JP4641025B2 - Concrete anticorrosion method and concrete structure obtained by implementing the same - Google Patents

Concrete anticorrosion method and concrete structure obtained by implementing the same Download PDF

Info

Publication number
JP4641025B2
JP4641025B2 JP2006330682A JP2006330682A JP4641025B2 JP 4641025 B2 JP4641025 B2 JP 4641025B2 JP 2006330682 A JP2006330682 A JP 2006330682A JP 2006330682 A JP2006330682 A JP 2006330682A JP 4641025 B2 JP4641025 B2 JP 4641025B2
Authority
JP
Japan
Prior art keywords
concrete
metal layer
anode metal
steel material
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006330682A
Other languages
Japanese (ja)
Other versions
JP2008144203A (en
Inventor
豊 上村
公伸 芦田
賢司 山本
健太郎 栖原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006330682A priority Critical patent/JP4641025B2/en
Publication of JP2008144203A publication Critical patent/JP2008144203A/en
Application granted granted Critical
Publication of JP4641025B2 publication Critical patent/JP4641025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コンクリート構造物のコンクリート内部の鋼材を腐食から長期間守る防食工法に関するものであって、特に、コンクリート構造物の表面に、該鋼材よりも標準電極電位の低い金属の層である陽極金属層を形成して、効果的に、かつ、均質に防食電流を得ることのできる線形の配流端子を用いるコンクリートの防食工法およびそれを実施してなるコンクリート構造物である。   The present invention relates to a corrosion prevention method for protecting a steel material inside a concrete structure from corrosion for a long period of time. In particular, the anode is a metal layer having a lower standard electrode potential than the steel material on the surface of the concrete structure. The present invention is a concrete anticorrosion method using a linear distribution terminal capable of effectively and uniformly obtaining an anticorrosion current by forming a metal layer, and a concrete structure obtained by implementing the method.

一般に、コンクリート構造物は、コンクリートの中に鋼材を埋め込んで、外力に対してコンクリートと、その中の鋼材が一体となって働くものである。   In general, a concrete structure is one in which a steel material is embedded in the concrete, and the concrete and the steel material in the concrete work together against an external force.

コンクリート構造物の代表的な劣化要因としては、中性化、塩害、凍害、アルカリ骨材反応、化学的侵食、及び疲労等を挙げることができる。
このようにコンクリート構造物の耐久性の課題は、コンクリートそのものの耐久性のみでなく、併用する鋼材の耐久性(耐腐食性)の課題であることも多い。
Typical deterioration factors of concrete structures include neutralization, salt damage, frost damage, alkali aggregate reaction, chemical erosion, fatigue, and the like.
As described above, the problem of the durability of the concrete structure is often not only the durability of the concrete itself but also the durability (corrosion resistance) of the steel material used in combination.

コンクリート内部の鋼材の腐食は、コンクリートの中性化、コンクリートに含まれる塩分、並びに、外部からコンクリートに浸入してくる塩化物イオン、硫化物イオン、及び窒化物イオンなどの影響で、立地環境によっては比較的短期間で進行する場合がある。   The corrosion of steel inside concrete depends on the location environment due to the neutralization of concrete, the salt contained in concrete, and the influence of chloride ions, sulfide ions, and nitride ions entering the concrete from the outside. May proceed in a relatively short period of time.

従来、鋼材の腐食を防止する方法としては、(1)コンクリート構造物の表面に有機系の防食塗料を塗装し、外部からの劣化要因を遮断する方法、(2)外部電源により、陰極材であるコンクリート内部の鋼材と、コンクリート構造物の表面に設置した陽極材との間に通電する方法、(3)金属の標準電極電位の差を利用した流電陽極方式を用いた方法等が実施されている。   Conventionally, as a method of preventing corrosion of steel materials, (1) a method of coating an organic anticorrosive paint on the surface of a concrete structure and blocking external deterioration factors, (2) a cathode material with an external power source A method of energizing between a steel material inside a concrete and an anode material installed on the surface of a concrete structure, (3) a method using a galvanic anode method using the difference in standard electrode potential of metal, etc. ing.

特に、流電陽極方式による電気防食方法は、特殊な装置が不要である、メンテナンスが容易である、及び長期防食性に優れるなどの特徴がある。
この流電陽極方式としては、切り溝埋設方式、切り溝埋設覆装方式、亜鉛板取り付け方式、及び流電陽極部材取り付け方式等が代表的であるが、いずれの方式も垂直面や天井面、形状が複雑な箇所あるいは狭いところへの施工は困難であり、作業性が悪いという課題があった。
この課題を解決する方法として、鉄筋コンクリート構造物の表面に、コンクリート内部の鋼材より標準電極電位の低い金属又は合金を溶射して、この溶射被膜層を陽極部材として付設する方法が提案されている。(特許文献1〜特許文献5参照)
In particular, the cathodic protection method using the galvanic anode method is characterized in that a special apparatus is not required, maintenance is easy, and long-term anticorrosion properties are excellent.
The galvanized anode method is typically a kerf embedding method, a kerf embedding covering method, a zinc plate mounting method, a galvanic anode member mounting method, etc. There is a problem that it is difficult to construct in a complicated or narrow place and the workability is poor.
As a method for solving this problem, there has been proposed a method in which a metal or an alloy having a standard electrode potential lower than that of a steel material in the concrete is sprayed on the surface of the reinforced concrete structure, and this sprayed coating layer is attached as an anode member. (See Patent Document 1 to Patent Document 5)

特開平05−331922号公報JP 05-331922 A 特開平06−002174号公報JP-A-06-002174 特開平06−116766号公報Japanese Patent Laid-Open No. 06-116766 特開平10−245280号公報Japanese Patent Laid-Open No. 10-245280 特開2005−015835号公報JP 2005-015835 A

流電陽極方式において陽極部材は、コンクリート内部の鋼材と電気的に導通させる必要がある。そして、コンクリート構造物の表面に、該鋼材より標準電極電位の低い金属又は合金を溶射する方法は、導電材の溶射被膜層の空隙を埋めるために封孔処理材を使用し、導電材の溶射被膜層の端に金属プレートを端子として接続する方法で、大きさ、形状、及び取り付け位置等に特別な配慮をすることも無く、導電材との電気的接合がなされていた。   In the galvanic anode method, the anode member needs to be electrically connected to the steel material inside the concrete. The method of spraying a metal or alloy having a lower standard electrode potential than the steel material on the surface of the concrete structure uses a sealing treatment material to fill the voids in the sprayed coating layer of the conductive material, and sprays the conductive material. In the method of connecting a metal plate as a terminal to the end of the coating layer, electrical connection with a conductive material has been made without special consideration for the size, shape, attachment position, and the like.

しかしながら、この方法では、長期的に端子のエッジ部に腐食が発生し長期的に防食電流を供給できない、端子から遠いところの防食電流量が少なくなり、コンクリート内部の鋼材に対して均質な防食効果が期待できないなどの課題があった。   However, with this method, corrosion occurs at the edge of the terminal for a long period of time, so that the anticorrosion current cannot be supplied for a long period of time. There was a problem that could not be expected.

本発明者は、溶射被膜層を用いた流電陽極方式によるコンクリート構造物の防食工法の課題を検討し、溶射被膜層を形成した範囲のコンクリート内部の鋼材を確実に防食するために、長期的に安定で、かつ、均質な防食電流を得る方法を検討した結果、本発明を完成したものである。   The present inventor examined the problem of the corrosion prevention method for concrete structures by the galvanic anode method using the sprayed coating layer, and in order to reliably protect the steel material in the concrete in the range where the sprayed coating layer was formed, As a result of studying a method for obtaining a highly stable and homogeneous anticorrosion current, the present invention has been completed.

即ち、本発明は、コンクリート構造物の表面に、コンクリート内部の鋼材よりも標準電極電位の低い金属の層である陽極金属層を形成し、該陽極金属層面に線形の配流端子を設置し、該陽極金属層とコンクリート内部の鋼材とを、線形の配流端子を用いて導線で接続してなるコンクリートの防食工法であり、コンクリート構造物の表面を粗面とし、その上に、該陽極金属層を形成することを特徴とする該コンクリートの防食工法であり、該陽極金属層の上に、表面保護層を形成してなる該コンクリートの防食工法であり、該陽極金属層が、コンクリート内部の鋼材よりも標準電極電位の低い金属の溶射により形成されるものである該コンクリートの防食工法であり、コンクリート内部の鋼材よりも標準電極電位の低い金属が、亜鉛−アルミニウム擬合金である該コンクリートの防食工法であり、線形の配流端子を、コンクリート内部の鋼材の真上のコンクリート構造物の表面に設置してなる該コンクリートの防食工法であり、該陽極金属層を、線形の配流端子の下及び/又は上に設置してなる該コンクリートの防食工法であり、該コンクリートの防食工法を実施してなるコンクリート構造物である。 That is, the present invention forms on the surface of a concrete structure an anode metal layer which is a metal layer having a lower standard electrode potential than the steel material inside the concrete, and a linear distribution terminal is installed on the anode metal layer surface, A concrete anticorrosion method in which an anode metal layer and a steel material inside a concrete are connected by a conductive wire using a linear distribution terminal, the surface of the concrete structure is roughened, and the anode metal layer is disposed thereon. It is a corrosion prevention method for the concrete , characterized in that it is a corrosion protection method for the concrete formed by forming a surface protection layer on the anode metal layer, and the anode metal layer is made of a steel material inside the concrete. Is a corrosion protection method for concrete, which is formed by thermal spraying of a metal having a low standard electrode potential. A metal having a standard electrode potential lower than that of the steel material inside the concrete is zinc-aluminum. This concrete anticorrosion method is a concrete anticorrosion method, in which a linear distribution terminal is installed on the surface of a concrete structure directly above the steel material inside the concrete, and the anode metal layer is The concrete anticorrosion method that is installed under and / or above the linear distribution terminal, and the concrete structure that is obtained by performing the anticorrosion method of the concrete.

本発明のコンクリートの防食工法を採用することによって、長期的に安定で、かつ、均質な防食電流を得ることができ、陽極金属層を形成した範囲のコンクリート内部の鋼材を確実に防食することが可能となる。   By adopting the concrete anticorrosion method of the present invention, a long-term stable and homogeneous anticorrosion current can be obtained, and the steel material in the concrete in the range where the anode metal layer is formed can be reliably anticorrosive. It becomes possible.

以下、本発明を詳細に説明する。
なお、本発明における部や%は特に規定しない限り質量基準で示す。
また、本発明におけるコンクリートとは、モルタルを含む場合もある。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
Moreover, the concrete in this invention may contain a mortar.

本発明は、コンクリート内部の鋼材を陰極とし、コンクリート構造物の表面に形成した金属層を陽極として、この陰極−陽極間に電気を流し、コンクリート内部の鋼材を防食するものである。   In the present invention, the steel material in the concrete is used as a cathode, the metal layer formed on the surface of the concrete structure is used as an anode, and electricity is passed between the cathode and the anode to prevent corrosion of the steel material in the concrete.

本発明では、コンクリート構造物の表面に、コンクリート内部の鋼材よりも標準電極電位の低い金属(以下、陽極金属という)の層である陽極金属層を形成する。   In the present invention, an anode metal layer which is a layer of a metal having a lower standard electrode potential (hereinafter referred to as an anode metal) than the steel material inside the concrete is formed on the surface of the concrete structure.

陽極金属層は、コンクリート構造物の表面に、陽極金属層の下及び/又は上に後述の線形の配流端子が設置されるように、即ち、陽極金属層の上に線形の配流端子が、また、陽極金属層の下に線形の配流端子が、さらに、陽極金属層と陽極金属層の間に線形の配流端子が設置されるように形成する。   The anode metal layer is disposed on the surface of the concrete structure so that the linear distribution terminals described below are installed below and / or above the anode metal layer, that is, the linear distribution terminals are also formed on the anode metal layer. The linear distribution terminal is formed under the anode metal layer, and the linear distribution terminal is further provided between the anode metal layer and the anode metal layer.

陽極金属層は、陽極金属を溶射することによって形成することが好ましい。
具体的には、金属溶射装置等のノズル先端で溶融した陽極金属の不定形なうろこ状のものが溶射された面に積層された、ポーラスな金属皮膜層となる。
The anode metal layer is preferably formed by spraying the anode metal.
Specifically, a porous metal film layer is formed by laminating an amorphous metal-like scaly anodic metal melted at the nozzle tip of a metal spraying device or the like.

陽極金属としては、アルミニウム、亜鉛、アルミニウム合金、亜鉛合金、及び亜鉛−アルミニウム擬合金が挙げられる。   Examples of the anode metal include aluminum, zinc, an aluminum alloy, a zinc alloy, and a zinc-aluminum pseudo-alloy.

アルミニウム合金又は亜鉛合金としては、アルミニウム又は亜鉛合金を少なくとも50%以上含み、Cr、Si、Fe、Ni、及びSn、並びに、Zn又はAlなどの金属を少なくとも一種又は二種以上混入して得られた合金である。   The aluminum alloy or zinc alloy is obtained by mixing at least 50% or more of aluminum or zinc alloy and mixing at least one or more metals such as Cr, Si, Fe, Ni, and Sn, and Zn or Al. Alloy.

アルミニウム又はアルミニウム合金より形成された陽極金属層は、アルミニウム自体の表面が酸化されて安定かつ密実な溶射被膜層を形成するので消耗が少なく、好ましい。   An anode metal layer formed of aluminum or an aluminum alloy is preferable because the surface of aluminum itself is oxidized to form a stable and dense sprayed coating layer, so that it is less consumed.

また、亜鉛−アルミニウム擬合金は、亜鉛とアルミニウムとを、Zn:Al=85:15〜30:70(質量比)の割合で含む擬合金である。
亜鉛−アルミニウム擬合金とは、亜鉛とアルミニウムが合金組成を形成しておらず、亜鉛微粒子とアルミニウム微粒子が不規則に重なり合い、外見的に亜鉛−アルミニウム合金を形成している状態をいう。
The zinc-aluminum pseudoalloy is a pseudoalloy containing zinc and aluminum at a ratio of Zn: Al = 85: 15 to 30:70 (mass ratio).
The zinc-aluminum pseudo-alloy is a state in which zinc and aluminum do not form an alloy composition, and zinc fine particles and aluminum fine particles are irregularly overlapped to form a zinc-aluminum alloy in appearance.

亜鉛−アルミニウム擬合金により形成された陽極金属層は、ブリスター状となり、陽極金属層内に連続気孔を有することから、相対的に金属表面積が大きくなり、良好な防食性能が得られる面から最も好ましい。
亜鉛−アルミニウム擬合金の陽極金属層は、亜鉛とアルミニウムの溶射線材を使用し、減圧内アーク溶射法等の低温溶射法によりアーク溶射で形成することが可能である。
例えば、金属アルミニウムと金属亜鉛を体積比が1:1になるように、アルミニウム線材と亜鉛線材の径、送り速度を調整し、アーク溶射法によって亜鉛−アルミニウム擬合金を溶射して、陽極金属層を形成することが可能である。
The anode metal layer formed of the zinc-aluminum pseudo-alloy has a blister shape and has continuous pores in the anode metal layer, so that the metal surface area is relatively large, and is most preferable in terms of obtaining good anticorrosion performance. .
The anode metal layer of the zinc-aluminum pseudo-alloy can be formed by arc spraying using a low-temperature spraying method such as a low pressure arc spraying method using a zinc and aluminum spraying wire.
For example, the diameter and feed rate of the aluminum wire and the zinc wire are adjusted so that the volume ratio of metal aluminum and metal zinc is 1: 1, and the zinc-aluminum pseudoalloy is sprayed by arc spraying to form the anode metal layer. Can be formed.

陽極金属の金属溶射方法としては、ガス溶線式溶射法、ガス溶粉式溶射法、アーク式溶射法、及びプラズマ式溶射法等が挙げられ、いずれの方法を用いることができるが、特に常温アーク式溶射法が好ましい。
常温アーク式溶射装置とは、低温の空気又は不活性気体を高速で噴射し、噴射された気流により発生する減圧部において、金属ワイアを溶融させ、溶融した金属を、高速の噴射気流で射出し、急激に過冷却し、微粒化しつつ下地祖面にブリスター状金属を溶着することができるものである。一回で溶射できる膜厚は、通常、70μm程度であり、複数回溶射することにより膜厚を厚くすることが可能である。
Examples of the metal spraying method for the anode metal include a gas spraying method, a gas spraying method, an arc spraying method, and a plasma spraying method, and any of these methods can be used. Formula spraying is preferred.
A room temperature arc type thermal spraying device is a method in which low-temperature air or inert gas is injected at a high speed, a metal wire is melted in a decompression section generated by the injected air flow, and the molten metal is injected with a high-speed jet air current. It is possible to deposit blister metal on the ground surface of the base while rapidly supercooling and atomizing. The film thickness that can be sprayed at one time is usually about 70 μm, and the film thickness can be increased by spraying a plurality of times.

陽極金属層の厚みは特に限定されるものではないが、全体で、300μm以下が好ましく、通常、200μm程度である。陽極金属層はその有効性から厚いことが好ましいが、300μmを超えると、溶射層の温度が高くなり、熱ひずみが生じやすくなるおそれがあり、陽極金属層内の連続気孔がつぶれてしまうおそれがある。   The thickness of the anode metal layer is not particularly limited, but is preferably 300 μm or less as a whole, and is usually about 200 μm. The anode metal layer is preferably thick in view of its effectiveness, but if it exceeds 300 μm, the temperature of the sprayed layer becomes high, and thermal strain may easily occur, and the continuous pores in the anode metal layer may be crushed. is there.

本発明では、陽極金属層の下及び/又は上に、線形の配流端子を設置する。
線形の配流端子とは、陽極金属層とコンクリート内部の鋼材とを接続し、効果的に、かつ、均質に防食電流を得ることのできるものであって、陽極金属層に生じた電子を低抵抗で安定的にコンクリート内部の鋼材に供給するための電子の通り口である。
In the present invention, a linear distribution terminal is installed under and / or on the anode metal layer.
A linear distribution terminal connects the anode metal layer and the steel material inside the concrete, and can obtain an effective and homogeneous anticorrosion current with low resistance to electrons generated in the anode metal layer. It is an electronic doorway for supplying the steel material inside the concrete stably.

線形の配流端子の材質は、電気導電性を有する材料であれば特に制限されるものではなく、金属、セラミックス、又は有機導電体等が使用可能である。   The material of the linear distribution terminal is not particularly limited as long as it is a material having electrical conductivity, and metal, ceramics, organic conductors, or the like can be used.

本発明の線形の配流端子の形状は、線形であり、線状や細長い板状のものが使用可能である。
また、隣接する線形の配流端子又は陽極金属層の端面までの距離が、防食する鉄筋の間隔より小さいことが好ましい。
本発明における線形とは、配流端子のコンクリート面と平行となる面のアスペクト比が1:10以上の形状をいう。
The shape of the linear distribution terminal of the present invention is linear, and a linear or elongated plate shape can be used.
Moreover, it is preferable that the distance to the end face of an adjacent linear distribution terminal or an anode metal layer is smaller than the space | interval of the reinforcing bar which carries out corrosion prevention.
The term “linear” in the present invention refers to a shape in which the aspect ratio of the surface parallel to the concrete surface of the distribution terminal is 1:10 or more.

線形の配流端子の設置方法は、コンクリート内部の鋼材の真上に設置することが好ましく、設置前に鉄筋探査等により鉄筋位置を確認したうえで設置する方法が可能である。   The installation method of the linear distribution terminal is preferably installed directly above the steel material inside the concrete, and can be installed after confirming the position of the reinforcing bar by means of reinforcing bar exploration before installation.

本発明において、溶射して陽極金属層を形成する前に、該陽極金属層とコンクリート面との付着強度を向上するために、コンクリート構造物の表面を、また、線形の配流端子が、平滑で、陽極金属層との付着が確保しにくい場合は、線形の配流端子の表面を、例えば、粗面形成剤等で粗面とすることが好ましい。   In the present invention, before forming the anode metal layer by thermal spraying, in order to improve the adhesion strength between the anode metal layer and the concrete surface, the surface of the concrete structure and the linear distribution terminal are smooth. When the adhesion to the anode metal layer is difficult to ensure, the surface of the linear flow distribution terminal is preferably roughened with a rough surface forming agent or the like, for example.

粗面形成剤としては特に限定されるものではないが、例えば、炭化珪素等を分散させたエポキシ樹脂やポリアミド樹脂等が挙げられる。   Although it does not specifically limit as a rough surface formation agent, For example, the epoxy resin, polyamide resin, etc. which disperse | distributed silicon carbide etc. are mentioned.

さらに、本発明では、陽極金属層の劣化を防ぐために、例えば、封孔処理材等を用いて、表面を保護することが好ましい。   Furthermore, in the present invention, in order to prevent the anode metal layer from deteriorating, it is preferable to protect the surface by using, for example, a sealing material.

封孔処理材としては陽極金属層の孔等が埋まり表面が保護できればよく、特に限定されるものではないが、例えば、ビニル樹脂、ブチラール樹脂等が使用可能である。   The sealing material is not particularly limited as long as the hole of the anode metal layer can be filled and the surface can be protected. For example, vinyl resin, butyral resin, etc. can be used.

本発明では、コンクリート構造物の表面に、陽極金属層を形成して線形の配流端子を設置するか、また、線形の配流端子を設置して陽極金属層を形成するか、さらには、陽極金属層を形成して線形の配流端子を設置し、さらに陽極金属層を形成して、該線形の配流端子を介して、陽極金属層とコンクリート内部の鋼材を接続すると、陽極金属層とコンクリート内部の鋼材間に電気が流れ、コンクリート内部の鋼材が防食される。   In the present invention, an anode metal layer is formed on the surface of a concrete structure and a linear distribution terminal is installed, or a linear distribution terminal is installed to form an anode metal layer. Forming a linear distribution terminal by forming a layer, further forming an anode metal layer, and connecting the anode metal layer and the steel material in the concrete through the linear distribution terminal, the anode metal layer and the concrete internal Electricity flows between the steel materials, and the steel materials inside the concrete are protected against corrosion.

本発明では、自然電位を測定することで、効果を確認することが可能である。
コンクリート内部の鋼材に、それより標準電極電位の低い金属を電気的に接続すると、コンクリート内部の鋼材自体の自然電位が低くなる。そのため、自然電位を測定することで、その数値から、陽極電極層の有効性が判断できる。
自然電位の測定は、溶射面と直角をなす150mm×530mmの一面(側面)のコンクリート内部の鋼材の真横の3点を測定点とし、銅照合電極を用い測定した。また、インスタントオフ電位と通電を停止してから24時間後のオフ電位を測定し復極量を算出した。
In the present invention, the effect can be confirmed by measuring the natural potential.
When a metal having a lower standard electrode potential is electrically connected to the steel material inside the concrete, the natural potential of the steel material itself inside the concrete is lowered. Therefore, the effectiveness of the anode electrode layer can be determined from the numerical value by measuring the natural potential.
The measurement of the natural potential was performed using a copper reference electrode with three points right next to the steel material inside the concrete on one side (side surface) of 150 mm × 530 mm perpendicular to the sprayed surface. Further, the instant off potential and the off potential 24 hours after stopping the energization were measured to calculate the amount of repolarization.

Ecse=EM−800
Ecse :鉛照合電極で測定した値(mV)
EM :飽和硫酸銅電極基準換算値(mV)

復極量(mV)=[Eio(mV)]−[Eof(mV)]
Eio :インスタントオフ電位
Eof :24時間後、オフ電位
Ecse = EM-800
Ecse: Value measured with a lead verification electrode (mV)
EM: Saturated copper sulfate electrode standard conversion value (mV)

Depolarization amount (mV) = [Eio (mV)] − [Eof (mV)]
Eio: Instant off potential Eof: Off potential after 24 hours

以下、本発明の実験例に基づいて、本発明をさらに説明する。   Hereinafter, the present invention will be further described based on experimental examples of the present invention.

実験例1
150×150×530mmの直方体のコンクリートの試験体の150×150mmの面に垂直かつ中心となるように、長さ600mmのD19異型鋼棒を、両端部がそれぞれ35mmづつコンクリートから出るように配置して、コンクリート内部の鋼材とし、成形体を作製した。
作製した成形体を4週間屋外で養生し、コンクリート構造物を模したコンクリートの試験体を作製した。
作製した試験体の150mm×530mmの1面を溶射面とした。
溶射面に、粗面形成剤をエアスプレーにて塗布して、溶射面の表面を粗面としたのち、金属アルミニウムと金属亜鉛を体積比が1:1になるように、アルミニウム線材と亜鉛線材の口径、送り速度を調整し、アーク溶射法によって亜鉛−アルミニウム擬合金を溶射して、陽極金属層を形成した。
陽極金属層の上にステンレス製で、2mm×600mm、厚さ2mmの線状の配流端子を溶射面の長手方向中央に両端部が35mmづつ出るように設置し、陽極金属層に封孔処理剤をエアスプレーにて塗布し封孔処理をした。
コンクリート内部の鋼材の片端部に導線を圧着端子と木ねじを用いて電気的に接続し、導線のもう一方の端部には、ワニ口クリップを介し、配流端子部に接続し、防食回路をつくった。
160mm×600mmで深さ20mmのプラスチック製バットに約10mm程度水を張り、溶射面と反対側の面が水と接するように配置し、コンクリート内部の鋼材が直接水に接することがないように、試験体に2週間以上給水し、腐食環境下に放置した。その後、自然電位を測定するとともに、所定期間後、配流端子と陽極金属層との境界面の腐食状況を目視で確認した。
自然電位の測定は、溶射面と直角をなす150mm×530mmの一面(側面)のコンクリート内部の鋼材の真横で、端部より等間隔の3点(1、2、及び3)を測定位置とし、銅照合電極を用い測定した。また、インスタントオフ電位と通電を停止してから24時間後のオフ電位を測定し復極量を算出した。自然電位測定結果を、表1に示し、腐食状況の結果を表2に示す。
Experimental example 1
A D19 deformed steel bar with a length of 600mm is placed so that both ends are out of the concrete 35mm each so that it is perpendicular to the 150x150mm face of the 150x150x530mm rectangular concrete specimen. Thus, a molded body was produced by using the steel material inside the concrete.
The formed body was cured outdoors for 4 weeks, and a concrete test body imitating a concrete structure was prepared.
One surface of 150 mm × 530 mm of the prepared specimen was used as the sprayed surface.
After applying a rough surface forming agent to the sprayed surface with air spray to make the surface of the sprayed surface rough, the aluminum wire and the zinc wire so that the volume ratio of metal aluminum and metal zinc is 1: 1. The anode and the feed rate were adjusted, and the zinc-aluminum pseudoalloy was sprayed by arc spraying to form an anode metal layer.
On the anode metal layer, a stainless steel 2 mm x 600 mm, 2 mm thick linear distribution terminal is installed at the center in the longitudinal direction of the sprayed surface so that both ends protrude 35 mm each. Was applied with air spray and sealed.
A conductor is electrically connected to one end of steel inside the concrete using crimp terminals and wood screws, and the other end of the conductor is connected to the distribution terminal via a crocodile clip to create a corrosion protection circuit. It was.
Place a plastic bat of 160 mm x 600 mm and a depth of about 20 mm with water about 10 mm, and place the surface opposite to the sprayed surface in contact with water, so that the steel material inside the concrete does not contact water directly. The test body was supplied with water for 2 weeks or more and left in a corrosive environment. Thereafter, the natural potential was measured, and after a predetermined period, the corrosion state of the interface between the flow distribution terminal and the anode metal layer was visually confirmed.
The natural potential is measured at three measurement points (1, 2, and 3) equidistant from the edge of the steel material inside the concrete on one side (side) of 150mm x 530mm perpendicular to the sprayed surface. Measurements were made using a copper reference electrode. Further, the instant off potential and the off potential 24 hours after stopping the energization were measured to calculate the amount of repolarization. The results of the natural potential measurement are shown in Table 1, and the results of the corrosion situation are shown in Table 2.

<使用材料>
粗面形成剤:エポキシ樹脂、ポリアミド樹脂、及び炭化珪素よりなる市販品
<Materials used>
Rough surface forming agent: Commercial product made of epoxy resin, polyamide resin, and silicon carbide

Figure 0004641025
Figure 0004641025

Figure 0004641025
Figure 0004641025

実験例2
試験体の150mm×530mmの1面を溶射面とし、ステンレス製で、2mm×600mm、厚さ2mmの線状の配流端子を、溶射面の長手方向中央に両端部が35mmづつ出るように設置した。
設置した線状の配流端子と溶射面に、粗面形成剤をエアスプレーにて塗布したのち、設置した配流端子の上から、亜鉛−アルミニウム擬合金溶射層の陽極金属層を形成し、封孔処理剤をエアスプレーにて塗布し封孔処理をして、自然電位を測定したこと以外は実験例1と同様に行った。結果を表1に併記する。
Experimental example 2
A 150 mm x 530 mm surface of the test specimen was used as the sprayed surface, and a stainless steel 2 mm x 600 mm, 2 mm thick linear distribution terminal was installed at the center in the longitudinal direction of the sprayed surface, with both ends extending 35 mm each. .
After applying a rough surface forming agent to the installed linear flow terminal and sprayed surface with air spray, an anode metal layer of zinc-aluminum pseudo-alloy sprayed layer is formed on the installed distribution terminal and sealed. The treatment was performed in the same manner as in Experimental Example 1 except that the treatment agent was applied by air spray and sealed, and the natural potential was measured. The results are also shown in Table 1.

実験例3
試験体の150mm×530mmの1面を溶射面とし、ステンレス製で、70mm×600mm、厚さ2mmの板を配流端子として、溶射面の長手方向中央に両端部が35mmづつ出るように設置した。
粗面形成剤をエアスプレーにて塗布したのち、設置した配流端子の上から、亜鉛−アルミニウム擬合金溶射層の陽極金属層を形成し、封孔処理剤をエアスプレーにて塗布し封孔処理をして、自然電位を測定したこと以外は実験例1と同様に行った。結果を表1に併記する。
Experimental example 3
One surface of 150 mm x 530 mm of the test specimen was used as the sprayed surface, and the plate made of stainless steel, 70 mm x 600 mm, 2 mm thick was used as the distribution terminal, and both ends were placed 35 mm in the center in the longitudinal direction of the sprayed surface.
After applying the rough surface forming agent by air spraying, the anode metal layer of the zinc-aluminum pseudo-alloy sprayed layer is formed on the installed distribution terminals, and sealing treatment is applied by air spraying. Then, the same procedure as in Experimental Example 1 was performed except that the natural potential was measured. The results are also shown in Table 1.

実験例4
陽極金属層の上に、ステンレス製で、30mm×30mm、厚さ2mmの板を端子として、溶射面の長手方向端部に端部が5mm程度出るように配置したこと以外は実験例1と同様に行った。結果を表1に併記する。
Experimental Example 4
Similar to Experimental Example 1 except that the plate is made of stainless steel, 30 mm x 30 mm, 2 mm thick on the anode metal layer, and the end of the sprayed surface is placed about 5 mm in the longitudinal direction. Went to. The results are also shown in Table 1.

実験例5
試験体の150mm×530mmの1面を溶射面とし、ステンレス製の厚さ2mm×30mm×30mmの板を端子として、溶射面の長手方向端部に端部が5mm程度出るように設置して、その上に溶射して、自然電位を測定したこと以外は実験例1と同様に行った。結果を表1に併記する。
Experimental Example 5
Using a 150mm x 530mm surface of the test specimen as the sprayed surface and a stainless steel plate with a thickness of 2mm x 30mm x 30mm as the terminal, set the end of the sprayed surface to be about 5mm in the longitudinal direction. It was performed in the same manner as in Experimental Example 1 except that the natural potential was measured by thermal spraying. The results are also shown in Table 1.

本発明の配流端子を使用することにより、流電陽極方式のコンクリート構造物の防食工法において、安定で、かつ均質な防食電流を得ることができ、主に、土木・建築業界等において海洋構造物や護岸構造物等のコンクリート構造物補修や高耐久化の用途に適する。   By using the current distribution terminal of the present invention, it is possible to obtain a stable and homogeneous anticorrosion current in the anticorrosion method of a galvanic anode type concrete structure, mainly in the civil engineering / building industry etc. Suitable for repairing concrete structures such as seawalls and revetment structures and for high durability.

Claims (8)

コンクリート構造物の表面に、コンクリート内部の鋼材よりも標準電極電位の低い金属の層である陽極金属層を形成し、該陽極金属層面に線形の配流端子を設置し、該陽極金属層とコンクリート内部の鋼材とを、線形の配流端子を用いて導線で接続してなるコンクリートの防食工法。 An anode metal layer, which is a metal layer having a lower standard electrode potential than the steel material inside the concrete, is formed on the surface of the concrete structure, and a linear distribution terminal is installed on the surface of the anode metal layer, and the anode metal layer and the concrete interior This is a concrete anticorrosion method in which a steel wire is connected to each other with a conductive wire using a linear distribution terminal. コンクリート構造物の表面を粗面とし、その上に、コンクリート内部の鋼材よりも標準電極電位の低い金属の層である陽極金属層を形成することを特徴とする請求項1に記載のコンクリートの防食工法。 2. The anticorrosion of concrete according to claim 1, wherein the surface of the concrete structure is roughened, and an anode metal layer which is a metal layer having a lower standard electrode potential than the steel material inside the concrete is formed thereon. Construction method. 陽極金属層の上に、表面保護層を形成してなる請求項1又は請求項2に記載のコンクリートの防食工法。   The concrete anticorrosion method according to claim 1 or 2, wherein a surface protective layer is formed on the anode metal layer. 陽極金属層が、コンクリート内部の鋼材よりも標準電極電位の低い金属の溶射により形成されるものである請求項1〜請求項3のうちのいずれか一項に記載のコンクリートの防食工法。   The anticorrosion method for concrete according to any one of claims 1 to 3, wherein the anode metal layer is formed by thermal spraying of a metal having a lower standard electrode potential than the steel material inside the concrete. コンクリート内部の鋼材よりも標準電極電位の低い金属が、亜鉛−アルミニウム擬合金である請求項4に記載のコンクリートの防食工法。   The method for preventing corrosion of concrete according to claim 4, wherein the metal having a lower standard electrode potential than the steel material inside the concrete is a zinc-aluminum pseudoalloy. 線形の配流端子を、コンクリート内部の鋼材の真上のコンクリート構造物の表面に設置してなる請求項1〜請求項5のうちのいずれか一項に記載のコンクリートの防食工法。   The concrete anticorrosion method according to any one of claims 1 to 5, wherein a linear distribution terminal is installed on a surface of a concrete structure directly above a steel material inside the concrete. 陽極金属層を、線形の配流端子の下及び/又は上に設置してなる請求項1〜請求項6のうちのいずれか一項に記載のコンクリートの防食工法。   The anticorrosion method for concrete according to any one of claims 1 to 6, wherein the anode metal layer is disposed under and / or above the linear distribution terminal. 請求項1〜請求項7のうちのいずれか一項に記載のコンクリートの防食工法を実施してなるコンクリート構造物。   A concrete structure formed by performing the concrete anticorrosion method according to any one of claims 1 to 7.
JP2006330682A 2006-12-07 2006-12-07 Concrete anticorrosion method and concrete structure obtained by implementing the same Active JP4641025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006330682A JP4641025B2 (en) 2006-12-07 2006-12-07 Concrete anticorrosion method and concrete structure obtained by implementing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006330682A JP4641025B2 (en) 2006-12-07 2006-12-07 Concrete anticorrosion method and concrete structure obtained by implementing the same

Publications (2)

Publication Number Publication Date
JP2008144203A JP2008144203A (en) 2008-06-26
JP4641025B2 true JP4641025B2 (en) 2011-03-02

Family

ID=39604692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330682A Active JP4641025B2 (en) 2006-12-07 2006-12-07 Concrete anticorrosion method and concrete structure obtained by implementing the same

Country Status (1)

Country Link
JP (1) JP4641025B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935399B2 (en) 2004-09-02 2011-05-03 Grupo Petrotemex, S.A. De C.V. Low melting polyester polymers
US8022168B2 (en) 2004-09-02 2011-09-20 Grupo Petrotexmex, S.A. de C.V. Spheroidal polyester polymer particles
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5443888B2 (en) * 2009-08-07 2014-03-19 電気化学工業株式会社 Cathodic protection method for concrete structures by galvanic anode method
JP6255253B2 (en) * 2014-01-24 2017-12-27 住友大阪セメント株式会社 Thermal spray material for anode, method for producing thermal spray coating for anode, and method for cathodic protection of concrete structure
JP7154011B2 (en) 2018-01-26 2022-10-17 日本軽金属株式会社 Metal members, nets and fish preserves

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297643A (en) * 1991-03-26 1992-10-21 Mitsui Mining & Smelting Co Ltd Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
JPH06116766A (en) * 1992-10-07 1994-04-26 Dainippon Toryo Co Ltd Corrosion preventive method for reinforced concrete structure
JPH06136573A (en) * 1992-10-29 1994-05-17 Nippon Boshoku Kogyo Kk Corrosion preventive method for concrete structure by thermally sprayed film
JPH08199279A (en) * 1995-01-20 1996-08-06 Sumitomo Metal Mining Co Ltd Aluminum alloy for thermal spraying
JPH09296526A (en) * 1996-04-30 1997-11-18 Sumikou Boshoku Kk Method and structure of electric corrosion protection of reinforcement in reinforced concrete structure
JPH10245280A (en) * 1997-02-28 1998-09-14 Dainippon Toryo Co Ltd Rust prevention of ferro-concrete structure
JP2002220685A (en) * 2001-01-24 2002-08-09 Civil Renewale Kk Corrosion protection method for steel material
JP2003268526A (en) * 2002-03-12 2003-09-25 Kubota Corp Method for forming corrosion protective film
JP2006063439A (en) * 2004-07-29 2006-03-09 Nakabohtec Corrosion Protecting Co Ltd Sprayed coating for corrosion prevention to reinforcing bar in concrete structure
JP2007182592A (en) * 2005-12-30 2007-07-19 Port & Airport Research Institute Structure and method for preventing corrosion on steel material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297643A (en) * 1991-03-26 1992-10-21 Mitsui Mining & Smelting Co Ltd Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
JPH06116766A (en) * 1992-10-07 1994-04-26 Dainippon Toryo Co Ltd Corrosion preventive method for reinforced concrete structure
JPH06136573A (en) * 1992-10-29 1994-05-17 Nippon Boshoku Kogyo Kk Corrosion preventive method for concrete structure by thermally sprayed film
JPH08199279A (en) * 1995-01-20 1996-08-06 Sumitomo Metal Mining Co Ltd Aluminum alloy for thermal spraying
JPH09296526A (en) * 1996-04-30 1997-11-18 Sumikou Boshoku Kk Method and structure of electric corrosion protection of reinforcement in reinforced concrete structure
JPH10245280A (en) * 1997-02-28 1998-09-14 Dainippon Toryo Co Ltd Rust prevention of ferro-concrete structure
JP2002220685A (en) * 2001-01-24 2002-08-09 Civil Renewale Kk Corrosion protection method for steel material
JP2003268526A (en) * 2002-03-12 2003-09-25 Kubota Corp Method for forming corrosion protective film
JP2006063439A (en) * 2004-07-29 2006-03-09 Nakabohtec Corrosion Protecting Co Ltd Sprayed coating for corrosion prevention to reinforcing bar in concrete structure
JP2007182592A (en) * 2005-12-30 2007-07-19 Port & Airport Research Institute Structure and method for preventing corrosion on steel material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935399B2 (en) 2004-09-02 2011-05-03 Grupo Petrotemex, S.A. De C.V. Low melting polyester polymers
US8022168B2 (en) 2004-09-02 2011-09-20 Grupo Petrotexmex, S.A. de C.V. Spheroidal polyester polymer particles
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates

Also Published As

Publication number Publication date
JP2008144203A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4641025B2 (en) Concrete anticorrosion method and concrete structure obtained by implementing the same
CA2423116C (en) Doubly-protected reinforcing members in concrete
JP2008533304A5 (en)
JP5052881B2 (en) Concrete anticorrosion method and concrete structure obtained by implementing the same
JP2011503365A (en) Anticorrosion management method and equipment for reinforcing bars in concrete
Jeong et al. Tidal water effect on the hybrid cathodic protection systems for marine concrete structures
JP5388435B2 (en) Steel anticorrosive member used for electrochemical corrosion protection method of concrete using sacrificial anode material, and electrochemical corrosion protection method using the same
JP6317645B2 (en) Anticorrosion method and anticorrosion device
EP0591775B1 (en) Method for preventing corrosion of a reinforced concrete structure
JP5424127B2 (en) Method of attaching an anticorrosion electrode to a concrete structure, and concrete structure
JP6274955B2 (en) Method of cathodic protection for concrete structures
JP5443888B2 (en) Cathodic protection method for concrete structures by galvanic anode method
JP2006063439A (en) Sprayed coating for corrosion prevention to reinforcing bar in concrete structure
JP4602719B2 (en) Anticorrosion and repair methods for reinforced concrete structures
JP6951053B2 (en) Monitoring method of sacrificial anode method in concrete structure
Jeong et al. Experimental studies of effectiveness of hybrid cathodic protection system on the steel in concrete
JPH04297643A (en) Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
JPH09296526A (en) Method and structure of electric corrosion protection of reinforcement in reinforced concrete structure
JP6353733B2 (en) Spacer member having anti-corrosion function for steel in concrete and installation method thereof
JP3137771B2 (en) Corrosion protection method for concrete structures by thermal spray coating.
KR20030037336A (en) Method for cathodic protection-repairing of steel-reinforced concrete structures
JP6255253B2 (en) Thermal spray material for anode, method for producing thermal spray coating for anode, and method for cathodic protection of concrete structure
JPH1181502A (en) Anti-corrosion method of reinforcement in reinforced concrete
JP4151254B2 (en) Reinforced concrete anticorrosion system
Li et al. Study of corrosion behavior of sprayed zinc-aluminum (ZAZA) coatings in a marine environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

R150 Certificate of patent or registration of utility model

Ref document number: 4641025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250