steel structure covered with composite film electrode

Publications (2)

Publication Number Publication Date
JP2000026173A JP2000026173A (en) 2000-01-25
JP4201394B2 true JP4201394B2 (en) 2008-12-24

Family

ID=16589253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21043398A Expired - Fee Related JP4201394B2 (en) 1998-07-09 1998-07-09 Concrete steel structure covered with composite film electrode

Country Status (1)

Country Link
JP (1) JP4201394B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340782A (en) * 2001-05-14 2002-11-27 Okumura Corp Method for predicting degradation of concrete structure
JP7382361B2 (en) * 2021-03-24 2023-11-16 東日本旅客鉄道株式会社 Conductive paint, method for cathodic protection of concrete structures using the same, and method for repairing anode materials

Also Published As

Publication number Publication date
JP2000026173A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
US6358397B1 (en) Doubly-protected reinforcing members in concrete
JP5441122B2 (en) anode
JP4641025B2 (en) Concrete anticorrosion method and concrete structure obtained by implementing the same
JP4201394B2 (en) Concrete steel structure covered with composite film electrode
JP5052881B2 (en) Concrete anticorrosion method and concrete structure obtained by implementing the same
JP3798189B2 (en) Repair method for concrete structures
JP7261387B2 (en) Coating material for anode material, concrete structure, and cathodic protection method
JPH04297643A (en) Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
JP3728086B2 (en) Anticorrosion reinforced concrete assembly and assembly method
JPH09296526A (en) Method and structure of electric corrosion protection of reinforcement in reinforced concrete structure
JPS62199784A (en) Method for preventing corrosion of concrete structure
US9273401B2 (en) Galvanic corrosion mitigation with metallic polymer matrix paste
Galvanic Galvanic cathodic protection of reinforced and prestressed concrete using a thermally sprayed aluminum coating
JP3766043B2 (en) Anticorrosion reinforced concrete assembly and its anticorrosion method
JP3137771B2 (en) Corrosion protection method for concrete structures by thermal spray coating.
JP4602719B2 (en) Anticorrosion and repair methods for reinforced concrete structures
JPH1181502A (en) Anti-corrosion method of reinforcement in reinforced concrete
JPH1129952A (en) Concrete structure, and its electric anticorrosion method
JP7382361B2 (en) Conductive paint, method for cathodic protection of concrete structures using the same, and method for repairing anode materials
JPS62263985A (en) Electrolytic protection method for concrete structure
JP2003213804A (en) Method for manufacturing concrete structure
JP2003096581A (en) Electric corrosion protection method
JPH11293792A (en) Concrete structure having excellent corrosion resistance
JPS62263984A (en) Electrolytic protection method for concrete structure
JP2013108142A (en) Electrode for electrolytic protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees