JP6317645B2 - Anticorrosion method and anticorrosion device - Google Patents
Anticorrosion method and anticorrosion device Download PDFInfo
- Publication number
- JP6317645B2 JP6317645B2 JP2014164501A JP2014164501A JP6317645B2 JP 6317645 B2 JP6317645 B2 JP 6317645B2 JP 2014164501 A JP2014164501 A JP 2014164501A JP 2014164501 A JP2014164501 A JP 2014164501A JP 6317645 B2 JP6317645 B2 JP 6317645B2
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- sacrificial anode
- anode material
- layer
- protected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 22
- 239000010405 anode material Substances 0.000 claims description 137
- 238000005260 corrosion Methods 0.000 claims description 125
- 230000007797 corrosion Effects 0.000 claims description 119
- 238000006243 chemical reaction Methods 0.000 claims description 94
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 44
- 239000011148 porous material Substances 0.000 claims description 30
- 239000004020 conductor Substances 0.000 claims description 20
- 230000002745 absorbent Effects 0.000 claims description 14
- 239000002250 absorbent Substances 0.000 claims description 14
- 239000000835 fiber Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 229910000870 Weathering steel Inorganic materials 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 239000012212 insulator Substances 0.000 claims description 4
- 238000004381 surface treatment Methods 0.000 claims description 4
- 229910052595 hematite Inorganic materials 0.000 claims description 3
- 239000011019 hematite Substances 0.000 claims description 3
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 3
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 description 21
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 21
- 239000010959 steel Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 5
- 239000004696 Poly ether ether ketone Substances 0.000 description 4
- 229920002530 polyetherether ketone Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000010349 cathodic reaction Methods 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Prevention Of Electric Corrosion (AREA)
Description
この発明は、防食方法および防食装置に係り、特に、被防食部材に対して卑な材料からなる犠牲陽極材を用いる防食方法および防食装置に関する。 The present invention relates to an anticorrosion method and an anticorrosion device, and more particularly, to an anticorrosion method and an anticorrosion device using a sacrificial anode material made of a base material with respect to a member to be protected.
自然環境に曝される構造物、例えば橋梁、標識、街灯、水門および樋門などは、鋼材から構成されるため、大気に含まれる水分、酸素および塩類などの腐食成分と接触して腐食される。そこで、構造物を長期間にわたって維持するための様々な防食方法が提案されている。 Structures that are exposed to the natural environment, such as bridges, signs, street lamps, sluices and locks, are made of steel and are corroded in contact with corrosive components such as moisture, oxygen and salts in the atmosphere. . Therefore, various anticorrosion methods for maintaining the structure for a long time have been proposed.
例えば、腐食成分との接触を抑制して腐食を抑制する耐候性鋼を用いた構造物が知られている。この耐候性鋼は、腐食成分を遮断するように表面に保護性を有する緻密な安定錆を形成する性質を有するため、内部に腐食が生じることを抑制することができる。しかしながら、塩化物の濃度が高い環境、例えば沿岸部および凍結防止剤が散布される寒冷地などでは、耐候性鋼の表面に安定錆が形成され難く、ヘマタイトなどの3価のFeイオンを含む金属酸化物またはその水和物からなる不安定錆が生じるといった問題があった。
このように、構造物に一旦腐食が生じると、例えばサンドブラストおよびグラインダーなどを用いたケレンを施して不安定錆を除去し、再度、構造物に防食処理を施す必要があり大きな手間を要する。
For example, a structure using weatherable steel that suppresses corrosion by suppressing contact with corrosive components is known. Since this weather-resistant steel has the property of forming dense stable rust having protective properties on the surface so as to block corrosion components, it is possible to suppress the occurrence of corrosion inside. However, in environments with high chloride concentrations, such as coastal areas and cold districts where anti-freezing agents are sprayed, stable rust is hardly formed on the surface of weathering steel, and metals containing trivalent Fe ions such as hematite There was a problem that unstable rust composed of oxides or hydrates thereof was generated.
Thus, once corrosion occurs in the structure, it is necessary to remove unstable rust by applying, for example, sand using a blaster and a grinder, and again, the structure needs to be subjected to anticorrosion treatment.
そこで、腐食が生じた構造物に対して容易に防食処理を施す方法として、例えば、特許文献1には、不安定錆が形成された耐候性鋼材の表面に酸化銅を含有する塗料を塗布して塗膜を形成することにより、耐候性鋼材の表面に安定錆を形成することが提案されている。この防食方法は、塗膜中の樹脂成分が外部から構造物の素地部に塩素イオンが透過することを抑制すると共に適量の水分および酸素を透過させ、水分および酸素による構造物の酸化を酸化銅で促進させることにより、構造物に安定錆を形成することができる。 Therefore, as a method for easily performing anticorrosion treatment on a structure in which corrosion has occurred, for example, in Patent Document 1, a paint containing copper oxide is applied to the surface of a weather resistant steel material on which unstable rust is formed. It has been proposed to form stable rust on the surface of a weathering steel material by forming a coating film. This anticorrosion method suppresses the penetration of chlorine ions from the outside to the substrate of the structure by the resin component in the coating film, and allows an appropriate amount of moisture and oxygen to permeate, thereby oxidizing the structure by moisture and oxygen to copper oxide. By promoting with, stable rust can be formed in the structure.
しかしながら、特許文献1の防食方法は、塗膜の形成に不安定錆が大きく影響を与えるため、構造物に形成された不安定錆が多い場合には充分な安定錆を形成することができず、腐食を確実に抑制することが困難となる。このため、防食処理を確実に施すためには、上記のケレンを施して不安定錆をある程度除去する必要があった。耐候性鋼は、普通鋼などと比較して強固な不安定錆が形成されるため、ケレンを施して不安定錆を除去するには大きな手間を要していた。 However, in the anticorrosion method of Patent Document 1, unstable rust greatly affects the formation of a coating film, and therefore sufficient stable rust cannot be formed when there is a lot of unstable rust formed on the structure. It becomes difficult to reliably suppress corrosion. For this reason, in order to reliably perform the anticorrosion treatment, it has been necessary to remove the unstable rust to some extent by applying the above-described keren. Since weatherable steel forms a strong unstable rust as compared with ordinary steel and the like, it takes a lot of labor to remove the unstable rust by applying kelen.
この発明は、このような従来の問題点を解消するためになされたもので、腐食が生じた構造物に対して容易に防食処理を施すことができる防食方法および防食装置を提供することを目的とする。 The present invention has been made to solve such conventional problems, and an object thereof is to provide an anticorrosion method and an anticorrosion apparatus capable of easily performing an anticorrosion treatment on a structure in which corrosion has occurred. And
この発明に係る防食方法は、表面が酸化されて3価のFeイオンを含む金属酸化物またはその水和物からなる腐食層が形成された被防食部材に対して、絶縁体からなると共に外部の水分を吸収する吸水シートと、被防食部材に対して卑な材料からなると共に外部から吸水シートまで連通する複数の連通孔が形成された犠牲陽極材とを、腐食層と犠牲陽極材との間に吸水シートが挟まれて接触するように配置すると共に、被防食部材と犠牲陽極材にそれぞれ配置された金属材料からなる一対の端子の間を電気的に接続し、複数の連通孔を介して外部の水分を吸水シートに供給し、吸水シートに吸収された水分が腐食回路を形成し、腐食回路を犠牲陽極材から被防食部材に伝導する電子により腐食層を還元して腐食に対して安定な転換層に転換するものである。 The anticorrosion method according to the present invention comprises an insulator and an external part against an anticorrosive member having a surface oxidized and a corrosion layer made of a metal oxide containing trivalent Fe ions or a hydrate thereof . Between the corrosive layer and the sacrificial anode material, a water absorbent sheet that absorbs moisture and a sacrificial anode material that is made of a base material with respect to the corrosion-protected member and has a plurality of communication holes that communicate from the outside to the water absorbent sheet. water seat with placed in contact being interposed or, electrically connects the pair of terminals made of a metallic material respectively disposed on the corrosion member and a sacrificial anode material, via a plurality of communication holes External moisture is supplied to the water-absorbing sheet, and the water absorbed in the water-absorbing sheet forms a corrosion circuit, and the corrosion circuit is reduced against the corrosion by reducing the corrosion layer with electrons conducted from the sacrificial anode material to the corrosion-protected member. Switch to a new conversion layer It is intended.
ここで、腐食層を転換層に転換した後、転換層に覆われた被防食部材の素地部が酸化されることにより、素地部の表面に腐食層が形成され、腐食回路を犠牲陽極材から被防食部材に伝導する電子により素地部の表面に形成された腐食層を還元して転換層に転換するのが好ましい。 Here, after the corrosive layer is converted into the conversion layer, the base portion of the corrosion-protected member covered with the conversion layer is oxidized, so that a corrosive layer is formed on the surface of the base portion, and the corrosion circuit is formed from the sacrificial anode material. It is preferable to reduce the corrosion layer formed on the surface of the base portion by the electrons conducted to the member to be protected and convert it to the conversion layer.
また、素地部の表面に形成される腐食層を転換層に順次転換することにより、腐食層を取り除くことなく、被防食部材の腐食を抑制することができる。
また、素地部の表面への腐食層の形成と、腐食層の転換層への転換とを繰り返すことにより、転換層と素地部の間に隙間を生成し、隙間を介して素地部の表面から転換層を取り除き、転換層を取り除くことにより露出された素地部に対して、腐食を抑制するための表面処理を施すこともできる。
Further, by sequentially converting the corrosive layer formed on the surface of the base portion to the conversion layer, the corrosion of the member to be protected can be suppressed without removing the corrosive layer.
In addition, by repeating the formation of the corrosive layer on the surface of the substrate and the conversion of the corrosive layer to the conversion layer, a gap is generated between the conversion layer and the substrate, and the surface of the substrate is interposed through the gap. The conversion layer can be removed, and surface treatment for suppressing corrosion can be applied to the substrate portion exposed by removing the conversion layer.
また、複数の連通孔は、多孔質材料からなる犠牲陽極材に形成された複数の細孔とすることができる。また、複数の連通孔は、犠牲陽極材に形成された互いに平行に延びる複数の貫通孔とすることもできる。 Further, the plurality of communication holes can be a plurality of pores formed in the sacrificial anode material made of a porous material. The plurality of communication holes may be a plurality of through holes formed in the sacrificial anode material and extending in parallel to each other.
また、吸水シートは、架橋型アクリレート繊維であるのが好ましい。 The water absorbing sheet is preferably a cross-linked acrylate fiber.
また、腐食層は3価のFeイオンを含む金属酸化物または金属水酸化物を含み、腐食回路を犠牲陽極材から被防食部材に伝導する電子により腐食層を還元してマグネタイトを含む転換層に転換するのが好ましい。
また、被防食部材は、耐候性鋼からなるのが好ましい。
Further, the corrosion layer contains a metal oxide or metal hydroxide containing trivalent Fe ions, and the corrosion layer is reduced by electrons conducted from the sacrificial anode material to the corrosion-protected member to form a conversion layer containing magnetite. Conversion is preferred.
Moreover, it is preferable that a to-be-corroded member consists of weathering steel.
この発明に係る防食装置は、被防食部材の表面が酸化されて形成された3価のFeイオンを含む金属酸化物またはその水和物からなる腐食層に対向して配置され、被防食部材に対して卑な材料からなると共に複数の連通孔が形成された犠牲陽極材と、犠牲陽極材と腐食層との間に配置され且つ絶縁体からなると共に外部からの水分を吸収する吸水シートと、腐食層と犠牲陽極材との間に吸水シートが挟まれて接触するように被防食部材に対して犠牲陽極材および吸水シートの位置を固定するための固定部と、被防食部材と犠牲陽極材にそれぞれ配置された金属材料からなる一対の端子と、一対の端子の間を電気的に接続する導線部とを備え、複数の連通孔が、外部の水分を収容すると共に吸水シートに供給することにより、吸水シートに吸収された水分で腐食回路を形成し、腐食回路を犠牲陽極材から被防食部材に伝導する電子により腐食層を還元して腐食に対して安定な転換層に転換するものである。 The anticorrosion device according to the present invention is disposed to face a corrosion layer made of a metal oxide containing trivalent Fe ions formed by oxidation of the surface of the anticorrosive member or a hydrate thereof , and is attached to the anticorrosive member. A sacrificial anode material made of a base material and formed with a plurality of communication holes, a water absorbing sheet disposed between the sacrificial anode material and the corrosion layer and made of an insulator and absorbs moisture from the outside, A fixing portion for fixing the position of the sacrificial anode material and the water absorbing sheet to the corrosion-protected member so that the water-absorbing sheet is sandwiched between the corrosive layer and the sacrificial anode material, and the corrosion-protected member and the sacrificial anode material A pair of terminals each made of a metal material and a conductive wire portion that electrically connects between the pair of terminals, and a plurality of communication holes store external moisture and supply the moisture absorption sheet. Absorbs to water absorbent sheet Moisture to form a corrosion circuit is intended to convert the stable conversion layer to reduction to corrode corrosion layer by electrons that move to the corrosion protection member corrosion circuit from the sacrificial anode material.
この発明によれば、犠牲陽極材から被防食部材に伝導する電子により腐食層を還元して転換層に転換するので、腐食が生じた構造物に対して容易に防食処理を施すことが可能となる。 According to the present invention, the corrosion layer is reduced and converted into the conversion layer by electrons conducted from the sacrificial anode material to the corrosion-protected member, so that the corrosion-resistant structure can be easily subjected to the anticorrosion treatment. Become.
以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1
図1に、実施の形態1に係る防食装置の構成を示す。この防食装置は、被防食部材Sの表面が酸化されて形成された腐食層Rに対向して配置される犠牲陽極材1と、犠牲陽極材1と腐食層Rとの間に配置される吸水シート2と、被防食部材Sに対して犠牲陽極材1と吸水シート2の位置を固定する固定部3と、固定部2を介して犠牲陽極材1と被防食部材Sとの間を電気的に接続する導線部4とを有する。
ここで、被防食部材Sは、普通鋼、低合金鋼、および耐候性鋼などの鋼材から構成された構造物である。また、腐食層Rは、例えばヘマタイトなどの3価のFeイオンを含む金属酸化物またはその水和物からなる層である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1
In FIG. 1, the structure of the anticorrosion apparatus which concerns on Embodiment 1 is shown. This anticorrosion device includes a sacrificial anode material 1 disposed opposite to a corrosion layer R formed by oxidizing the surface of a member to be protected S, and water absorption disposed between the sacrificial anode material 1 and the corrosion layer R. The sheet 2, the fixing portion 3 that fixes the positions of the sacrificial anode material 1 and the water absorbing sheet 2 with respect to the corrosion-resistant member S, and the space between the sacrificial anode material 1 and the corrosion-resistant member S via the fixing portion 2 are electrically connected. And a conductor portion 4 connected to the.
Here, the corrosion-protected member S is a structure composed of steel materials such as ordinary steel, low alloy steel, and weather resistant steel. The corrosion layer R is a layer made of a metal oxide containing trivalent Fe ions such as hematite or a hydrate thereof.
犠牲陽極材1は、平板形状を有し、被防食部材Sに対して卑な導電性材料(イオン化傾向が大きい材料)からなる多孔質材から構成されている。例えば、犠牲陽極材1は、アルミニウム(Al)、亜鉛(Zn)、AlとZnの合金などの金属から構成することができる。また、多孔質材としては、これらの金属粉体を焼結して作製することが好ましく、特に、Al−Zn合金粉体を焼結した多孔質焼結材を用いることが好ましい。 The sacrificial anode material 1 has a flat plate shape and is made of a porous material made of a base conductive material (a material having a large ionization tendency) with respect to the corrosion-protected member S. For example, the sacrificial anode material 1 can be made of a metal such as aluminum (Al), zinc (Zn), and an alloy of Al and Zn. Moreover, as a porous material, it is preferable to sinter these metal powders, and it is particularly preferable to use a porous sintered material obtained by sintering an Al—Zn alloy powder.
図2に示されるように、多孔質材から構成された犠牲陽極材1には、複数の細孔5が形成されている。この複数の細孔5は、三次元方向に不規則に延びると共に互いに連結されており、犠牲陽極材1は、複数の細孔5に沿って網目状に連続して拡がる構造を有している。すなわち、犠牲陽極材1は、その一部が分断されることなく、厚さ方向および厚さ方向に直交する方向に連続した構造を有する。 As shown in FIG. 2, a plurality of pores 5 are formed in the sacrificial anode material 1 made of a porous material. The plurality of pores 5 irregularly extend in the three-dimensional direction and are connected to each other, and the sacrificial anode material 1 has a structure that continuously spreads in a mesh shape along the plurality of pores 5. . That is, the sacrificial anode material 1 has a continuous structure in the thickness direction and the direction perpendicular to the thickness direction without being parted.
吸水シート2は、外部からの水分を吸収することにより犠牲陽極材1と被防食部材Sとの間を水分で電気的に連結するものである。吸水シート2としては、例えば、布、紙、編織物、および不織布など、繊維素材が平面状に構成されるものを用いることができる。 The water absorbing sheet 2 is to electrically connect the sacrificial anode material 1 and the corrosion-protected member S with moisture by absorbing moisture from the outside. As the water absorbing sheet 2, for example, a material in which a fiber material is formed in a planar shape such as cloth, paper, knitted fabric, and non-woven fabric can be used.
固定部3は、犠牲陽極材1と被防食部材Sの表面にそれぞれ当接して配置される一対の平ワッシャー6aおよび6bと、一対の平ワッシャー6aおよび6bの表面にそれぞれ当接して配置される一対のスプリングワッシャー7aおよび7bと、犠牲陽極材1から被防食部材Sを貫通して延びる軸部を有するボルト8と、ボルト8の軸部に螺合するナット9とを有する。
ボルト8とナット9は、犠牲陽極材1の表面と被防食部材Sの表面を外側から締め付けることにより、被防食部材Sに対して犠牲陽極材1と吸水シート2の位置を固定するためのものである。ボルト8は、絶縁性材料から構成されており、例えばアクリル樹脂やPEEK(ポリエーテルエーテルケトン)樹脂などから構成することができる。
The fixing portion 3 is disposed in contact with the surfaces of the pair of flat washers 6a and 6b and the pair of flat washers 6a and 6b, which are disposed in contact with the sacrificial anode material 1 and the surface of the corrosion-protected member S, respectively. It has a pair of spring washers 7a and 7b, a bolt 8 having a shaft portion extending from the sacrificial anode material 1 through the corrosion-protected member S, and a nut 9 screwed into the shaft portion of the bolt 8.
The bolt 8 and the nut 9 are for fixing the positions of the sacrificial anode material 1 and the water absorbing sheet 2 to the corrosion-protected member S by tightening the surface of the sacrificial anode material 1 and the surface of the corrosion-resistant material S from the outside. It is. The bolt 8 is made of an insulating material, and can be made of, for example, an acrylic resin or a PEEK (polyether ether ketone) resin.
一対の平ワッシャー6aおよび6bは、金属材料から構成され、ボルト8とナット9による締め付けに応じて犠牲陽極材1と被防食部材Sの表面を加圧するためのものである。
一対のスプリングワッシャー7aおよび7bは、金属材料から構成され、ボルト8とナット9による締め付けが緩むことを抑制するためのものである。
なお、一対の平ワッシャー6aおよび6bと一対のスプリングワッシャー7aおよび7bは、本発明における一対の端子を構成している。
The pair of flat washers 6 a and 6 b are made of a metal material, and pressurize the surface of the sacrificial anode material 1 and the corrosion-protected member S according to the tightening by the bolt 8 and the nut 9.
The pair of spring washers 7a and 7b are made of a metal material and are intended to prevent loosening of the bolts 8 and nuts 9 from being loosened.
The pair of flat washers 6a and 6b and the pair of spring washers 7a and 7b constitute a pair of terminals in the present invention.
導線部4は、一対のスプリングワッシャー7aおよび7bに接続されており、一対のスプリングワッシャー7aおよび9bと一対の平ワッシャー6aおよび6bとを介して犠牲陽極材1と被防食部材Sを電気的に接続している。なお、固定部3を介さずに導線部4を犠牲陽極材1と被防食部材Sに直接接続することもできる。また、ボルト8を導電性材料から構成することによって、防食装置から導線部4を除いても、ボルト8を介して犠牲陽極材1と被防食部材Sとの間を電気的に接続することもできる。 The conducting wire portion 4 is connected to a pair of spring washers 7a and 7b, and electrically connects the sacrificial anode material 1 and the corrosion-resistant member S via the pair of spring washers 7a and 9b and the pair of flat washers 6a and 6b. Connected. In addition, the conducting wire part 4 can also be directly connected to the sacrificial anode material 1 and the to-be-corroded member S without going through the fixing part 3. Further, by constituting the bolt 8 from a conductive material, the sacrificial anode material 1 and the corrosion-protected member S can be electrically connected via the bolt 8 even if the lead wire portion 4 is removed from the corrosion protection device. it can.
次に、図1に示した防食装置を用いて被防食部材Sを防食する方法について説明する。
まず、表面が酸化されて腐食層Rが形成された被防食部材S、例えば赤錆を含む腐食層Rが形成された橋梁などの構造物に対して、犠牲陽極材1と吸水シート2を配置する。この時、犠牲陽極材1と吸水シート2は、吸水シート2を腐食層Rと犠牲陽極材1の間に挟むように配置される。
Next, a method for anticorrosion of the corrosion-protected member S using the anticorrosion apparatus shown in FIG. 1 will be described.
First, the sacrificial anode material 1 and the water-absorbing sheet 2 are arranged on a corrosion-protected member S whose surface is oxidized to form a corrosion layer R, for example, a structure such as a bridge on which a corrosion layer R containing red rust is formed. . At this time, the sacrificial anode material 1 and the water absorbing sheet 2 are arranged so that the water absorbing sheet 2 is sandwiched between the corrosion layer R and the sacrificial anode material 1.
続いて、被防食部材Sに対して犠牲陽極材1と吸水シート2の位置を固定部3で固定した後、導線部4を一対のスプリングワッシャー7aおよび7bに接続して被防食部材Sと犠牲陽極材1との間を電気的に接続する。 Subsequently, after the positions of the sacrificial anode material 1 and the water absorbent sheet 2 are fixed to the corrosion-protected member S by the fixing portion 3, the conductor portion 4 is connected to the pair of spring washers 7a and 7b and sacrificed to the corrosion-protected member S. The anode material 1 is electrically connected.
このようにして、被防食部材Sに対して防食装置が設置されると、例えば雨などの外部環境に存在する水分Wが犠牲陽極材1の表面10に付着し、その付着した水分Wが、図3に示すように、犠牲陽極材1に外部から吸水シート2まで連通するように形成された複数の細孔5内に入り、そのまま複数の細孔5に収容されると共に複数の細孔5を犠牲陽極材1の裏面11まで浸透して吸水シート2に供給される。 In this way, when the anticorrosion device is installed for the anticorrosive member S, the water W existing in the external environment such as rain adheres to the surface 10 of the sacrificial anode material 1, and the adhering water W is As shown in FIG. 3, the sacrificial anode material 1 enters the plurality of pores 5 formed so as to communicate from the outside to the water absorbent sheet 2 and is accommodated in the plurality of pores 5 as it is and the plurality of pores 5. Is permeated to the back surface 11 of the sacrificial anode material 1 and supplied to the water absorbent sheet 2.
これにより、複数の細孔5から供給された水分Wで吸水シート2が満たされ、犠牲陽極材1と被防食部材Sの腐食層Rとの間が水分Wで連結されて導線部4を介して腐食回路Tが形成される。
この腐食回路Tの形成により、被防食部材Sに対して卑な導電性材料からなる犠牲陽極材1においてアノード反応(酸化反応)が生じ、犠牲陽極材1の金属原子が犠牲陽極材1内に電子を残して水分W中に溶解して拡散する。一方、被防食部材Sの表面に形成された腐食層Rには、犠牲陽極材1に残された電子が導線部4を介して供給されてカソード反応(還元反応)が生じ、赤錆を含む腐食層Rが黒錆(マグネタイト)を含む転換層Bに転換されると共に水H2Oと水酸化物イオンOH−を生じさせる。このように、アノード反応とカソード反応が犠牲陽極材1と被防食部材Sの腐食層Rにおいてそれぞれ生じることで、導線部4を介して犠牲陽極材1から被防食部材Sへ順次電子e−を供給して、腐食層Rを転換層Bに徐々に転換することができる。
Thereby, the water absorbing sheet 2 is filled with the moisture W supplied from the plurality of pores 5, and the sacrificial anode material 1 and the corrosion layer R of the corrosion-protected member S are connected by the moisture W to pass through the conductor portion 4. Thus, the corrosion circuit T is formed.
Due to the formation of the corrosion circuit T, an anodic reaction (oxidation reaction) occurs in the sacrificial anode material 1 made of a base conductive material with respect to the member to be protected S, and the metal atoms of the sacrificial anode material 1 enter the sacrificial anode material 1. It dissolves and diffuses in the water W, leaving electrons. On the other hand, in the corrosion layer R formed on the surface of the member to be protected S, the electrons left in the sacrificial anode material 1 are supplied through the conductor portion 4 to cause a cathode reaction (reduction reaction), and corrosion including red rust. The layer R is converted into a conversion layer B containing black rust (magnetite) and water H 2 O and hydroxide ions OH − are generated. In this way, the anode reaction and the cathode reaction occur in the sacrificial anode material 1 and the corrosion layer R of the corrosion-resistant member S, respectively, so that electrons e − are sequentially transferred from the sacrificial anode material 1 to the corrosion-resistant member S via the conductor portion 4. By supplying, the corrosive layer R can be gradually converted into the conversion layer B.
ここで、犠牲陽極材1と被防食部材Sとの間を連結する水分Wは、吸水シート2内だけではなく、犠牲陽極材1の複数の細孔5にも収容されている。このため、図3に示すように、上記のようなアノード反応は、犠牲陽極材1の裏面11だけでなく、複数の細孔5の内面12においても生じており、裏面11および内面12の双方で生じた電子e−が被防食部材Sに供給される。このように、複数の細孔5を有する犠牲陽極材1を用いることにより、複数の細孔が形成されていない板状の犠牲陽極材を用いた場合と比較して、アノード反応が生じる表面積を増加させることができ、導線部4を介して犠牲陽極材1から被防食部材Sに供給可能な電子e−の量が増加することで、環境に応じて変化する被防食部材Sで必要な電子e−の量に対し、広い範囲で追従して供給することが可能になる。 Here, the moisture W connecting the sacrificial anode material 1 and the corrosion-protected member S is accommodated not only in the water absorbent sheet 2 but also in the plurality of pores 5 of the sacrificial anode material 1. For this reason, as shown in FIG. 3, the anode reaction as described above occurs not only on the back surface 11 of the sacrificial anode material 1 but also on the inner surfaces 12 of the plurality of pores 5. The electron e − generated in step 1 is supplied to the corrosion-protected member S. Thus, by using the sacrificial anode material 1 having a plurality of pores 5, the surface area in which the anode reaction occurs can be reduced as compared with the case of using a plate-like sacrificial anode material in which a plurality of pores are not formed. The amount of electrons e − that can be increased and can be supplied from the sacrificial anode material 1 to the corrosion-protected member S via the conductive wire portion 4 increases the number of electrons necessary for the corrosion-resistant member S that varies depending on the environment. It becomes possible to supply in a wide range with respect to the amount of e − .
また、犠牲陽極材1は、複数の細孔5に沿って網目状に連続して拡がる構造を有しており、その内部において電子e−を伝導するための複数の伝導路が互いに連続するように形成されている。このため、例えば、図4に示すように、犠牲陽極材1の裏面11において生じた電子e−は、伝導路13aおよび13bを含む犠牲陽極材1内の複数の伝導路13を伝導することができる。従って、例えば、1つの伝導路13aに接する内面12においてアノード反応に伴う腐食部Cが形成されて互いに隣接する細孔5の間が塞がれても、腐食部Cの周辺の領域を介して電子e−を平ワッシャー8aおよびスプリングワッシャー9aからなる端子へ伝導することができる。
すなわち、犠牲陽極材1における腐食部Cの進行に伴って電子e−の伝導が遮断されることを抑制することができ、長期間にわたり、導線部4を通して被防食部材Sに電子e−を供給して腐食層Rを転換層Bへと転換することができる。
In addition, the sacrificial anode material 1 has a structure that continuously spreads in a mesh pattern along the plurality of pores 5 so that a plurality of conduction paths for conducting electrons e − are continuous with each other. Is formed. Therefore, for example, as shown in FIG. 4, the electrons e − generated on the back surface 11 of the sacrificial anode material 1 can be conducted through the plurality of conduction paths 13 in the sacrificial anode material 1 including the conduction paths 13a and 13b. it can. Therefore, for example, even if the corroded portion C associated with the anode reaction is formed on the inner surface 12 in contact with one conduction path 13a and the gaps between the adjacent pores 5 are blocked, the region around the corroded portion C passes through. electronic e - it can be conducted to a terminal comprising a flat washer 8a and spring washers 9a.
That is, it is possible to suppress the conduction of the electron e − with the progress of the corroded portion C in the sacrificial anode material 1, and supply the electron e − to the corrosion-protected member S through the conductor portion 4 over a long period of time. Thus, the corrosive layer R can be converted into the conversion layer B.
さらに、外部の水分Wを吸収する吸水シート2には、繊維素材中に親水性官能基を有する繊維が含まれるものを用いることが好ましく、繊維間のみで水分Wを物理的に保持する繊維と比較して、水分Wの保持機能を高めることができる。これにより、外部環境の水分濃度が比較的低い場合、例えば、外部から直接的に雨水などが供給されない環境においても、犠牲陽極材1と被防食部材Sの腐食層Rとの間を水分Wで連結することができる。このため、外部の水分濃度の変化によらず、犠牲陽極材1から被防食部材Sに一定の電子e−が供給されて、腐食層Rを持続的に転換層Bに転換することができる。 Furthermore, it is preferable to use a water absorbent sheet 2 that absorbs external moisture W, and a fiber material containing fibers having a hydrophilic functional group is used, and fibers that physically hold moisture W only between fibers In comparison, the moisture W retention function can be enhanced. Thereby, when the moisture concentration of the external environment is relatively low, for example, even in an environment where rainwater or the like is not directly supplied from the outside, the moisture W between the sacrificial anode material 1 and the corrosion layer R of the corrosion-protected member S is Can be linked. For this reason, a constant electron e − is supplied from the sacrificial anode material 1 to the corrosion-protected member S regardless of a change in the external moisture concentration, and the corrosive layer R can be continuously converted into the conversion layer B.
親水性官能基としては、スルホ基(−SO3H)、カルボキシ基(−COOH)、アミノ基(−NH2)、アミド基(−CONH2)、アルデヒド基(−CHO)、チオール基(−SH)、ヒドロキシ基(−OH)、などを有することが好ましく、これらの親水性官能基を繊維中または繊維表面に有することにより、繊維中または繊維間において水分を保持することができる。親水性官能基を有する繊維としては、例えば、レーヨン、綿、ビニロン、ナイロン、羊毛、アクリレートなどが挙げられるが、特に、特開2003−089971号公報に記載されるようにアクリレート系繊維を薬剤処理することにより得られる架橋型アクリレート繊維を用いることが好ましい。 Examples of the hydrophilic functional group include a sulfo group (—SO 3 H), a carboxy group (—COOH), an amino group (—NH 2 ), an amide group (—CONH 2 ), an aldehyde group (—CHO), and a thiol group (— SH), a hydroxy group (—OH), and the like are preferable. By having these hydrophilic functional groups in the fiber or the fiber surface, moisture can be retained in the fiber or between the fibers. Examples of the fiber having a hydrophilic functional group include rayon, cotton, vinylon, nylon, wool, and acrylate. In particular, as described in JP-A-2003-089971, an acrylate fiber is treated with a drug. It is preferable to use a cross-linked acrylate fiber obtained by doing so.
このようにして、図5に示すように、被防食部材Sの腐食層Rが完全に転換層Bに転換される。ここで、例えば導線部4に流れる電流を測定することにより、腐食層Rが完全に転換層Bに転換されたことを検知することができる。すなわち、転換層Bがカソード反応を生じないため、腐食層Rが完全に転換層Bに転換されると犠牲陽極材1から被防食部材Sに電子e−は供給されない、すなわち被防食部材Sから犠牲陽極材1に電流が流れなくなる。そこで、導線部4に流れる電流を測定することにより、転換層Bの形成状態を判断することができる。 In this way, as shown in FIG. 5, the corrosion layer R of the member to be protected S is completely converted to the conversion layer B. Here, for example, by measuring the current flowing through the conductive wire portion 4, it is possible to detect that the corrosion layer R has been completely converted to the conversion layer B. That is, since the conversion layer B does not cause a cathode reaction, when the corrosive layer R is completely converted to the conversion layer B, electrons e − are not supplied from the sacrificial anode material 1 to the corrosion-protected member S, that is, from the corrosion-protected member S. No current flows through the sacrificial anode material 1. Therefore, the formation state of the conversion layer B can be determined by measuring the current flowing through the conductor portion 4.
被防食部材Sの腐食層Rが完全に転換層Bに転換されると、防食装置が被防食部材Sから取り外される。被防食部材Sには、腐食成分に安定な転換層Bが覆うように形成されているため、腐食成分との接触により素地部Mが腐食されるのを抑制することができる。
このように、腐食が生じた被防食部材Sに対して防食装置を設置するだけで容易に防食処理を施すことができる。
When the corrosion layer R of the member to be protected S is completely converted to the conversion layer B, the corrosion protection device is removed from the member to be protected S. Since the corrosion-resistant member S is formed so as to cover the conversion layer B stable to the corrosive component, it is possible to suppress the base portion M from being corroded by contact with the corrosive component.
In this way, the anticorrosion treatment can be easily performed only by installing the anticorrosion device for the anticorrosive member S in which the corrosion has occurred.
本実施の形態によれば、複数の細孔5を形成して犠牲陽極材1においてアノード反応が生じる表面積を増加させることにより、犠牲陽極材1から被防食部材Sへの電子e−の供給能力を増加させることができる。また、犠牲陽極材1を網目状の構造として互いに連続する複数の伝導路13を形成することにより、犠牲陽極材1の腐食に伴って複数の伝導路13の全てが切断されることを抑制するため、長期間にわたり、犠牲陽極材1から被防食部材Sに電子e−を供給して腐食層Rを転換層Bに転換することができる。さらに、吸水シート2として親水性官能基を有する繊維を用いて水分保持機能を高めることにより、外部の水分濃度が比較的低い場合でも犠牲陽極材1から被防食部材Sへの電子e−の供給が維持されるため、転換層Bの形成を持続的に行うことができる。 According to the present embodiment, the ability to supply electrons e − from the sacrificial anode material 1 to the corrosion-protected member S is increased by forming a plurality of pores 5 and increasing the surface area in which the anode reaction occurs in the sacrificial anode material 1. Can be increased. Further, by forming a plurality of continuous conduction paths 13 with the sacrificial anode material 1 as a network structure, it is possible to suppress cutting of all of the plurality of conduction paths 13 due to corrosion of the sacrificial anode material 1. Therefore, the corrosion layer R can be converted into the conversion layer B by supplying electrons e − from the sacrificial anode material 1 to the corrosion-protected member S over a long period of time. Further, by using a fiber having a hydrophilic functional group as the water-absorbing sheet 2 to enhance the moisture retention function, supply of electrons e − from the sacrificial anode material 1 to the corrosion-protected member S even when the external moisture concentration is relatively low. Therefore, the conversion layer B can be formed continuously.
実施の形態2
実施の形態1では、被防食部材Sの腐食層Rが転換層Bに転換された時点で被防食部材Sから防食装置を取り外したが、転換層Bが形成された後も継続して防食装置を設置しておくことにより被防食部材Sに防食処理を施すこともできる。
Embodiment 2
In Embodiment 1, the anticorrosion device is removed from the anticorrosive member S when the corrosive layer R of the anticorrosive member S is converted to the conversion layer B, but the anticorrosion device continues after the conversion layer B is formed. The anticorrosion process can also be performed to the to-be-protected member S by installing.
例えば、被防食部材Sに防食装置を継続して設置することにより、被防食部材Sの素地部Mと転換層Bとの間に容易に隙間を生成することができ、この隙間を介して転換層Bを取り除き、露出された被防食部材Sの素地部Mに対して腐食を抑制するための表面処理を施すことができる。
具体的には、被防食部材Sの腐食層Rが完全に転換層Bに転換されると、転換層Bにおいてはカソード反応が生じないため、導線部4を介する犠牲陽極材1から被防食部材Sへの電子e−の供給が停止される。この状態が長期間継続すると、例えば転換層Bにクラックが生じるなどして、転換層Bに覆われた被防食部材Sの素地部Mが酸化される。これにより、図6に示すように、被防食部材Sの素地部Mの表面に、例えば赤錆を含む腐食層Raが新たに形成される。
For example, by continuously installing the anticorrosion device on the anticorrosive member S, a gap can be easily generated between the base portion M of the anticorrosive member S and the conversion layer B, and the conversion is performed via this gap. The layer B can be removed, and surface treatment for suppressing corrosion can be performed on the exposed base portion M of the corrosion-resistant member S.
Specifically, when the corrosion layer R of the member to be protected S is completely converted to the conversion layer B, no cathodic reaction occurs in the conversion layer B. Therefore, the member to be protected from the sacrificial anode material 1 through the conductor 4 is used. The supply of electrons e − to S is stopped. When this state continues for a long period of time, for example, a crack is generated in the conversion layer B, and the base portion M of the corrosion-protected member S covered with the conversion layer B is oxidized. Thereby, as shown in FIG. 6, for example, a corrosion layer Ra containing red rust is newly formed on the surface of the base portion M of the member to be protected S.
続いて、被防食部材Sに腐食層Raが形成されたことにより、犠牲陽極材1においてアノード反応が生じると共に被防食部材Sの腐食層Raにおいてカソード反応が生じ、図7に示すように、導線部4を介する犠牲陽極材1から被防食部材Sへの電子e−の供給が再開される。そして、犠牲陽極材1から被防食部材Sに供給される電子e−により、素地部Mの表面に形成された腐食層Raが還元されて、腐食に対して安定な転換層、例えば黒錆に徐々に転換される。これにより、図8に示すように、被防食部材Sの腐食層Raが完全に転換層Baに転換され、被防食部材Sの素地部Mを覆うように新たな転換層Baが形成される。 Subsequently, since the corrosion layer Ra is formed on the corrosion-resistant member S, an anode reaction occurs in the sacrificial anode material 1 and a cathode reaction occurs in the corrosion layer Ra of the corrosion-resistant member S. As shown in FIG. The supply of electrons e − from the sacrificial anode material 1 to the corrosion-protected member S via the portion 4 is resumed. Then, the corrosive layer Ra formed on the surface of the base portion M is reduced by the electrons e − supplied from the sacrificial anode material 1 to the corrosion-protected member S, and converted to a conversion layer that is stable against corrosion, for example, black rust. It is gradually converted. Thereby, as shown in FIG. 8, the corrosion layer Ra of the member to be protected S is completely converted to the conversion layer Ba, and a new conversion layer Ba is formed so as to cover the base portion M of the member to be protected S.
このようにして、素地部Mの表面への腐食層Raの形成と、腐食層Raの転換層Baへの返還とが繰り返されると、図9に示すように、転換層Baと素地部Mの間に隙間Gが生じる。そして、被防食部材Sから防食装置を取り外した後、転換層Bと素地部Mの間に生じた隙間Gを介して素地部Mの表面から転換層BおよびBaが取り除かれる。このように、転換層Baと素地部Mの間に隙間Gを生成することにより、サンドブラストおよびグラインダーなどを用いたケレンによる腐食層Rの除去と比べて、素地部Mの表面から転換層BおよびBaを容易に取り除くことができ、被防食部材Sの素地部Mを容易に露出させることができる。
続いて、転換層BおよびBaを取り除くことにより露出された被防食部材Sの素地部Mに対して、腐食を抑制するための表面処理、例えば塗装などを施すことにより、被防食部材Sの防食を行うことができる。
In this way, when the formation of the corrosion layer Ra on the surface of the substrate M and the return of the corrosion layer Ra to the conversion layer Ba are repeated, the conversion layer Ba and the substrate M are formed as shown in FIG. A gap G is generated between them. Then, after removing the anticorrosion device from the anticorrosive member S, the conversion layers B and Ba are removed from the surface of the base portion M through the gap G generated between the conversion layer B and the base portion M. In this manner, by generating the gap G between the conversion layer Ba and the base portion M, the conversion layer B and the base layer M can be removed from the surface of the base portion M as compared with the removal of the corroded layer R by means of sand using a sandblast and a grinder. Ba can be easily removed, and the base portion M of the corrosion-protected member S can be easily exposed.
Subsequently, the base portion M of the anticorrosive member S exposed by removing the conversion layers B and Ba is subjected to a surface treatment for suppressing corrosion, for example, painting, thereby preventing the anticorrosive member S from being corroded. It can be performed.
本実施の形態によれば、腐食が生じた被防食部材Sに対して防食装置を設置するだけで容易に被防食部材Sの素地部Mを露出させることができ、露出した素地部Mに対して所望の防食処理を施すことができる。特に、耐候性鋼は、普通鋼などと比較して素地調整が困難だが、この耐候性鋼からなる構造物に防食装置を設置するだけで容易に素地部Mを露出させることができる。 According to the present embodiment, it is possible to easily expose the base portion M of the anticorrosive member S by simply installing the anticorrosion device to the anticorrosive member S where corrosion has occurred, and to the exposed base portion M Desired anticorrosion treatment. In particular, although it is difficult to adjust the base material of the weather resistant steel as compared with the normal steel, the base part M can be easily exposed only by installing the anticorrosion device on the structure made of the weather resistant steel.
なお、本実施の形態では、被防食部材Sにおいて転換層Baと素地部Mの間に隙間Gが生じた時点で被防食部材Sから防食装置が取り外されたが、隙間Gが生じた後も継続して防食装置を設置しておくことにより被防食部材Sの防食を行うこともできる。すなわち、被防食部材Sに防食装置を常に設置しておくことにより、被防食部材Sの素地部Mの表面に新たな腐食層Raが形成されても、その腐食層Raを取り除くことなく、腐食層Raを転換層Baに順次転換することができる。これにより、被防食部材Sの表面に転換層Baを継続的に形成することができる。このとき、転換層Baと素地部Mの間には隙間Gが生じており、素地部Mは大気中に露出していると考えることができる。つまり、隙間Gに外部の水分が供給されるため、腐食層の影響を受けずに、犠牲陽極材1で発生した電子が素地部M表面に直接供給される。これにより、素地部M表面で酸素還元のカソード反応が起こるため、素地部Mは犠牲陽極材1により防食される。
この時、犠牲陽極材1を網目状の構造とすることで犠牲陽極材1の腐食に伴って複数の伝導路13の全てが切断されることを抑制しており、長期間にわたって被防食部材Sに防食装置を設置しても、犠牲陽極材1から被防食部材Sへの電子e−の供給を維持することができる。
In the present embodiment, the anticorrosion device is removed from the anticorrosive member S when the gap G is generated between the conversion layer Ba and the base portion M in the anticorrosive member S, but even after the gap G is generated. By continuing to install the anticorrosion device, the anticorrosive member S can be anticorrosive. That is, by always installing an anticorrosion device on the anticorrosive member S, even if a new corrosive layer Ra is formed on the surface of the base portion M of the anticorrosive member S, the corrosion is prevented without removing the corrosive layer Ra. The layer Ra can be sequentially converted into the conversion layer Ba. Thereby, the conversion layer Ba can be continuously formed on the surface of the member to be protected S. At this time, a gap G is generated between the conversion layer Ba and the base portion M, and it can be considered that the base portion M is exposed to the atmosphere. That is, since external moisture is supplied to the gap G, the electrons generated in the sacrificial anode material 1 are directly supplied to the surface of the substrate M without being affected by the corrosion layer. As a result, a cathode reaction for oxygen reduction occurs on the surface of the base portion M, so that the base portion M is protected by the sacrificial anode material 1.
At this time, the sacrificial anode material 1 having a network structure suppresses all of the plurality of conductive paths 13 from being cut off due to the corrosion of the sacrificial anode material 1, and the corrosion-protected member S over a long period of time. Even if the anticorrosion device is installed, the supply of electrons e − from the sacrificial anode material 1 to the anticorrosive member S can be maintained.
実施の形態3
実施の形態1および2では、複数の細孔5を有する多孔質材から犠牲陽極材1を構成したが、犠牲陽極材は外部から吸水シートまで連通する複数の連通孔が形成されていればよく、多孔質材に限られるものではない。
例えば、図10に示すように、実施の形態1および2に係る防食装置において、犠牲陽極材1に換えて犠牲陽極材21を配置することができる。この犠牲陽極材21には、それぞれ犠牲陽極材21の表面に対して垂直な方向に貫通する複数の直管状の貫通孔22が形成されている。これにより、犠牲陽極材21は、複数の貫通孔22の間を連続して拡がる構造を有している。すなわち、犠牲陽極材21は、その一部が分断されることなく、厚さ方向および厚さ方向に直交する方向に連続した構造を有する。
Embodiment 3
In the first and second embodiments, the sacrificial anode material 1 is composed of a porous material having a plurality of pores 5, but the sacrificial anode material only needs to have a plurality of communication holes communicating from the outside to the water absorbent sheet. It is not limited to porous materials.
For example, as shown in FIG. 10, a sacrificial anode material 21 can be disposed in place of the sacrificial anode material 1 in the anticorrosion device according to the first and second embodiments. The sacrificial anode material 21 is formed with a plurality of straight tubular through holes 22 penetrating in a direction perpendicular to the surface of the sacrificial anode material 21. Thus, the sacrificial anode material 21 has a structure that continuously spreads between the plurality of through holes 22. That is, the sacrificial anode material 21 has a continuous structure in the thickness direction and the direction orthogonal to the thickness direction without being parted.
まず、実施の形態1および2と同様に、表面に腐食層Rが形成された被防食部材Sに防食装置を設置すると、図11に示すように、外部環境に存在する水分Wが複数の貫通孔22内に流入し、複数の貫通孔22に収容されると共に複数の貫通孔22を犠牲陽極材21の裏面11まで浸透して、給水シート2に供給される。そして、複数の貫通孔22から供給された水分Wで給水シート2が満たされることにより、犠牲陽極材21と被防食部材Sとの間が連結されて腐食回路Tが形成される。この腐食回路Tの形成により、アノード反応とカソード反応が犠牲陽極材21と被防食部材Sの腐食層Rにおいてそれぞれ生じることで、導線部4を介して犠牲陽極材21から被防食部材Sへ順次電子e−が供給され、腐食層Rを転換層Bに徐々に転換することができる。 First, as in the first and second embodiments, when the anticorrosion device is installed on the anticorrosive member S having the corrosion layer R formed on the surface, as shown in FIG. It flows into the hole 22, is accommodated in the plurality of through holes 22, penetrates the plurality of through holes 22 to the back surface 11 of the sacrificial anode material 21, and is supplied to the water supply sheet 2. Then, when the water supply sheet 2 is filled with the water W supplied from the plurality of through holes 22, the sacrificial anode material 21 and the corrosion-protected member S are connected to form the corrosion circuit T. Due to the formation of the corrosion circuit T, an anodic reaction and a cathodic reaction occur in the sacrificial anode material 21 and the corroded layer R of the member to be protected S, respectively, so that the sacrificial anode material 21 and the member to be protected S are sequentially passed through the conductor 4. Electrons e − are supplied, and the corrosive layer R can be gradually converted into the conversion layer B.
この時、水分Wは、給水シート2内だけでなく犠牲陽極材21内にも収容されているため、腐食回路Tの形成に伴うアノード反応を犠牲陽極材21の裏面11と内面12の双方で生じさせることができ、導線部4を通して犠牲陽極材21から被防食部材Sに供給可能な電子e−の量を増加させることができる。 At this time, since the moisture W is stored not only in the water supply sheet 2 but also in the sacrificial anode material 21, the anode reaction accompanying the formation of the corrosion circuit T is caused on both the back surface 11 and the inner surface 12 of the sacrificial anode material 21. It is possible to increase the amount of electrons e − that can be supplied from the sacrificial anode material 21 to the corrosion-protected member S through the conductor 4.
また、犠牲陽極材21にはアノード反応に伴い腐食が生じるが、犠牲陽極材21が複数の貫通孔22の間を厚さ方向および厚さ方向に直交する方向に連続して拡がる構造を有するため、電子e−が伝導するための複数の伝導路が形成されている。このため、例えば、図12に示すように、犠牲陽極材21の裏面11において生じた電子e−は、伝導路23および24を含む犠牲陽極材21内の複数の伝導路を伝導することができ、電子e−の伝導が腐食により遮断されることを抑制することができる。例えば、隣り合う貫通孔22の間を横断するように生じた腐食部Cにより1つの伝導路23が塞がれても、腐食部Cの周辺の領域を介して電子e−を平ワッシャー6aおよびスプリングワッシャー7aからなる端子へ伝導させることができる。
従って、長期間にわたり、導線部4を通して犠牲陽極材21から被防食部材Sに電子e−を供給して腐食層Rを転換層Bに転換することができる。
Further, the sacrificial anode material 21 is corroded due to the anode reaction, but the sacrificial anode material 21 has a structure in which the sacrificial anode material 21 continuously extends in the thickness direction and the direction perpendicular to the thickness direction. , A plurality of conduction paths for conducting electrons e − are formed. Therefore, for example, as shown in FIG. 12, the electrons e − generated on the back surface 11 of the sacrificial anode material 21 can be conducted through a plurality of conduction paths in the sacrificial anode material 21 including the conduction paths 23 and 24. , The conduction of electrons e − can be suppressed from being blocked by corrosion. For example, even if one conductive path 23 is blocked by the corroded portion C generated so as to cross between the adjacent through holes 22, the electrons e − are transferred to the flat washers 6 a and 6 a through the region around the corroded portion C. It can be conducted to a terminal comprising a spring washer 7a.
Therefore, the corrosive layer R can be converted into the conversion layer B by supplying electrons e − from the sacrificial anode material 21 to the corrosion-protected member S through the conductor portion 4 over a long period of time.
さらに、犠牲陽極材21は複数の貫通孔22を形成したものであり、実施の形態1の犠牲陽極材1のように複数の細孔5を有する多孔質材から構成するものと比較して、強度を向上させることができる。このため、犠牲陽極材21の耐久性が向上し、犠牲陽極材21を長期間にわたって使用することができる。 Furthermore, the sacrificial anode material 21 is formed with a plurality of through-holes 22, compared to a sacrificial anode material 1 of the first embodiment, which is composed of a porous material having a plurality of pores 5. Strength can be improved. For this reason, the durability of the sacrificial anode material 21 is improved, and the sacrificial anode material 21 can be used over a long period of time.
また、複数の貫通孔22は、20μm以上6.5mm以下の直径を有するように形成することが好ましい。
ここで、複数の貫通孔22の直径を20μm以上とすることで、外部からの水分の侵入が容易となる。
また、複数の貫通孔22を6.5mmより大きな直径で形成すると、貫通孔22に収容された水分W中の酸素濃度は、貫通孔22に接する内面15と犠牲陽極材21の裏面11との間で大きな差が生じるおそれがある。これにより、図13に示すように、犠牲陽極材21の裏面11で生じた電子e−が内面12に伝導される、いわゆる酸素濃淡電池が犠牲陽極材21内に形成されて、犠牲陽極材21から被防食部材Sへの電子e−の伝導が妨げられてしまう。そこで、複数の貫通孔22の直径を6.5mm以下とすることにより、犠牲陽極材21から被防食部材Sへの電子e−の伝導が阻害されることを抑制し、犠牲陽極材21から被防食部材Sに長期間にわたって電子e−を供給することができる。
The plurality of through holes 22 are preferably formed to have a diameter of 20 μm or more and 6.5 mm or less.
Here, the penetration of moisture from the outside is facilitated by setting the diameters of the plurality of through holes 22 to 20 μm or more.
In addition, when the plurality of through holes 22 are formed with a diameter larger than 6.5 mm, the oxygen concentration in the water W accommodated in the through holes 22 is such that the inner surface 15 in contact with the through holes 22 and the back surface 11 of the sacrificial anode material 21. There may be a large difference between the two. As a result, as shown in FIG. 13, so-called oxygen concentration cells in which electrons e − generated on the back surface 11 of the sacrificial anode material 21 are conducted to the inner surface 12 are formed in the sacrificial anode material 21. The conduction of electrons e − from the metal to the protected member S is hindered. Therefore, by setting the diameters of the plurality of through holes 22 to 6.5 mm or less, it is possible to suppress the conduction of electrons e − from the sacrificial anode material 21 to the corrosion-protected member S, and Electrons e − can be supplied to the anticorrosion member S over a long period of time.
実施の形態4
実施の形態1〜3において、導線部4を介して犠牲陽極材と被防食部材Sとの間に流れる電流を測定する測定部を備えることが好ましい。この測定部は、電流測定器から構成することができ、継時的に電流を測定できる電流測定器から構成することが好ましい。
例えば、図14に示すように、実施の形態1に係る防食装置において、導線部4に測定部31を接続することができる。これにより、導線部4に流れる電流Aを測定することができ、この電流Aの値に基づいて被防食部材Sにおける転換層の形成状態を把握することができる。例えば、導線部4に流れる電流Aの値が低下している時には、被防食部材Sの腐食層Rが転換層Bに徐々に転換されていると判断することができ、電流Aが流れなくなった時には、腐食層Rが完全に転換層Bに転換されたと判断することができる。
これにより、防食装置を被防食部材Sから取り外すなどのタイミングを計ることができる。また、測定部31で測定された電流Aの値に基づいて、被防食部材Sにおける転換層の形成状態を作業者に知らせる通知部をさらに備えることが好ましい。
Embodiment 4
In the first to third embodiments, it is preferable to include a measurement unit that measures a current flowing between the sacrificial anode material and the corrosion-protected member S via the conductor portion 4. This measuring unit can be composed of a current measuring device, and is preferably composed of a current measuring device capable of measuring current continuously.
For example, as shown in FIG. 14, in the anticorrosion device according to the first embodiment, the measuring unit 31 can be connected to the conductor portion 4. Thereby, the electric current A which flows into the conducting wire part 4 can be measured, and the formation state of the conversion layer in the to-be-corroded member S can be grasped | ascertained based on the value of this electric current A. For example, when the value of the current A flowing through the conductor portion 4 is decreasing, it can be determined that the corrosion layer R of the member to be protected S is gradually converted to the conversion layer B, and the current A no longer flows. Sometimes it can be determined that the corrosive layer R has been completely converted to the conversion layer B.
Thereby, timing, such as removing an anticorrosion apparatus from the to-be-protected member S, can be measured. Moreover, it is preferable to further provide a notification unit that informs the operator of the formation state of the conversion layer in the corrosion-protected member S based on the value of the current A measured by the measurement unit 31.
次に、腐食層Rが形成された被防食部材Sに防食装置を実際に設置して腐食処理を施した実施例を示す。
まず、表面に赤錆を含む腐食層Rが形成された耐候性鋼の上に、66×66×3mmのアクリレート繊維からなる給水シートと、66×66×5mmの多孔質材からなる犠牲陽極材とを順次重ねて配置した。続いて、耐候性鋼に対して吸水シートと犠牲陽極材の位置をポリエーテルエーテルケトン(PEEK)樹脂製ボルトで固定すると共に犠牲陽極材と耐候性鋼とを導線部で接続することにより、防食装置を耐候性鋼に設置した。
なお、犠牲陽極材は、80質量%のAl金属粉と20質量%のZn金属粉とを混合した混合粉体を焼結することにより得られた気孔率20%の多孔質材を用いた。
Next, an example is shown in which an anticorrosion device is actually installed on the anticorrosive member S on which the corrosion layer R is formed and subjected to corrosion treatment.
First, on a weathering steel having a corrosion layer R containing red rust on the surface, a water supply sheet made of 66 × 66 × 3 mm acrylate fiber, and a sacrificial anode material made of a porous material of 66 × 66 × 5 mm, Were placed one on top of the other. Subsequently, the position of the water-absorbing sheet and the sacrificial anode material is fixed to the weather-resistant steel with a polyether ether ketone (PEEK) resin bolt, and the sacrificial anode material and the weather-resistant steel are connected to each other at the conductor portion to prevent corrosion. The device was installed in weathering steel.
As the sacrificial anode material, a porous material having a porosity of 20% obtained by sintering a mixed powder obtained by mixing 80% by mass of Al metal powder and 20% by mass of Zn metal powder was used.
このようにして、防食装置を耐候性鋼に設置した状態で、温度30℃で相対湿度100%に制御した恒温恒湿槽内に載置した。この時、腐食層Rの還元反応が促進するように、吸水シートには飽和濃度のNaCl水を供給している。そして、導線部に測定部を接続し、導線部に流れる電流Aが停止された時点で防食装置を耐候性鋼から取り外した。
図15(A)に防食装置を設置する前の耐候性鋼を示すと共に、図15(B)に防食装置を設置した後の耐候性鋼を示す。図15(A)では耐候性鋼を覆うように赤錆を含む腐食層Rが形成されているのに対し、図15(B)では全体にわたって色が黒く変化しており腐食層Rが完全に還元されて黒錆を含む転換層Bに転換されていることがわかる。このことから、腐食層Rが形成された耐候性鋼に防食装置を設置するだけで腐食層Rを転換層Bに転換することができ、耐候性鋼の防食処理を容易に施すことができた。
In this way, the anticorrosion apparatus was placed in a weatherproof steel and placed in a constant temperature and humidity chamber controlled at a temperature of 30 ° C. and a relative humidity of 100%. At this time, saturated water of NaCl is supplied to the water absorbent sheet so that the reduction reaction of the corrosive layer R is promoted. And the measurement part was connected to the conducting wire part, and when the electric current A which flows into a conducting wire part was stopped, the anticorrosion apparatus was removed from weathering steel.
FIG. 15A shows the weathering steel before the anticorrosion apparatus is installed, and FIG. 15B shows the weathering steel after the anticorrosion apparatus is installed. In FIG. 15 (A), a corrosion layer R containing red rust is formed so as to cover the weathering steel, whereas in FIG. 15 (B), the color changes to black throughout and the corrosion layer R is completely reduced. It turns out that it is converted into the conversion layer B containing black rust. From this, it was possible to convert the corrosion layer R to the conversion layer B simply by installing a corrosion protection device on the weather resistant steel on which the corrosion layer R was formed, and the corrosion resistance treatment of the weather resistant steel could be easily performed. .
この状態からさらに、上記と同様の条件で恒温恒湿槽内に耐候性鋼と防食装置を載置して試験を継続した。そして、導線部に電流Aが流れる状態と、導線部に流れる電流が停止された状態とが数回繰り返された後、防食装置を耐候性鋼から取り外して耐候性鋼に形成された転換層Bの除去を確認した。 From this state, the test was continued with the weathering steel and the anticorrosion device placed in a constant temperature and humidity chamber under the same conditions as described above. And after the state in which the electric current A flows into the conducting wire portion and the state in which the current flowing through the conducting wire portion is stopped are repeated several times, the conversion layer B is formed on the weathering steel by removing the anticorrosion device from the weathering steel. The removal was confirmed.
図16に、その結果を模式的に示す。転換層Bに覆われていた被防食部材Sの素地部Mが酸化されて新たな腐食層Raが生じ、その腐食層Raが転換層Bと共に除去されることにより素地部Mが露出しているのを確認できた。このとき、腐食層Raと転換層Bは、被防食部材Sの表面上から吸水シート2を除去する際に、吸水シート2に付着した状態で容易に除去することができた。
このことから、腐食層Rが形成された耐候性鋼に防食装置を設置するだけで、耐候性鋼の素地部Mと転換層Bとの間に隙間Gを生じさせることができ、これにより耐候性鋼に形成された転換層Bを容易に除去して素地部Mを露出できることがわかった。さらに、素地部Mは露出しているにも関わらず金属光沢を有していたことから、素地部Mに対しても犠牲陽極1の防食効果があることがわかる。
FIG. 16 schematically shows the result. The base portion M of the member to be protected S covered with the conversion layer B is oxidized to form a new corroded layer Ra, and the base portion M is exposed by removing the corroded layer Ra together with the conversion layer B. I was able to confirm. At this time, the corrosive layer Ra and the conversion layer B could be easily removed while adhering to the water absorbent sheet 2 when removing the water absorbent sheet 2 from the surface of the corrosion-protected member S.
From this, it is possible to create a gap G between the base portion M of the weather resistant steel and the conversion layer B simply by installing a corrosion protection device on the weather resistant steel on which the corrosion layer R is formed. It was found that the base layer M can be exposed by easily removing the conversion layer B formed on the stainless steel. Furthermore, since the base part M was exposed and had a metallic luster, it can be seen that the sacrificial anode 1 also has an anticorrosive effect on the base part M.
1,21 犠牲陽極材、2 吸水シート、3 固定部、4 導線部、5 複数の細孔、6a,6b 平ワッシャー、7a,7b スプリングワッシャー、8 ボルト、9 ナット、10 犠牲陽極材の表面、11 犠牲陽極材の裏面、12 犠牲陽極材の内面、13、13a,13b,23,24 電通路、22 複数の貫通孔、31 測定部、S 被防食部材、R,Ra 腐食層、B,Ba 転換層、M 被防食部材の素地部、G 隙間、W 水分、T 腐食回路、A 電流、C 腐食。 1,21 Sacrificial anode material, 2 water absorbing sheet, 3 fixing part, 4 conductor part, 5 plural pores, 6a, 6b flat washer, 7a, 7b spring washer, 8 bolt, 9 nut, 10 surface of sacrificial anode material, DESCRIPTION OF SYMBOLS 11 Back surface of sacrificial anode material, 12 Inner surface of sacrificial anode material, 13, 13a, 13b, 23, 24 Electric passage, 22 Several through-holes, 31 Measuring part, S Corrosion-protected member, R, Ra Corrosion layer, B, Ba Conversion layer, M base material of the member to be protected, G gap, W moisture, T corrosion circuit, A current, C corrosion.
Claims (10)
前記複数の連通孔を介して外部の水分を前記吸水シートに供給し、
前記吸水シートに吸収された水分が腐食回路を形成し、
前記腐食回路を前記犠牲陽極材から前記被防食部材に伝導する電子により前記腐食層を還元して腐食に対して安定な転換層に転換する防食方法。 A corrosion-absorbing member having a corroded layer formed of a metal oxide containing trivalent Fe ions or a hydrate thereof, the surface of which is oxidized, and a water-absorbing sheet that is made of an insulator and absorbs external moisture; A sacrificial anode material made of a base material with respect to the corrosion-protected member and formed with a plurality of communication holes communicating from the outside to the water-absorbing sheet, the water-absorbing sheet between the corrosive layer and the sacrificial anode material There together placed in contact being sandwiched or to the electrical connection between the pair of terminals made of a metal material disposed respectively in the sacrificial anode material and the corrosion member,
Supplying external moisture to the water absorbent sheet through the plurality of communication holes,
Moisture absorbed by the water absorbent sheet forms a corrosion circuit,
An anticorrosion method for converting the corrosion circuit into a conversion layer that is stable against corrosion by reducing the corrosion layer with electrons conducted from the sacrificial anode material to the corrosion-protected member.
前記腐食回路を前記犠牲陽極材から前記被防食部材に伝導する電子により前記素地部の表面に形成された前記腐食層を還元して前記転換層に転換する請求項1に記載の防食方法。 After converting the corrosive layer to the conversion layer, the base portion of the corrosion-protected member covered by the conversion layer is oxidized, thereby forming the corrosive layer on the surface of the base portion,
The anticorrosion method according to claim 1, wherein the corrosion layer formed on the surface of the base portion is reduced and converted into the conversion layer by electrons conducted from the sacrificial anode material to the corrosion-protected member in the corrosion circuit.
前記隙間を介して前記素地部の表面から前記転換層を取り除き、
前記転換層を取り除くことにより露出された前記素地部に対して、腐食を抑制するための表面処理を施す請求項2に記載の防食方法。 By repeating the formation of the corrosion layer on the surface of the substrate and the conversion of the corrosion layer to the conversion layer, a gap is generated between the conversion layer and the substrate.
Removing the conversion layer from the surface of the substrate through the gap,
The anticorrosion method according to claim 2, wherein a surface treatment for suppressing corrosion is applied to the base portion exposed by removing the conversion layer.
前記犠牲陽極材と前記腐食層との間に配置され且つ絶縁体からなると共に外部からの水分を吸収する吸水シートと、
前記腐食層と前記犠牲陽極材との間に前記吸水シートが挟まれて接触するように前記被防食部材に対して前記犠牲陽極材および前記吸水シートの位置を固定するための固定部と、
前記被防食部材と前記犠牲陽極材にそれぞれ配置された金属材料からなる一対の端子と、
前記一対の端子の間を電気的に接続する導線部と
を備え、
前記複数の連通孔が、外部の水分を収容すると共に前記吸水シートに供給することにより、前記吸水シートに吸収された水分で腐食回路を形成し、前記腐食回路を前記犠牲陽極材から前記被防食部材に伝導する電子により前記腐食層を還元して腐食に対して安定な転換層に転換する防食装置。 The surface of the corrosion-protected member is disposed opposite to the corrosion layer made of a metal oxide containing trivalent Fe ions formed by oxidation or a hydrate thereof , and is made of a base material with respect to the corrosion-protected member. And a sacrificial anode material in which a plurality of communication holes are formed,
A water-absorbing sheet disposed between the sacrificial anode material and the corrosive layer and made of an insulator and absorbs moisture from the outside;
A fixing portion for fixing the position of the sacrificial anode material and the water absorbing sheet with respect to the corrosion-protected member so that the water absorbing sheet is sandwiched between the corrosive layer and the sacrificial anode material, and
A pair of terminals made of metal materials respectively disposed on the corrosion-protected member and the sacrificial anode material,
A conductor portion for electrically connecting the pair of terminals,
The plurality of communication holes contain external moisture and supply the water-absorbing sheet to form a corrosion circuit with the moisture absorbed in the water-absorbing sheet, and the corrosion circuit is protected from the sacrificial anode material by the corrosion protection. An anti-corrosion device that reduces the corrosion layer by electrons conducted to a member to convert the corrosion layer into a conversion layer that is stable against corrosion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014164501A JP6317645B2 (en) | 2014-08-12 | 2014-08-12 | Anticorrosion method and anticorrosion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014164501A JP6317645B2 (en) | 2014-08-12 | 2014-08-12 | Anticorrosion method and anticorrosion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016040403A JP2016040403A (en) | 2016-03-24 |
JP6317645B2 true JP6317645B2 (en) | 2018-04-25 |
Family
ID=55540807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014164501A Active JP6317645B2 (en) | 2014-08-12 | 2014-08-12 | Anticorrosion method and anticorrosion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6317645B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6948290B2 (en) * | 2018-06-28 | 2021-10-13 | 株式会社三井E&Sマシナリー | Anticorrosion method for steel structures |
JP7043534B2 (en) * | 2020-03-13 | 2022-03-29 | 国立大学法人九州大学 | How to remove corrosion products |
JP7558876B2 (en) * | 2021-04-05 | 2024-10-01 | 株式会社クボタ | Fastened member, coating tool therefor, and coating method therefor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4209889A (en) * | 1978-02-27 | 1980-07-01 | Olin Corporation | Corrosion resistant fastening system and method |
JP4457378B2 (en) * | 2003-11-18 | 2010-04-28 | 日本防蝕工業株式会社 | Electrocorrosion protection method for submerged part of metal structure by galvanic anode and galvanic anode structure therefor |
JP5403499B2 (en) * | 2008-03-18 | 2014-01-29 | 国立大学法人九州大学 | Anticorrosion structure of steel structure |
JP5461093B2 (en) * | 2009-07-27 | 2014-04-02 | 国立大学法人九州大学 | Sacrificial anode panel and anticorrosion method using sacrificial anode panel |
JP5849868B2 (en) * | 2012-06-25 | 2016-02-03 | 新日鐵住金株式会社 | Steel material with excellent corrosion resistance |
JP5932565B2 (en) * | 2012-08-13 | 2016-06-08 | 国立大学法人九州大学 | Anticorrosive |
-
2014
- 2014-08-12 JP JP2014164501A patent/JP6317645B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016040403A (en) | 2016-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang | Galvanic corrosion | |
JP4782601B2 (en) | Corrosion prevention method for metal material, high corrosion resistance metal material and method for producing the same | |
CA2577375C (en) | Galvanic anode system for corrosion protection of steel and method for production thereof | |
Feliu et al. | Deterioration of cathodic protection action of zinc-rich paint coatings in atmospheric exposure | |
US20140251793A1 (en) | Cathodic protection current distribution method and apparatus for corrosion control of reinforcing steel in concrete structures | |
JP6317645B2 (en) | Anticorrosion method and anticorrosion device | |
US20150198518A1 (en) | Cathodic protection reference cell article and method | |
ITRM20000089A1 (en) | ACTIVATED CATHODE AND PROCEDURE FOR ITS PREPARATION. | |
JP2008533304A5 (en) | ||
CZ20031118A3 (en) | Concrete structure with double protected reinforcing elements | |
CN104508188A (en) | Galvanic anode and method of corrosion protection | |
AU613824B2 (en) | Metal mesh and production thereof | |
JP4641025B2 (en) | Concrete anticorrosion method and concrete structure obtained by implementing the same | |
JP2016038339A (en) | Corrosion sensor | |
JP2008156671A (en) | Corrosion prevention process for concrete, and concrete structure obtained by performing the same | |
WO2020110693A1 (en) | Hydrogen generator | |
JP6613444B1 (en) | Insulating layer formation method | |
JP6644219B2 (en) | Method for forming insulating layer using self-selective closing treatment of fine conductive part | |
JP2020125529A (en) | Coating film material for anode material, concrete structure and electrolytic corrosion protection method | |
JP2003096581A (en) | Electric corrosion protection method | |
JP4201394B2 (en) | Concrete steel structure covered with composite film electrode | |
JP2022147887A (en) | Conductive paint, concrete structure electric protection method using the same, and anode material repair method | |
JP2018070764A (en) | Exterior coating material for electrolytically protecting reinforced concrete, and anode film | |
JP2000169982A (en) | Method and film for electric corrosion protection of steel | |
Hernández-Leos et al. | Corrosion Evaluation of the Welded Zone between Carbon Steel and Stainless Steel Embedded in Concrete and Exposed to a Marine-Like Environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180330 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6317645 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |