JPH1181502A - Anti-corrosion method of reinforcement in reinforced concrete - Google Patents
Anti-corrosion method of reinforcement in reinforced concreteInfo
- Publication number
- JPH1181502A JPH1181502A JP24800297A JP24800297A JPH1181502A JP H1181502 A JPH1181502 A JP H1181502A JP 24800297 A JP24800297 A JP 24800297A JP 24800297 A JP24800297 A JP 24800297A JP H1181502 A JPH1181502 A JP H1181502A
- Authority
- JP
- Japan
- Prior art keywords
- thermal spray
- reinforced concrete
- reinforcing steel
- concrete
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Building Environments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉄筋コンクリート
内の鉄筋の腐食を防止する方法に関し、特に鉄筋コンク
リート構造物に対して比較的簡易でかつ低コストで防食
処理を施すことにより鉄筋コンクリート構造物の寿命の
延長を図り、土木・建築を中心とする鉄筋コンクリート
構造物の建設業分野及びその使用者に多大の利益をもた
らす鉄筋コンクリート内の鉄筋の腐食を防止する方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing corrosion of reinforcing steel in reinforced concrete, and more particularly, to a method for reducing the life of a reinforced concrete structure by applying a corrosion protection treatment to a reinforced concrete structure at a relatively simple and low cost. The present invention relates to a method for preventing the corrosion of reinforcing steel in reinforced concrete, which is of great interest to the field of construction of reinforced concrete structures, mainly civil engineering and construction, and to the users of the construction industry.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】防波
堤、橋脚、橋桁、建築物等を構成する鉄筋コンクリート
構造物は、長期間の使用中に、鉄筋コンクリート中の鉄
筋が腐食し、鉄筋としての強度低下や鉄筋とコンクリー
トとの結合力の低下による鉄筋コンクリート構造物とし
ての機能を維持できなくなり、長期の工期と高い費用を
費やして同構造物の大規模な補修または改築等の処置を
施さなければならなくなる。鉄筋の腐食は、供用中にコ
ンクリートの表面やコンクリートのひび割れを通してコ
ンクリート中に浸入する海水、雨水等の水分及びコンク
リート中に含まれる水分が、鉄に作用して電気化学的に
腐食作用を惹起させるものである。そこで従来から種々
の防食方法が採用されている。例えば、 (l)鉄筋コンクリート表面への塗装。 この方法は、鉄筋コンクリートの表面からの水分の浸入
を防止することを目的とするが、長期間の使用による塗
装膜の劣化による再塗装を要する。また、本来コンクリ
ート中に含まれていた水分に対しては効果がない。 (2)鉄筋コンクリート表面への亜鉛等金属板の貼付に
よる電気化学的防食。 この方法は、鉄筋コンクリートの表面に自然電位が鉄よ
りも卑な金属例えば亜鉛、アルミニウム、チタン又はそ
れらの合金の板等を貼付し、それらの金属と鉄筋とを導
線により電気的に接続して外部の直流電源を使用するか
あるいは貼付した金属及び鉄筋を両極とし、コンクリー
トを電解質とする電池作用により生ずる起電力により、
貼付した金属−コンクリート−鉄筋−導線−貼付した金
属に戻る閉回路中をこの順路に沿って流れる電流によっ
て電気化学的に鉄筋の腐食を防止するものである。この
方法は、コンクリート表面と貼付する金属とを広い面積
にわたって一様に電気的な結合を維持しながら固定する
方法が種々考案されているが、施工費用が比較的に高
い。 (3)鉄筋表面への防食処理施工。 .あらかじめ鉄筋の表面にビニールその他の合成樹
脂、セラミック等の電気的に絶縁性のある材料を被覆し
ておき、鉄筋の表面から電流の流出・流入が不可能とし
て、電気化学的に腐食作用を惹起させないようにする方
法があるが、一般に強度の弱い部分が鉄筋とコンクリー
トの間に介在し鉄筋コンクリートの健全性を損なう。 .あらかじめ鉄筋の表面を亜鉛合金、アルミニウム合
金等でメッキ等の方法で被覆し、鉄筋の防銹を行う方法
が考えられるが、一般にと同様に亜鉛合金、アルミニ
ウム合金等の強度の弱い部分がコンクリートとの間に介
在するほか、実用的にメッキ不着部分あるいは損傷部分
が存在するときは、これらの部分に集中的に電気化学的
な腐食作用を受け、鉄筋の寿命を短くする。 .前記及びはコスト高となる。2. Description of the Related Art Reinforced concrete structures constituting breakwaters, piers, bridge girders, buildings, and the like are susceptible to corrosion of reinforced concrete in reinforced concrete during long-term use, resulting in reduced strength as reinforced concrete. Function of a reinforced concrete structure due to a decrease in bonding strength between steel and concrete, and the need for long-term construction work and high costs to perform large-scale repair or renovation of the structure . Corrosion of rebars is caused by seawater, rainwater, etc., which enter the concrete through the concrete surface or concrete cracks during operation, and water contained in the concrete, which acts on the iron to cause electrochemical corrosion. Things. Therefore, various anticorrosion methods have conventionally been adopted. For example: (l) painting on reinforced concrete surfaces. This method aims at preventing the infiltration of moisture from the surface of reinforced concrete, but requires repainting due to deterioration of the coating film due to long-term use. In addition, it has no effect on moisture originally contained in concrete. (2) Electrochemical corrosion protection by attaching a metal plate such as zinc to the surface of reinforced concrete. In this method, a metal having a natural potential lower than that of iron, such as zinc, aluminum, titanium, or an alloy thereof, is attached to the surface of reinforced concrete, and the metal and the reinforcing steel are electrically connected to each other by a conductive wire. The use of a DC power supply or the use of affixed metal and rebar as both poles, with the electromotive force generated by the battery action using concrete as the electrolyte,
The current flowing along this route in the closed circuit returning to the adhered metal-concrete-rebar-conductor-applied metal electrochemically prevents corrosion of the rebar. As this method, various methods have been devised for fixing the concrete surface and the metal to be adhered uniformly over a large area while maintaining electrical connection, but the construction cost is relatively high. (3) Anticorrosion treatment on the reinforcing bar surface. . The surface of the rebar is coated in advance with an electrically insulating material such as vinyl or other synthetic resin, ceramic, etc., making it impossible for current to flow out or in from the surface of the rebar, causing electrochemical corrosion. Although there is a method to prevent the reinforced concrete from being caused, generally, a weak portion is interposed between the reinforcing bar and the concrete and impairs the soundness of the reinforced concrete. . A possible method is to coat the rebar surface in advance with a method such as plating with a zinc alloy, aluminum alloy, etc., and to rust-proof the rebar.However, as in general, the weak parts of the zinc alloy, aluminum alloy, etc. are mixed with concrete. In addition, if there is a non-plated portion or a damaged portion practically, electrochemical corrosion is intensively applied to these portions to shorten the life of the reinforcing bar. . The above and the above are costly.
【0003】[0003]
【課題を解決するための手段】本発明は、前記従来の技
術として例示した(2)項の方法に関連するもので、
(2)項に示した自然電位が鉄よりも卑な金属板又はそ
の合金板等のコンクリート表面への貼付に代えて、コン
クリート表面に当該金属の皮膜を形成させるものであ
る。本発明では、この皮膜を形成する方法としてコンク
リートの表面への金属材料の溶射を採用し、金属板等の
貼付と技術面では同等の効果を得つつ、施工の簡易さ、
費用の面では優位さを得ようとするものである。すなわ
ち本発明は下記構成の鉄筋コンクリート内の鉄筋の腐食
を防止する方法である。 (1)鉄筋コンクリート内の鉄筋の腐食を防止する方法
において、鉄筋コンクリートの表面に自然電位が鉄より
も卑な金属を溶射してその皮膜を形成し、この皮膜と鉄
筋とを導線により電気的に接続して溶射皮膜及び鉄筋を
両極とし、コンクリートを電解質とする電池作用により
生じる起電力によって、溶射皮膜−コンクリート−鉄筋
−導線−溶射皮膜の順路に沿って流れる電流によって電
気化学的に鉄筋の腐食を防止することを特徴とする鉄筋
コンクリート内の鉄筋の腐食を防止する方法。 (2)鉄筋コンクリート内の鉄筋の腐食を防止する方法
において、鉄筋コンクリートの表面に自然電位が鉄より
も卑な金属を溶射してその皮膜を形成し、この皮膜と鉄
筋とを導線により外部直流電源を介在させて電気的に接
続して、溶射皮膜−コンクリート−鉄筋−導線−溶射皮
膜の順路に沿って流れる電流によって電気化学的に鉄筋
の腐食を防止することを特徴とする鉄筋コンクリート内
の鉄筋の腐食を防止する方法。 (3)溶射皮膜の厚さを1mm以下とし、溶射皮膜の溶
射基材であるコンクリート表面からの剥離を防止するこ
とを特徴とする(1)項又は(2)項記載の鉄筋コンク
リート内の鉄筋の腐食を防止する方法。 (4)溶射基材であるコンクリートの表面粗度の下限値
をRz(l0点平均粗さ)20μmとして、溶射皮膜と
溶射基材であるコンクリート表面との結合強度を向上す
ることを特徴とする(1)項〜(3)項のいずれか1項
に記載の鉄筋コンクリート内の鉄筋の腐食を防止する方
法。 (5)溶射皮膜の表面に樹脂コーティング層を設けるこ
とを特徴とする(1)項〜(4)項のいずれか1項に記
載の鉄筋コンクリート内の鉄筋の腐食を防止する方法。 (6)溶射皮膜の表面に透明樹脂コーティング層を設け
ることを特徴とする(1)項〜(4)項のいずれか1項
に記載の鉄筋コンクリート内の鉄筋の腐食を防止する方
法。 (7)樹脂コーティング層が耐水性のものであることを
特徴とする(5)項又は(6)項に記載の鉄筋コンクリ
ート内の鉄筋の腐食を防止する方法。 (8)溶射皮膜と導線との接合部表面に樹脂コーティン
グ層を設けることを特徴とする(1)項〜(7)項のい
ずれか1項に記載の鉄筋コンクリート内の鉄筋の腐食を
防止する方法。The present invention relates to the method of item (2) exemplified as the prior art,
Instead of sticking a metal plate or an alloy plate having a lower natural potential than iron to the concrete surface as shown in the item (2), a film of the metal is formed on the concrete surface. In the present invention, thermal spraying of a metal material to the surface of concrete is employed as a method of forming this coating, and while obtaining the same effect in terms of technology as affixing a metal plate, the simplicity of construction,
They try to gain an advantage in terms of cost. That is, the present invention is a method for preventing corrosion of reinforcing steel in reinforced concrete having the following configuration. (1) In a method for preventing corrosion of reinforcing steel in reinforced concrete, a metal whose natural potential is lower than iron is sprayed on the surface of reinforced concrete to form a film thereof, and this film and the reinforcing steel are electrically connected to each other by a conductive wire. The sprayed coating and the reinforcing steel are used as both poles, and the electromotive force generated by the battery action using concrete as an electrolyte causes the current flowing along the spray coating-concrete-rebar-conductive wire-sprayed coating to electrochemically corrode the reinforcing steel. A method for preventing corrosion of reinforcing steel in reinforced concrete, characterized by preventing corrosion. (2) In a method of preventing corrosion of reinforcing steel in reinforced concrete, a metal whose natural potential is lower than iron is sprayed on the surface of reinforced concrete to form a film thereof, and an external DC power supply is connected between the film and the reinforcing steel by a conductor. Corrosion of reinforcing steel in reinforced concrete characterized by electrically intervening and electrically connecting to prevent electrochemically corrosion of reinforcing steel by current flowing along the route of thermal spray coating-concrete-rebar-conductor-spray coating. How to prevent. (3) The reinforcing steel in the reinforced concrete according to the above (1) or (2), wherein the thickness of the thermal spray coating is 1 mm or less to prevent peeling of the thermal spray coating from the concrete surface as the thermal spray base material. How to prevent corrosion. (4) The bonding strength between the thermal spray coating and the concrete surface as the thermal spray substrate is improved by setting the lower limit of the surface roughness of the thermal spray substrate concrete to Rz (10 point average roughness) 20 μm. The method for preventing corrosion of reinforcing steel in reinforced concrete according to any one of (1) to (3). (5) The method for preventing corrosion of reinforcing steel in reinforced concrete according to any one of (1) to (4), wherein a resin coating layer is provided on the surface of the thermal spray coating. (6) The method for preventing corrosion of reinforcing steel in reinforced concrete according to any one of (1) to (4), wherein a transparent resin coating layer is provided on the surface of the thermal spray coating. (7) The method for preventing corrosion of reinforcing steel in reinforced concrete as described in (5) or (6), wherein the resin coating layer is water-resistant. (8) The method for preventing corrosion of reinforcing steel in reinforced concrete according to any one of the above (1) to (7), wherein a resin coating layer is provided on the surface of the joint between the thermal spray coating and the conductive wire. .
【0004】[0004]
【発明の実施の形態】図1に鉄筋コンクリート1表面に
自然電位が鉄よりも卑な金属材料を溶射して溶射皮膜2
を形成し、その溶射皮膜2と鉄筋3とを導線4により電
気的に接続した状態の断面図を示す。 (1)防食の原理 図1の状態で鉄筋コンクリート構造物を供用することに
より、コンクリート1を電解質として溶射皮膜2及び鉄
筋3を両極とする電池を構成し、その起電力によって溶
射皮膜2−コンクリート1−鉄筋3−導線4−溶射皮膜
2の順路に沿って直流電流が流れる(以下この電流を防
食電流という)。この防食電流により鉄筋は、常に還元
作用を受けるが、酸化作用を受けることはなく、つまり
腐食を生じない。この方法は、「流電陽極方式」の電気
防食技術として知られている。なお、照合電極5は、必
要に応じて鉄筋の電位を測定する場合に、電位の基準と
して使用するために、あらかじめコンクリート中に埋設
したものである。図2は、図1の導線4の中間に直流電
源6を挿入してこの電源6により防食電流を流す方法で
「外部電源方式」の電気防食技術として知られるが、作
用は、図1の場合とほぼ同じである。 (2)溶射技術 溶射技術は、材料の表面に耐摩耗、耐熱等の機能を有す
る皮膜を形成する簡便な方法としてよく知られている。
本発明では、図3に示すように、溶射ガン10において
電気アーク、ガス炎、プラズマジェット等を熱源とし、
この熱により所要の機能を有するワイヤ、棒、粉末状の
Zn,ZnAl合金,Al等の溶射材料を溶融し、それ
らの溶融物粒子11として飛散させ、これを基材(コン
クリート)1の表面に吹付け、堆積させることによって
溶射皮膜2を形成する。溶射皮膜2と基材1表面との結
合は、一般に機械的な結合であり、基材表面の微小な凹
凸に溶融した溶射粒子11が絡みつくことにより溶射皮
膜2と基材1表面との結合強度を得ている。したがって
この結合強度の面では基材表面の粗度は大きいはど好ま
しい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a sprayed coating 2 on a surface of a reinforced concrete 1 by spraying a metal material having a natural potential lower than that of iron.
FIG. 2 is a cross-sectional view showing a state in which the thermal sprayed coating 2 and the reinforcing bar 3 are electrically connected to each other by the conductive wire 4. (1) Principle of Corrosion Protection By using a reinforced concrete structure in the state shown in FIG. 1, a battery having a sprayed film 2 and a reinforcing bar 3 as both electrodes using concrete 1 as an electrolyte is formed, and a sprayed film 2-concrete 1 is formed by electromotive force. -DC current flows along the route of the reinforcing bar 3-the conductive wire 4-the thermal spray coating 2 (hereinafter, this current is referred to as anticorrosion current). Due to this anticorrosion current, the reinforcing bar is always reduced, but not oxidized, that is, does not corrode. This method is known as a galvanic anode protection method. The reference electrode 5 is buried in concrete in advance in order to use the reference electrode 5 as a potential reference when measuring the potential of the reinforcing bar as necessary. FIG. 2 shows a method of inserting a DC power supply 6 in the middle of the conducting wire 4 of FIG. 1 and supplying an anticorrosion current by the power supply 6, which is known as an “external power supply type” cathodic protection technique. Is almost the same as (2) Thermal spraying technology Thermal spraying technology is well known as a simple method of forming a film having functions such as wear resistance and heat resistance on the surface of a material.
In the present invention, as shown in FIG. 3, an electric arc, a gas flame, a plasma jet, or the like is used as a heat source in the thermal spray gun 10,
By this heat, a sprayed material such as a wire, a rod, powdered Zn, ZnAl alloy, or Al having a required function is melted and scattered as melted particles 11, and this is spread on the surface of the base material (concrete) 1. The sprayed coating 2 is formed by spraying and depositing. The bond between the thermal spray coating 2 and the surface of the substrate 1 is generally a mechanical bond, and the bonding strength between the thermal spray coating 2 and the surface of the substrate 1 due to the entanglement of the molten thermal spray particles 11 with minute irregularities on the surface of the substrate. Have gained. Therefore, in terms of the bonding strength, the roughness of the substrate surface is large but preferable.
【0005】(3)溶射材料の材質及び形伏 前記(1)「防食の原理」の項で述べたように、コンク
リート内の鉄筋を防食するためには、溶射皮膜2を形成
するための溶射材料の材質は、自然電位が鉄のそれより
も卑であればよい。したがって本発明では、溶射材科の
材質としては亜鉛、アルミニウム、チタン及びこれらを
主成分とする合金であればよい。また、溶射材料の形状
は、使用する溶射ガン、熱源に対応して適切なものであ
れば、ワイヤ、棒、粉末状のいずれでもよい。 (4)溶射熱源 前記(2)「溶射技術」の項で述ぺたように、溶射材料
を溶融するための熱源としては、電気アーク、ガス炎、
プラズマジェット等があるが、本発明では、使用する溶
射材料に対応して適切なものであれば、いずれでもよ
い。 (5)溶射皮膜の厚さ 溶射皮膜の厚さは、溶射施工上とくに制眼はない。しか
し、溶射皮膜2と基材1表面との結合は、機械的な結合
であるため、溶射皮膜2の厚さが過大であると残留応力
によって溶射皮膜に変形が生じ、溶射皮膜2と基材1と
が剥離する場合がある。そこで実用的には溶射皮膜の厚
さは最大1mmとすることが望ましい。 (6)コンクリートの表面粗度 前記(2)「溶射技術」の項で述ぺたように、溶射皮膜
2と基材1すなわちコンクリート表面との結合強度を向
上させるためには、コンクリート1表面の粗度が大きい
ほど好ましい。コンクリートの表面粗度として必要な下
限値は、Rz(l0点平均粗さ:JIS B0601に
よる)20μmである。(3) Material and Shape of Thermal Spraying Material As described in (1) "Principle of Corrosion Protection", in order to prevent corrosion of reinforcing steel in concrete, thermal spraying for forming thermal spray coating 2 is performed. The material may be any material as long as the natural potential is lower than that of iron. Therefore, in the present invention, the material of the thermal spraying material family may be zinc, aluminum, titanium or an alloy containing these as a main component. Further, the shape of the thermal spray material may be any of a wire, a rod, and a powder as long as it is appropriate for the thermal spray gun and the heat source to be used. (4) Thermal Spray Heat Source As described in (2) “Thermal Spraying Technique”, the heat source for melting the thermal spray material includes an electric arc, a gas flame, and the like.
There is a plasma jet or the like, but in the present invention, any one may be used as long as it is appropriate for the thermal spray material to be used. (5) Thickness of thermal spray coating The thickness of the thermal spray coating is not particularly limited in thermal spraying. However, since the bond between the thermal spray coating 2 and the surface of the substrate 1 is a mechanical bond, if the thermal spray coating 2 is too thick, the thermal spray coating is deformed due to residual stress, and the thermal spray coating 2 and the substrate 1 are bonded. 1 may peel off. Therefore, in practice, it is desirable that the thickness of the thermal spray coating be 1 mm at the maximum. (6) Surface Roughness of Concrete As described in (2) “Thermal Spraying Technique”, in order to improve the bonding strength between the thermal spray coating 2 and the substrate 1, that is, the concrete surface, the surface roughness of the concrete 1 is required. The higher the degree, the better. The lower limit required for the surface roughness of concrete is Rz (10 point average roughness: according to JIS B0601) 20 μm.
【0006】[0006]
【実施例】以下に本発明の実施例及び比較例を記載す
る。 .試験用供試体 (a)コンクリート基板 供試体コンクリート基板は300mm×300mm×6
0mmのものを用意し、供試体の試験内容及び溶射方式
は表1に示すとおりで、A〜Cシリーズ及びDシリーズ
とし、A〜Cシリーズでは無鉄筋のものを、Dシリーズ
では図4に示すごときコンクリート基板内に鉄筋3とし
て直径19mmのミガキ丸鋼(SGD400)を配し、
鉄筋3の腐食状態や防食効果をモニタリングするための
鉛照合電極5を埋設したものとした。また、使用したコ
ンクリートの調製は表2に示すとおりである。Dシリー
ズでは腐食し易い環境を与えるため、コンクリート質量
比、0.3%のNaClを混入した。すなわち、100
×NaCl/(C+W+S+G+NaCl)=0.3量
のNaClを混入させたフレッシュコンクリートを各種
材質の型枠内に打設した。前記フレッシュコンクリート
打設後、室温20℃±2℃、相対湿度60±10%の養
生室中で1週間養生した後、型枠脱型し、約40日間、
上記養生室にて養生した。EXAMPLES Examples and comparative examples of the present invention will be described below. . Test specimen (a) Concrete substrate The test concrete substrate is 300 mm x 300 mm x 6
A test piece of 0 mm was prepared, and the test contents and thermal spraying method of the specimen were as shown in Table 1. The series was A to C series and D series. A 19mm diameter round steel bar (SGD400) is placed as a reinforcing bar 3 in a concrete substrate like this,
The lead reference electrode 5 for monitoring the corrosion state of the reinforcing bar 3 and the anticorrosion effect was embedded. The preparation of the concrete used is as shown in Table 2. In the D series, 0.3% NaCl was mixed in with a concrete mass ratio of 0.3% in order to provide an easily corrosive environment. That is, 100
× NaCl / (C + W + S + G + NaCl) = Fresh concrete mixed with 0.3 amount of NaCl was poured into molds of various materials. After placing the fresh concrete, after curing for one week in a curing room at room temperature 20 ° C ± 2 ° C and relative humidity 60 ± 10%, the mold was removed from the mold and about 40 days.
Cured in the above curing room.
【0007】[0007]
【表1】 [Table 1]
【0008】[0008]
【表2】 [Table 2]
【0009】(b)溶射 上記により打設・養生されたコンクリート基板1上への
溶射は、アーク溶射とフレーム溶射の2種類で行い、溶
射金属は純亜鉛(Zn)ワイヤを用いた。なお、アーク
溶射で亜鉛アルミニウム合金(Zn+5%Al)を用い
たものについても供試した。なお、コンクリート基板
(基材)1表面と溶射装置(溶射ガン10)先端との距
離は約25cmとした(図3)。(B) Thermal spraying Thermal spraying on the concrete substrate 1 cast and cured as described above was performed by two types of arc spraying and flame spraying, and pure zinc (Zn) wire was used as the sprayed metal. In addition, the thing which used the zinc aluminum alloy (Zn + 5% Al) by arc spraying was also tested. The distance between the surface of the concrete substrate (base material) 1 and the tip of the thermal spraying device (thermal spray gun 10) was set to about 25 cm (FIG. 3).
【0010】.測定方法 (a)コンクリート表面粗さの測定 触針式測定器を用い、カットオフ値2.5mm評価長さ
12.5mmで測定し、Rz(10点平均粗さJIS
B0601)で表した。 (b)溶射皮膜の厚さ測定 エリクセン膜厚計で測定した。 (c)溶射皮膜の接着強度試験 建研式引張り試験器によって求めた。図5に示す位置P
1,P2において、溶射表面2と基材1との接着強度を
測定した。 (d)コンクリート表面含水率の測定 含水率の測定は、電気抵抗式モルタル水分計を使用し、
飽和状態、飽和状態より3日間外気放置、及び乾燥状態
の3種類の設定で行った。 (e)熱冷繰り返し試験 ひずみ測定のため、図5に示す供試体の所定位置にひず
みゲージを貼った。すなわち、金属溶射皮膜の所定位置
MP1,MP2に、防水型ひずみゲージMG1,MG2
を配設し、また基材1の所定位置CP1,CP2に防水
型ひずみゲージCG1,CG2を各々配設して、試験を
行った。熱冷繰り返し(0〜90℃)を行い、100サ
イクル後に接着強度試験を行った。 (f)電気防食試験 いずれの溶射皮膜も目標厚500μmで施工した。塩水
散水の供試体は、塩水散水5時間と乾燥19時間を1サ
イクルとして繰り返す腐食試験槽に設置し、内陸部屋外
の供試体と共に図6に示す電気回路で流電作用による通
電量及び鉛照合電極を用いた鉄筋電位を測定した。ま
た、通電122日を経過した時点で、回路を開放して鉄
筋電位の復極量を測定した。[0010] Measurement method (a) Measurement of concrete surface roughness Using a stylus-type measuring device, measurement was performed at a cutoff value of 2.5 mm and an evaluation length of 12.5 mm, and Rz (10-point average roughness JIS)
B0601). (B) Thickness Measurement of Thermal Sprayed Film The thickness was measured with an Erichsen film thickness meter. (C) Adhesion strength test of thermal sprayed coating Determined by a Kenken-type tensile tester. Position P shown in FIG.
At 1 and P2, the adhesive strength between the sprayed surface 2 and the substrate 1 was measured. (D) Measurement of concrete surface moisture content The moisture content was measured using an electric resistance mortar moisture meter.
The test was performed in three settings: a saturated state, standing in the open air for three days from the saturated state, and a dry state. (E) Heat-cooling repetition test For the measurement of strain, a strain gauge was attached to a predetermined position of the specimen shown in FIG. That is, waterproof strain gauges MG1, MG2 are provided at predetermined positions MP1, MP2 of the metal spray coating.
The test was performed by disposing waterproof strain gauges CG1 and CG2 at predetermined positions CP1 and CP2 of the base material 1, respectively. Heat-cooling repetition (0 to 90 ° C.) was performed, and an adhesive strength test was performed after 100 cycles. (F) Cathodic protection test All thermal spray coatings were applied with a target thickness of 500 μm. Specimens of salt water spraying were installed in a corrosion test tank where salt water sprinkling 5 hours and drying 19 hours were repeated as a single cycle. The rebar potential using the electrodes was measured. Further, at the point of time when 122 days of energization had passed, the circuit was opened and the amount of reversion of the rebar potential was measured.
【0011】.測定結果 (a)コンクリート表面粗さと溶射皮膜の接着性 表2に示す調合I,IIにおけるコンクリート表面粗さと
溶射皮膜の接着強度の関係を図7に示す。同図から理解
できるごとく、Rzが50〜100μmまではRzが増
すにしたがって接着強度が増し、Rzがそれ以上になる
とほぼ一定の値となった。調合IよりIIの方が全体的に
接着強度が高く、下地コンクリートの強度に依存してい
る。 (b)コンクリート表面含水率と溶射皮膜の接着性 コンクリート表面含水率と溶射皮膜の接着強度の関係を
図8に示す。含水率と接着強度には相関性は無かった。 (c)溶射皮膜厚と接着性 溶射皮膜厚と接着強度の関係を図9に示す。膜厚が厚く
なるにしたがって接着強度が低くなった。膜厚の影響も
あるが全体的にフレーム溶射の接着強度が高かった。 (d)熱冷繰り返し試験 熱冷繰り返し試験のひずみ量測定結果を図10に示す。
コンクリートと溶射皮膜のひずみ挙動が一致して追従し
ていることが解る。試験後の接着強度も1.76,2.
63MPaと高い値となった。 (e)電気防食性 電流密度の経時変化を図11に示す。また、図12に回
路開放時の鉄筋電位の復極量と回路開放直前の電流量を
示す。いずれの試験体においても流電陽極作用による鉄
筋電位のシフト量は、100mVシフト防食基準を満足
するものであった。 (f)結論 以上から下記のことが確認された。 .表面粗さRzが増すにしたがって接着強度が増し、
Rzが50〜100μm以上になると下地強度に依存し
一定の値となる。 .下地含水率は溶射皮膜の接着に影響しない。 .膜厚が厚くなるにしたがって接着強度が低くなる。 .熱冷サイクル後も良好な接着性を示す。 .塩水散水及び内陸部屋外環境のいずれの溶射皮膜の
ものも100mVシフト防食基準を満足した。[0011] Measurement Results (a) Concrete Surface Roughness and Adhesiveness of Thermal Sprayed Film FIG. 7 shows the relationship between concrete surface roughness and adhesive strength of the thermal sprayed film in Formulations I and II shown in Table 2. As can be understood from the figure, the adhesive strength increased as Rz increased up to Rz of 50 to 100 μm, and became almost constant as Rz increased. Formulation II has a higher overall adhesive strength than Formulation I, depending on the strength of the underlying concrete. (B) Concrete Surface Water Content and Adhesion of Thermal Sprayed Coating FIG. 8 shows the relationship between concrete surface water content and adhesive strength of the sprayed coating. There was no correlation between moisture content and adhesive strength. (C) Thermal spray coating thickness and adhesiveness FIG. 9 shows the relationship between the thermal spray coating thickness and the adhesive strength. The adhesive strength decreased as the film thickness increased. Despite the effect of the film thickness, the overall adhesion strength of the flame spraying was high. (D) Heat-cooling repetition test FIG. 10 shows the results of strain measurement in the heat-cooling repetition test.
It can be seen that the strain behavior of the concrete and the thermal spray coating is consistent and follows. The adhesive strength after the test was also 1.76, 2.
The value was as high as 63 MPa. (E) Cathodic protection FIG. 11 shows the change over time in the current density. FIG. 12 shows the amount of reversion of the rebar potential when the circuit is opened and the amount of current immediately before the circuit is opened. The shift amount of the rebar potential due to the galvanic anodic action in all the specimens satisfied the 100 mV shift anticorrosion standard. (F) Conclusion The following was confirmed from the above. . As the surface roughness Rz increases, the adhesive strength increases,
When Rz is 50 to 100 μm or more, it becomes a constant value depending on the background strength. . The underlayer moisture content does not affect the adhesion of the thermal spray coating. . As the film thickness increases, the adhesive strength decreases. . It shows good adhesion even after a heat-cooling cycle. . Both the sprayed coatings for the salt water spraying and the inland outdoor environment satisfied the 100 mV shift corrosion protection standard.
【0012】上記においては、コンクリート基板表面に
形成された溶射皮膜は、そのまま露出された状態である
が、この溶射皮膜は海岸や酸性雨降水個所等の厳しい自
然環境下に放置されることが多々あり、そうした場合に
は、溶射皮膜自体が腐食されて電極の役割を果たさなく
なる。そこで、改善された本発明では、溶射皮膜の表面
に更に樹脂コーティング層を形成して、溶射皮膜の腐食
を防止し、耐久性を増大する。また、特に溶射皮膜と導
線との接合部は、耐食性が悪く、両者が剥離してしまう
危険が生じ易い。以上の課題を解決する具体的構成を図
13及び図14に示す。すなわち、溶射皮膜2の表面
に、スプレー塗装又はハケ塗り等によって樹脂コーティ
ング層7を形成する。樹脂コーティング層は、耐水性、
耐薬品性、耐候性等の優れたものが好ましく、アクリル
樹脂、エポキシ樹脂、フッ素樹脂、珪素樹脂等が用いら
れるが、特にアクリル樹脂塗料等の透明なコーティング
層7は下地の金属光沢の溶射皮膜2が透視でき審美性も
長期にわたって確保できるので好ましい。In the above description, the thermal spray coating formed on the surface of the concrete substrate is exposed as it is, but this thermal spray coating is often left in a harsh natural environment such as a coast or a place of acid rain precipitation. In such a case, the thermal spray coating itself is corroded and no longer functions as an electrode. Therefore, in the improved present invention, a resin coating layer is further formed on the surface of the thermal spray coating to prevent corrosion of the thermal spray coating and increase durability. Also, particularly at the joint between the thermal spray coating and the conductor, the corrosion resistance is poor, and there is a danger that both will peel off. FIGS. 13 and 14 show a specific configuration for solving the above problems. That is, the resin coating layer 7 is formed on the surface of the thermal spray coating 2 by spray painting or brush painting. The resin coating layer is water resistant,
Those having excellent chemical resistance, weather resistance and the like are preferable, and acrylic resin, epoxy resin, fluororesin, silicon resin, etc. are used. 2 is preferable because it can be seen through and the aesthetics can be secured for a long period of time.
【0013】[0013]
【発明の効果】本発明によれば、コンクリート表面への
溶射による皮膜形成は、防波堤、橋脚、橋桁、建築物等
の広大な表面積を有し、複雑な形状の鉄筋コンクリート
構造物であっても比較的簡便かつ安価に施工が可能であ
り、しかも従来技術の金属板等の貼付による場合以上に
優れた効果が得られる。かくして、鉄筋コンクリート中
の鉄筋の防食を技術面及び経済面において優位に実現し
うるものである。According to the present invention, the formation of a coating on a concrete surface by thermal spraying can be performed even on a reinforced concrete structure having a large surface area such as a breakwater, a pier, a bridge girder, or a building having a complicated shape. Construction can be performed simply and inexpensively, and more excellent effects can be obtained than by pasting a metal plate or the like of the prior art. Thus, the corrosion prevention of the reinforcing steel in the reinforced concrete can be realized in terms of technology and economy.
【図1】本発明の1実施例である鉄筋コンクリート表面
に金属溶射皮膜を形成し、その溶射皮膜と鉄筋とを導線
により電気的に接続した状態の断面説明図。FIG. 1 is a cross-sectional explanatory view showing a state in which a metal sprayed film is formed on a surface of a reinforced concrete according to one embodiment of the present invention, and the sprayed film and a reinforcing bar are electrically connected by a conductive wire.
【図2】図1の導線の中間に直流電源を介在させた断面
説明図。FIG. 2 is an explanatory cross-sectional view in which a DC power supply is interposed between the conductors of FIG. 1;
【図3】溶射ガンを用いる基材表面への溶射皮膜形成方
法の説明図。FIG. 3 is an explanatory view of a method for forming a thermal spray coating on a substrate surface using a thermal spray gun.
【図4】コンクリート基板内に鉄筋を配し、鉄筋の腐食
状態や防食効果をモニタリングするための鉛照合電極を
埋設した状態の平面図及び側面図。FIG. 4 is a plan view and a side view of a state in which a reinforcing bar is arranged in a concrete substrate and a lead reference electrode for monitoring a corrosion state and an anticorrosion effect of the reinforcing bar is buried.
【図5】熱冷繰り返し試験のため供試体面にひずみゲー
ジを貼った状態を示す説明図。FIG. 5 is an explanatory diagram showing a state in which a strain gauge is attached to the surface of a test specimen for a repeated hot-cooling test.
【図6】コンクリート基板内の鉄筋電位を測定するため
の電気回路図。FIG. 6 is an electric circuit diagram for measuring a rebar potential in a concrete substrate.
【図7】コンクリート表面粗さと溶射皮膜の接着強度の
関係図。FIG. 7 is a diagram showing the relationship between concrete surface roughness and the adhesive strength of a thermal spray coating.
【図8】コンクリート表面含水率と溶射皮膜の接着強度
の関係図。FIG. 8 is a diagram showing the relationship between the water content of the concrete surface and the adhesive strength of the thermal spray coating.
【図9】溶射皮膜厚と接着強度の関係図。FIG. 9 is a diagram showing the relationship between the thickness of a sprayed coating and the adhesive strength.
【図10】熱冷繰り返し試験のひずみ量測定結果図。FIG. 10 is a view showing a strain amount measurement result in a thermal cooling repetition test.
【図11】電気防食性試験結果を示す電流密度の経時変
化図。FIG. 11 is a graph showing the change in current density over time showing the results of the cathodic protection test.
【図12】回路開放時の鉄筋電位の復極量と回路開放直
前の電流量を示す説明図。FIG. 12 is an explanatory diagram showing the amount of reversion of the rebar potential when the circuit is opened and the amount of current immediately before the circuit is opened.
【図13】鉄筋コンクリート表面に金属材料を溶射して
溶射皮膜を形成し、その溶射皮膜と鉄筋とを導線により
電気的に接続し、かつ溶射皮膜上に樹脂コンクリート層
を設けた状態の断面説明図。FIG. 13 is a cross-sectional explanatory view of a state in which a metal material is sprayed on the surface of a reinforced concrete to form a sprayed coating, the sprayed coating is electrically connected to a reinforcing bar by a conductive wire, and a resin concrete layer is provided on the sprayed coating. .
【図14】図13の導線の中間に直流電源を介在させ、
かつ溶射皮膜上に樹脂コンクリート層を設けた状態の断
面説明図。FIG. 14 shows a DC power supply interposed between the conductors of FIG.
FIG. 4 is an explanatory cross-sectional view of a state in which a resin concrete layer is provided on the thermal spray coating.
1:コンクリート(基材,鉄筋コンクリート), 2:溶射皮膜, 3:鉄筋, 4:導線, 5:照合電極, 6:直流電源, 7:樹脂コーティング層, 10:溶射ガン, 11:溶融物粒子 1: Concrete (base material, reinforced concrete), 2: Thermal spray coating, 3: Reinforcement, 4: Conductor wire, 5: Reference electrode, 6: DC power supply, 7: Resin coating layer, 10: Thermal spray gun, 11: Melt particles
───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 康夫 兵庫県尼崎市道意町7丁目1番8 財団法 人 近畿高エネルギー加工技術研究所内 (72)発明者 吉田 豊 兵庫県尼崎市東難波町4丁目18番6号 株 式会社吉田鐡工所内 (72)発明者 嵐 幸雄 大阪市北区東天満1丁目10番20号 株式会 社松村組内 (72)発明者 浦野 英男 大阪市北区東天満1丁目10番20号 株式会 社松村組内 (72)発明者 柏木 隆男 大阪市北区東天満1丁目10番20号 株式会 社松村組内 (72)発明者 周 展 兵庫県尼崎市道意町7−1−8 財団法人 近畿高エネルギー加工技術研究所内 (72)発明者 鷹石 純 兵庫県尼崎市道意町7−1−8 財団法人 近畿高エネルギー加工技術研究所内 (72)発明者 小南 幸一 兵庫県尼崎市道意町7−1−8 財団法人 近畿高エネルギー加工技術研究所内 (72)発明者 大森 明 吹田市江の木町12−5−516 (72)発明者 来住 徹 大阪市北区同心1丁目2番10号 (72)発明者 宮尾 信昭 大阪府寝屋川市成田東町20番19号 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuo Kondo 7-18-8 Doimachi, Amagasaki-shi, Hyogo Incorporated Foundation Kinki High Energy Processing Technology Research Laboratory (72) Inventor Yutaka Yoshida 4 Higashi-Namba-cho, Amagasaki-shi, Hyogo No. 18-6, Yoshida Steel Works (72) Inventor Yukio Arashi 1-10-20 Higashi Tenma, Kita-ku, Osaka City Matsumura Guminai Co., Ltd. (72) Inventor Hideo Urano, Higashi Tenma, Kita-ku, Osaka City No. 1-10-20 Matsumura Gumi Co., Ltd. (72) Inventor Takao Kashiwagi 1-10-20 Higashi Tenma, Kita-ku, Osaka City No. 1 Matsumoto Guminai Co., Ltd. 7-1-8, Kinkicho Kinki High Energy Processing Technology Research Institute (72) Inventor Jun Takaishi 7-1-8, Doimachi, Amagasaki City, Hyogo Prefecture Kinki High Energy Processing Technology Research Institute (72) Inventor Koichi Minami 7-1-8 Doimachi, Amagasaki City, Hyogo Prefecture Inside Kinki High Energy Processing Technology Research Institute (72) Inventor Akira Omori 12-5-516 Enomachi, Suita City (72) Inventor Toru Kurumi Osaka City No. 1-2-10, Doshin, Kita-ku (72) Nobuaki Miyao 20-19, Narita-Higashi-cho, Neyagawa-shi, Osaka
Claims (8)
る方法において、鉄筋コンクリートの表面に自然電位が
鉄よりも卑な金属を溶射してその皮膜を形成し、この皮
膜と鉄筋とを導線により電気的に接続して溶射皮膜及び
鉄筋を両極とし、コンクリートを電解質とする電池作用
により生じる起電力によって、溶射皮膜−コンクリート
−鉄筋−導線−溶射皮膜の順路に沿って流れる電流によ
って電気化学的に鉄筋の腐食を防止することを特徴とす
る鉄筋コンクリート内の鉄筋の腐食を防止する方法。In a method for preventing corrosion of reinforcing steel in reinforced concrete, a metal having a natural potential lower than that of iron is sprayed on a surface of the reinforced concrete to form a film thereof, and the film and the reinforcing steel are electrically connected by a conductive wire. The sprayed coating and the reinforcing bar are used as both poles, and the electromotive force generated by the battery action using concrete as the electrolyte causes the current flowing along the route of the sprayed coating, the concrete, the reinforcing bar, the conductor, and the sprayed coating to electrochemically form the reinforcing bar. A method for preventing corrosion of reinforcing steel in reinforced concrete, characterized by preventing corrosion.
る方法において、鉄筋コンクリートの表面に自然電位が
鉄よりも卑な金属を溶射してその皮膜を形成し、この皮
膜と鉄筋とを導線により外部直流電源を介在させて電気
的に接続して、溶射皮膜−コンクリート−鉄筋−導線−
溶射皮膜の順路に沿って流れる電流によって電気化学的
に鉄筋の腐食を防止することを特徴とする鉄筋コンクリ
ート内の鉄筋の腐食を防止する方法。2. A method for preventing corrosion of reinforcing steel in reinforced concrete, wherein a metal having a natural potential lower than that of iron is sprayed on the surface of the reinforced concrete to form a film, and the film and the reinforcing steel are connected to each other by an external direct current through a conductive wire. Electrically connected with a power supply interposed, thermal spray coating-concrete-reinforcing steel-conductor-
A method for preventing corrosion of reinforcing steel in reinforced concrete, wherein the corrosion of reinforcing steel is electrochemically prevented by an electric current flowing along the path of the thermal spray coating.
膜の溶射基材であるコンクリート表面からの剥離を防止
することを特徴とする請求項1又は2記載の鉄筋コンク
リート内の鉄筋の腐食を防止する方法。3. The corrosion of reinforcing steel in reinforced concrete according to claim 1 or 2, wherein the thickness of the thermal spray coating is 1 mm or less to prevent peeling of the thermal spray coating from the concrete surface which is the thermal spray base material. How to prevent.
下限値をRz(l0点平均粗さ)20μmとして、溶射
皮膜と溶射基材であるコンクリート表面との結合強度を
向上することを特徴とする請求項1〜3のいずれか1項
に記載の鉄筋コンクリート内の鉄筋の腐食を防止する方
法。4. The bonding strength between the thermal spray coating and the concrete surface as the thermal spray base material is improved by setting the lower limit of the surface roughness of the thermal spray substrate concrete to Rz (10 point average roughness) 20 μm. The method for preventing corrosion of reinforcing steel in reinforced concrete according to any one of claims 1 to 3.
けることを特徴とする請求項1〜4のいずれか1項に記
載の鉄筋コンクリート内の鉄筋の腐食を防止する方法。5. The method for preventing corrosion of reinforcing steel in reinforced concrete according to claim 1, wherein a resin coating layer is provided on the surface of the thermal spray coating.
を設けることを特徴とする請求項1〜4のいずれか1項
に記載の鉄筋コンクリート内の鉄筋の腐食を防止する方
法。6. The method for preventing corrosion of reinforcing steel in reinforced concrete according to claim 1, wherein a transparent resin coating layer is provided on the surface of the thermal spray coating.
ことを特徴とする請求項5又は6に記載の鉄筋コンクリ
ート内の鉄筋の腐食を防止する方法。7. The method for preventing corrosion of reinforcing steel in reinforced concrete according to claim 5, wherein the resin coating layer is water-resistant.
ティング層を設けることを特徴とする請求項1〜7のい
ずれか1項に記載の鉄筋コンクリート内の鉄筋の腐食を
防止する方法。8. The method for preventing corrosion of reinforcing steel in reinforced concrete according to claim 1, wherein a resin coating layer is provided on the surface of the joint between the thermal spray coating and the conductive wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24800297A JPH1181502A (en) | 1997-09-12 | 1997-09-12 | Anti-corrosion method of reinforcement in reinforced concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24800297A JPH1181502A (en) | 1997-09-12 | 1997-09-12 | Anti-corrosion method of reinforcement in reinforced concrete |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1181502A true JPH1181502A (en) | 1999-03-26 |
Family
ID=17171737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24800297A Pending JPH1181502A (en) | 1997-09-12 | 1997-09-12 | Anti-corrosion method of reinforcement in reinforced concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1181502A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005003061A1 (en) * | 2003-07-03 | 2005-01-13 | Grillo-Werke Ag | Multi-layered surface protection for reinforced concrete in order to improve protection against corrosion for reinforced concrete constructions or reinforced concrete building components and method for the production thereof |
JP2009263739A (en) * | 2008-04-28 | 2009-11-12 | Sho Bond Constr Co Ltd | Electric corrosion protection method of reinforced concrete structure |
CN101892531A (en) * | 2010-07-29 | 2010-11-24 | 上海联川自动化科技有限公司 | Carbonization process for carbon fiber filaments and pre-heating device therefor |
JP2013096721A (en) * | 2011-10-28 | 2013-05-20 | Railway Technical Research Institute | Method for performance validation test of surface coating material of rc structure and device therefor |
JP2019066300A (en) * | 2017-09-29 | 2019-04-25 | 太平洋セメント株式会社 | Method for detecting effects of electrolytic protection |
-
1997
- 1997-09-12 JP JP24800297A patent/JPH1181502A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005003061A1 (en) * | 2003-07-03 | 2005-01-13 | Grillo-Werke Ag | Multi-layered surface protection for reinforced concrete in order to improve protection against corrosion for reinforced concrete constructions or reinforced concrete building components and method for the production thereof |
JP2009263739A (en) * | 2008-04-28 | 2009-11-12 | Sho Bond Constr Co Ltd | Electric corrosion protection method of reinforced concrete structure |
CN101892531A (en) * | 2010-07-29 | 2010-11-24 | 上海联川自动化科技有限公司 | Carbonization process for carbon fiber filaments and pre-heating device therefor |
JP2013096721A (en) * | 2011-10-28 | 2013-05-20 | Railway Technical Research Institute | Method for performance validation test of surface coating material of rc structure and device therefor |
JP2019066300A (en) * | 2017-09-29 | 2019-04-25 | 太平洋セメント株式会社 | Method for detecting effects of electrolytic protection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6358397B1 (en) | Doubly-protected reinforcing members in concrete | |
Tavakkolizadeh et al. | Galvanic corrosion of carbon and steel in aggressive environments | |
Kainuma et al. | Corrosion protection of steel members using an Al-Zn base sacrificial anode and fiber sheet in an atmospheric environment | |
US6033553A (en) | Cathodic protection system | |
Sagüés et al. | Sprayed-zinc sacrificial anodes for reinforced concrete in marine service | |
JPH1181502A (en) | Anti-corrosion method of reinforcement in reinforced concrete | |
JP4641025B2 (en) | Concrete anticorrosion method and concrete structure obtained by implementing the same | |
Mohd Nadzri et al. | A review of cathodic protection in repairing reinforced concrete structures | |
Ainakulova et al. | Analytical Review of Conductive Coatings, Cathodic Protection, and Concrete | |
JP5388435B2 (en) | Steel anticorrosive member used for electrochemical corrosion protection method of concrete using sacrificial anode material, and electrochemical corrosion protection method using the same | |
JP3040613B2 (en) | Corrosion protection method for reinforced concrete structures | |
Das et al. | Zinc-rich paint as anode for cathodic protection of steel in concrete | |
JP3294524B2 (en) | Corrosion protection method for reinforced concrete structures | |
JP5052881B2 (en) | Concrete anticorrosion method and concrete structure obtained by implementing the same | |
US4931156A (en) | Distributive anode coating | |
JPH04297643A (en) | Reinforced concrete structure and structural member, and electric protection method for reinforced concrete | |
JP5459035B2 (en) | Durability judgment method for coated steel | |
JP4602719B2 (en) | Anticorrosion and repair methods for reinforced concrete structures | |
JPS62199784A (en) | Method for preventing corrosion of concrete structure | |
Funahashi et al. | Three year performance of aluminum alloy galvanic cathodic protection system | |
Apostolos | Cathodic Protection of Reinforced Concrete Using Metallized Coatings and Conductive Paints | |
JP4201394B2 (en) | Concrete steel structure covered with composite film electrode | |
Brousseau et al. | Laboratory study of sacrificial anodes for reinforced concrete | |
Funahashi et al. | Field evaluation of a new aluminum alloy as a sacrificial anode for steel embedded in concrete | |
JP3137771B2 (en) | Corrosion protection method for concrete structures by thermal spray coating. |