JP2000026173A - Concrete-steel structure coated with composite film electrode - Google Patents

Concrete-steel structure coated with composite film electrode

Info

Publication number
JP2000026173A
JP2000026173A JP10210433A JP21043398A JP2000026173A JP 2000026173 A JP2000026173 A JP 2000026173A JP 10210433 A JP10210433 A JP 10210433A JP 21043398 A JP21043398 A JP 21043398A JP 2000026173 A JP2000026173 A JP 2000026173A
Authority
JP
Japan
Prior art keywords
concrete
electrode
coating
steel structure
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10210433A
Other languages
Japanese (ja)
Other versions
JP4201394B2 (en
Inventor
Yoshinori Matsuda
芳範 松田
Kazuhiro Igawa
一弘 井川
Kenichiro Tanaka
健一郎 田中
Hideji Yajima
秀治 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakabohtec Corrosion Protecting Co Ltd
East Japan Railway Co
Original Assignee
Nakabohtec Corrosion Protecting Co Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakabohtec Corrosion Protecting Co Ltd, East Japan Railway Co filed Critical Nakabohtec Corrosion Protecting Co Ltd
Priority to JP21043398A priority Critical patent/JP4201394B2/en
Publication of JP2000026173A publication Critical patent/JP2000026173A/en
Application granted granted Critical
Publication of JP4201394B2 publication Critical patent/JP4201394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the reliability of the corrosion resistant thermally sprayed metal film system by improving the potential distribution and the execution workability in the conventional corrosion resistant thermally sprayed metal film system, and to provide a concrete-steel structure protected with an inexpensive impressed current protection method. SOLUTION: A film electrode to be used for an impressed current protection system which is coated on the surface of a concrete-steel structure is coated on the surface of the concrete-steel structure. The film electrode is constituted of a composite film electrode which is comprised of a first film layer 1 which is a corrosion resistant thermally sprayed metal film subjected to activation treatment and a second film layer 2 which is a metal film coated on the first film layer 1 and has a high electro-conductivity. The first film layer has a thickness of 30-90 μm. The second film layer is fabricated by thermal metal spraying while adjusting its thickness to be in the range of 50-250 μm and is composed of one or two or more selected from aluminum, copper and alloys thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンクリート鋼構
造物の劣化を防止するために電気防食法が施された外部
電極方式による複合皮膜電極で被覆されたコンクリート
鋼構造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concrete steel structure coated with a composite coating electrode of an external electrode type which has been subjected to an electrolytic protection method in order to prevent deterioration of the concrete steel structure.

【0002】[0002]

【従来の技術】一般に、コンクリート鋼構造物は、補強
鋼材(鉄筋、PC鋼線、鉄骨等)間のマクロセル、含有塩
分、飛来塩分の侵入等によって補強鋼材が腐食する。そ
の結果、鋼材の体積が膨張してコンクリートにひび割れ
が発生し、ひび割れによりさらに鋼材の腐食が促進さ
れ、ひび割れが拡大してコンクリート鋼構造物の強度が
著しく低下する。このようなコンクリート鋼構造物の劣
化を防止する手段としては、(1)コンクリート鋼構造物
表面を防水性の塗料で塗装する防食塗装法、(2)該表面
を流電陽極で覆う流電陽極方式による電気防食法、(3)
該表面に不溶性の電極を取り付ける外部電源方式による
電気防食法等が開発、実用化されてきた。
2. Description of the Related Art In general, a concrete steel structure is corroded by macrocells between reinforcing steel materials (reinforcing bars, PC steel wires, steel frames, etc.), salt content, flying salt content, and the like. As a result, the volume of the steel material expands to cause cracks in the concrete, and the cracks further promote the corrosion of the steel materials, thereby increasing the cracks and significantly reducing the strength of the concrete steel structure. As means for preventing such deterioration of the concrete steel structure, (1) anticorrosion coating method of coating the surface of the concrete steel structure with a waterproof paint, (2) galvanic anode covering the surface with a galvanic anode Cathodic protection method by method, (3)
An anticorrosion method using an external power supply method for attaching an insoluble electrode to the surface has been developed and put into practical use.

【0003】しかし、防食塗装法は新設の場合でも塗膜
欠陥部、塗膜損傷部からの塩分の侵入、酸素の拡散を防
止できず、既設の場合はさらにコンクリート中の塩分の
ために長期的な防食性は期待できない。また、流電陽極
方式の電気防食法は、亜鉛等の流電陽極材と鉄筋等間の
電位差により防食電流を得ているためにコンクリートの
電気抵抗が高いと防食電流が不十分となるきらいがあ
る。さらに、外部電源方式による電気防食法には、従来
より白金めっきチタン線を一次電極とし、カーボン等を
主成分とした導電性塗膜を二次電極とする導電塗膜シス
テムや、白金めっきまたは白金族酸化物を被覆したメッ
シュ状のチタン電極を用いるメッシュ電極システムがあ
る。しかし、いずれのシステムとも施工性、作業性に劣
るとともに導電性塗膜電極システムでは塗膜のふくれや
剥離が生じやすく、メッシュ電極システムではオーバー
レイ材として用いるモルタルのコンクリート面への付着
強度が小さく、外的要因のみならず、時間の経過にとも
なって剥離、脱落する欠点を有することもあった。
[0003] However, the anticorrosion coating method cannot prevent salt penetration and oxygen diffusion from a defective portion of a coating film or a damaged portion of a coating film even when a new one is installed. No anticorrosion can be expected. Also, in the cathodic protection method of the galvanic anode method, since the corrosion protection current is obtained by the potential difference between the galvanic anode material such as zinc and the reinforcing bar, the corrosion protection current becomes insufficient when the electrical resistance of concrete is high. is there. In addition, a conventional anti-corrosion method using an external power supply method includes a conductive coating system in which a platinum-plated titanium wire is used as a primary electrode and a conductive coating mainly containing carbon or the like is used as a secondary electrode. There is a mesh electrode system using a mesh-shaped titanium electrode coated with a group III oxide. However, both systems are inferior in workability and workability, and in the conductive coating electrode system, blistering and peeling of the coating film easily occur, and in the mesh electrode system, the adhesion strength of mortar used as overlay material to concrete surface is small, In addition to external factors, there was also a defect that peeling and falling off with the passage of time.

【0004】これら従来の外部電源方式による電気防食
法の欠点を解消するものとして、近年耐食性金属溶射皮
膜(特開平7-291769号)が開発された。この耐食性金属
溶射システムは、粗面化処理したコンクリート鋼構造物
表面にチタン等の耐食性金属を溶射により被覆し、被覆
したチタン等の耐食性金属に硝酸コバルト水溶液または
硫酸マンガン水溶液等を塗布した後、加熱または通電に
よる活性化処理により電極とし、この電極と電源装置の
正極との接続(アノード接点)は、コンクリート鋼構造
物の電極部にチタン製ボルト、ナットによって取付けら
れたチタンプレートを用いて行い、一方、電源装置の負
極はコンクリート鋼構造物の鉄筋等に接続させることに
よって防食回路を形成させ、上記電源装置より鉄筋等に
電流を流すことにより該鉄筋等を防食しようとするもの
である。
[0004] In order to solve the disadvantages of the conventional anti-corrosion method using an external power source, a corrosion-resistant metal sprayed coating (JP-A-7-291769) has recently been developed. This corrosion-resistant metal spraying system coats a corrosion-resistant metal such as titanium on the surface of a roughened concrete steel structure by thermal spraying, and then applies an aqueous solution of cobalt nitrate or manganese sulfate to the coated corrosion-resistant metal such as titanium. An electrode is formed by activation treatment by heating or energization, and connection between the electrode and the positive electrode of the power supply device (anode contact) is performed using a titanium plate attached to an electrode portion of a concrete steel structure with titanium bolts and nuts. On the other hand, the negative electrode of the power supply device is intended to form an anticorrosion circuit by being connected to a reinforcing steel or the like of a concrete steel structure, and to attempt to protect the reinforcing steel or the like by passing a current from the power supply to the reinforcing steel or the like.

【0005】[0005]

【発明が解決しようとする問題点】前記した耐食性金属
溶射膜システムは、従来の外部電源方式による電気防食
法の欠点であった施工性、作業性をある程度改善したも
のであり、また高価な金属材料である白金または白金族
金属を使用しないことにおいてある程度価格の低減も図
られたものの、次の如き問題点、改善されるべき点が依
然として残されていた。すなわち、(1)チタン等の耐食
性金属材料は、電気伝導度が小さく、また溶射膜厚も薄
いために溶射皮膜の電気抵抗が大きくなり、その結果鉄
筋の電位分布が悪くなる;(2)この電位分布を改善する
ためには、耐食性金属溶射皮膜の膜厚を大きくする必要
があるが、その分材料費が高くなるとともに溶射膜とコ
ンクリート面との付着強度が低下するという問題点があ
る;(3)また、電位分布を改善するための他の方法とし
ては、多数のアノード接点を設置する方法があるが、施
工性が悪くなる;等である。本発明は耐食性金属溶射皮
膜システムの電位分布、施工性を改善して、このシステ
ムの信頼性を高めるとともに低価格の外部電源方式によ
る電気防食法を施すための被膜電極が被覆されたコンク
リート鋼構造物を提供することを目的とするものであ
る。
The above-mentioned corrosion-resistant metal sprayed coating system has improved the workability and workability, which are the drawbacks of the conventional anti-corrosion method using an external power supply system, to some extent. Although the price has been reduced to some extent by not using platinum or a platinum group metal as the material, the following problems and points to be improved still remain. That is, (1) a corrosion-resistant metal material such as titanium has a small electric conductivity and a small sprayed film thickness, so that the electric resistance of the sprayed coating increases, and as a result, the potential distribution of the reinforcing bar deteriorates; In order to improve the potential distribution, it is necessary to increase the thickness of the corrosion-resistant metal sprayed coating, but there is a problem that the material cost is increased and the adhesion strength between the sprayed coating and the concrete surface is reduced; (3) As another method for improving the potential distribution, there is a method of installing a large number of anode contacts, but the workability is deteriorated; The present invention improves the potential distribution and workability of the corrosion-resistant metal spray coating system, improves the reliability of the system, and coats a concrete steel structure coated with a coating electrode for applying an anticorrosion method using a low-cost external power supply system. The purpose is to provide things.

【0006】[0006]

【課題を解決するための手段】本発明は前記した耐食性
金属溶射皮膜システムの問題点を解決するためになされ
たものである。すなわち、コンクリート鋼構造物表面に
被覆された外部電源方式に用いるための皮膜電極が該コ
ンクリート鋼構造物表面に被覆され、該皮膜電極が、耐
食性金属溶射皮膜に活性化処理が施された第一皮膜層
と、その上に電気伝導度の高い金属体皮膜からなる第二
皮膜層が被覆されてなる複合皮膜電極で構成されること
を特徴とする複合皮膜電極で被覆されたコンクリート鋼
構造物を提供し、これにより前記課題を達成したもので
ある。本発明において、前記第一皮膜層は30〜90μmの
厚さとすること、また前記第二皮膜層は金属溶射によっ
て生成され、その厚さは50〜250μmとするようにす
る。前記第二皮膜層は亜鉛、アルミニウム、銅およびそ
れらの合金の1種または2種以上により形成する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems of the corrosion resistant metal spray coating system. That is, the surface of the concrete steel structure is coated with a coating electrode for use in an external power supply system, and the surface of the concrete steel structure is coated with the coating electrode. A concrete steel structure coated with a composite coating electrode characterized by comprising a coating layer and a composite coating electrode formed by coating a second coating layer made of a metal film having high electrical conductivity on the coating layer. Accordingly, the above-mentioned object has been achieved. In the present invention, the first coating layer has a thickness of 30 to 90 μm, and the second coating layer is formed by metal spraying, and has a thickness of 50 to 250 μm. The second coating layer is formed of one or more of zinc, aluminum, copper and alloys thereof.

【0007】[0007]

【発明の実施の形態】上記のように、本反発明において
は、第一皮膜層の膜厚を30〜90μmとしたことにより耐
食性金属溶射皮膜とコンクリート面との付着強度が膜厚
が120μmのものに比べて約2倍となって密着性が向上
し、この第一皮膜層上に、電気伝導度の大きい第二皮膜
層(例えば亜鉛溶射膜の電気伝導度はチタン溶射膜の約
8倍である)を被覆したものであるため、第一皮膜層だ
けのものに比べて著しく電気伝導度が向上ししかもこれ
ら第一皮膜層の電極作用とともにコンクリート面に複合
被覆されることにより、密着性とともに電位分布を均一
化させ得たものである。このような本発明に係る複合皮
膜電極としたことにより比較的高価で電気伝導度のあま
り良好ではないチタン溶射皮膜の弊害を第二皮膜層が補
填することができ、これらによりコンクリート鉄筋の電
位分布がより以上に均一となる。また高価な耐食性金属
材料の使用量の減少にも繋がり安価となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, in the present invention, by setting the thickness of the first coating layer to 30 to 90 μm, the adhesion strength between the corrosion-resistant metal sprayed coating and the concrete surface is set to 120 μm. Adhesion is improved by about twice that of the first coating layer, and a second coating layer having a large electric conductivity (for example, a zinc sprayed film has an electric conductivity of about 8 times that of a titanium sprayed film) on this first coating layer. ), The electrical conductivity is significantly improved compared to the case of only the first coating layer, and the first coating layer is combined with the concrete surface together with the electrode action, thereby improving the adhesion. In addition, the potential distribution was made uniform. By using such a composite coating electrode according to the present invention, the adverse effects of the titanium sprayed coating, which is relatively expensive and the electric conductivity is not so good, can be compensated for by the second coating layer. Becomes more uniform. In addition, the amount of expensive corrosion-resistant metal material used is reduced, and the cost is reduced.

【0008】本発明で使用される第一皮膜層の材質は、
チタンの他にタンタル、ニオブおよびジルコニウムでも
よく、その膜厚は30μmより薄いと、多孔質となるとと
もに膜厚が不均一となり電極としての機能に劣り、逆に
90μmを越えると前述したようにコンクリート面との付
着力が低下する。
The material of the first coating layer used in the present invention is:
Tantalum, niobium and zirconium may be used in addition to titanium. If the film thickness is less than 30 μm, the film becomes porous and the film thickness becomes non-uniform, resulting in poor electrode function.
If it exceeds 90 μm, the adhesion to the concrete surface is reduced as described above.

【0009】第二皮膜層の材質は、亜鉛の他にアルミニ
ウム、銅およびそれらの合金のいずれか1種または2種
以上からなり、通常は溶射手段により第一皮膜層上に形
成する。しかし施工作業が可能ならば薄板状体のものを
貼り付けてもよい。いずれにしろ、これら第二皮膜層の
膜厚は、50μm〜250μmとする。第二皮膜層の膜厚が5
0μmより薄いと電気伝導度が低下して電位分布に悪影
響をもたらし、250μmより厚いと第一皮膜層との付着
性が低下し、耐久性、信頼性に欠けるようになる。
The material of the second coating layer is made of one or more of aluminum, copper and their alloys in addition to zinc, and is usually formed on the first coating layer by thermal spraying. However, if the construction work is possible, a thin plate may be attached. In any case, the thickness of the second coating layer is set to 50 μm to 250 μm. The thickness of the second coating layer is 5
When the thickness is less than 0 μm, the electric conductivity is reduced and the potential distribution is adversely affected. When the thickness is more than 250 μm, the adhesion to the first coating layer is reduced, and the durability and reliability become poor.

【0010】なお、本発明で使用される第二皮膜層の外
側に、ガス抜きのための通気性と遮水性を兼ね備えた塗
料、例えば商品名ジェイナー(JR東日本商事社製;シリ
カゾル系)や商品名ハイバロン(デュポン社製:クロロ
スルホン化ポリエチレン)等の塗料で塗装することは、
複合皮膜電極を保護するためやその耐久性を向上させる
ためにさらに有効な手段となる。
In addition, a paint having both air permeability and water shielding for degassing, for example, a trader such as Jainer (manufactured by JR East Corporation; silica sol) or a commercial product is provided on the outside of the second coating layer used in the present invention. Painting with paint such as Meibaron (manufactured by DuPont: chlorosulfonated polyethylene)
This is a more effective means for protecting the composite film electrode and improving its durability.

【0011】本発明に係る複合電極は外部電極方式によ
り適用されるものであり、コンクリート面に取付けた複
合皮膜電極側を外部電源装置の正極に接続し、一方外部
電源装置の負極はコンクリート鋼構造物の鉄筋と接続す
ることにより、防食回路を形成させ、前記電源装置から
鉄筋等に防食電流を流すことにより鉄筋等を防食し、コ
ンクリート鋼構造物の劣化を長期的に防止するものであ
る。
The composite electrode according to the present invention is applied by an external electrode method, in which the composite film electrode attached to the concrete surface is connected to the positive electrode of an external power supply, while the negative electrode of the external power supply is a concrete steel structure. A corrosion protection circuit is formed by connecting to a reinforcing steel of an object, and corrosion protection is performed on the reinforcing steel by flowing an anticorrosion current from the power supply device to the reinforcing steel or the like, thereby preventing deterioration of the concrete steel structure for a long time.

【0012】[0012]

【実施例1】以下、実施例に基づき本発明を説明する
が、本発明はこれら実施例に限定されるものではない。
図1は本発明で使用される複合皮膜電極のアノード接点
部の断面及び側面の概略説明図である。図1において、
1はチタン等の第一皮膜層、2は亜鉛等の第二皮膜層、
3は第二皮膜層と同材質の金属製プレート、4は合成樹
脂製ボルト、5はコンクリート面をそれぞれ示す。図1
において、まず、第一皮膜層1の膜厚を変えてチタン溶
射皮膜とコンクリート面5との付着力を測定した。その
結果を表1に示す。第一皮膜層1として焼鈍した高純度
φ16mmチタン線をアーク溶射機(ターファ社、M-8850
型)を用い、予めサンドブラスト処理したコンクリート
面へ膜厚を30μm、60μm、90μm、120μm、180μm
と変えて溶射した。付着力の測定は40mm×40mmの鋼製ア
タッチメントを粘稠性、速硬化性エポキシ樹脂で被膜表
面に張付け、建研式接着力試験機(山本こう重機社製、
LPT-1500)を用いて測定した。それらの結果を表1に示
す。
[Embodiment 1] Hereinafter, the present invention will be described based on embodiments, but the present invention is not limited to these embodiments.
FIG. 1 is a schematic explanatory view of a cross section and a side surface of an anode contact portion of a composite film electrode used in the present invention. In FIG.
1 is a first coating layer of titanium or the like, 2 is a second coating layer of zinc or the like,
Reference numeral 3 denotes a metal plate of the same material as the second coating layer, 4 denotes a bolt made of synthetic resin, and 5 denotes a concrete surface. FIG.
First, the adhesive force between the titanium sprayed coating and the concrete surface 5 was measured while changing the thickness of the first coating layer 1. Table 1 shows the results. High-purity φ16mm titanium wire annealed as the first coating layer 1 using an arc spraying machine (Tafa, M-8850)
Using a mold), apply a film thickness of 30μm, 60μm, 90μm, 120μm, 180μm to the sandblasted concrete surface in advance.
And sprayed. The adhesion was measured by attaching a 40 mm x 40 mm steel attachment to the surface of the coating with a viscous, fast-curing epoxy resin, and using a Kenken-type adhesion tester (Yamamoto Kougeki Co., Ltd.
LPT-1500). Table 1 shows the results.

【0013】[0013]

【表1】 [Table 1]

【0014】表1の結果より、付着力は膜厚の増加に伴
って減少し、例えば膜厚30μm、60μmにおける付着力
は膜厚120μmの2倍以上の値を示した。なお、この付
着力は土木学会編纂のコンクリート構造物の維持管理指
針案に記載されている品質規格の付着力である10kg/cm2
以上とすることが望ましいことから、第一皮膜層1の膜
厚は90μmまでとすべきであることがわかる。
From the results shown in Table 1, the adhesive force decreases with an increase in the film thickness. For example, the adhesive force at a film thickness of 30 μm and 60 μm is twice or more the value of 120 μm. This adhesive force is 10 kg / cm 2 which is the adhesive force of the quality standard described in the draft guideline for maintenance and management of concrete structures compiled by the Japan Society of Civil Engineers.
From the above, it is understood that the film thickness of the first coating layer 1 should be up to 90 μm.

【0015】[0015]

【実施例2、3】次に、図2に示されるような劣化した
コンクリート製の橋桁8を切り出し、その両側面をサン
ドブラスト処理して供試面A及びBとした。その後、こ
れら両供試面に下記のような皮膜を形成した。 実施例2 :第一皮膜層…膜厚30μmの活性化したチタン溶射膜 第二皮膜層…膜厚50μmの亜鉛溶射膜 実施例3 :第一皮膜層…膜厚30μmの活性化したチタン溶射膜 第二皮膜層…膜厚100μmの亜鉛溶射膜 比較例1 :第一皮膜層…膜厚120μmの活性化したチタン溶射膜 皮膜形成後、アノード接点7及び、このアノード接点7
からの距離が、0.5m、1.0m、1.5m、2.5m、3.5mに
位置する測定点a,b,c,d,eに電位計測用基準電
極9を設置して、各測定点おける分極量の値(インスタ
ントオフ電位と不通電24時間後の電位差)を計測した。
なお、第一皮膜層の形成は実施例1と同様に行い、その
チタン溶射膜の活性化は、30%硝酸コバルト水溶液を40
0g/m2塗布した後、電流密度10mA/m2で3日通電する
ことにより行った。また、第二皮膜層は、高純度φ16mm
亜鉛線を実施例1で用いたアーク溶射機を用いて前記活
性化チタン皮膜上に所定の厚さで溶射した。それらの計
測結果を表2に示す。
Embodiments 2 and 3 Next, a deteriorated concrete bridge girder 8 as shown in FIG. 2 was cut out, and both sides of the bridge girder were subjected to sandblasting to obtain test surfaces A and B. Thereafter, the following films were formed on both test surfaces. Example 2: First coating layer: activated titanium sprayed film having a thickness of 30 μm Second coating layer: zinc sprayed film having a thickness of 50 μm Example 3: First coating layer: activated titanium sprayed film having a thickness of 30 μm Second coating layer: zinc sprayed film having a thickness of 100 μm Comparative Example 1: First coating layer: activated titanium sprayed film having a thickness of 120 μm After forming the coating, the anode contact 7 and the anode contact 7
The measurement electrodes a, b, c, d, and e are located at 0.5 m, 1.0 m, 1.5 m, 2.5 m, and 3.5 m, respectively. The value of the amount (the instant-off potential and the potential difference after 24 hours of non-conduction) was measured.
The formation of the first coating layer was carried out in the same manner as in Example 1. The activation of the titanium sprayed film was carried out by using a 30% aqueous solution of cobalt nitrate in 40%.
After applying 0 g / m 2 , current was applied at a current density of 10 mA / m 2 for 3 days. In addition, the second coating layer is high purity φ16mm
A zinc wire was sprayed to a predetermined thickness on the activated titanium film using the arc spraying machine used in Example 1. Table 2 shows the measurement results.

【0016】[0016]

【表2】 [Table 2]

【0017】表2より、各例ともアノード接点7から離
れるにつれて鉄筋の分極量は減少したが、本発明実施例
に従う実施例2及び3における分極量の減少は比較例1
のそれに比べて格段に小さく、また面Aと面Bとの分極
量の差異も比較例1より小さいものであった。
From Table 2, it can be seen that the amount of polarization of the reinforcing bar decreases as the distance from the anode contact 7 increases in each case, but the decrease in the amount of polarization in Examples 2 and 3 according to the embodiment of the present invention is shown in Comparative Example 1.
And the difference in the amount of polarization between the surface A and the surface B was smaller than that in Comparative Example 1.

【0018】[0018]

【実施例4】コンクリート鉄筋の電位分布を有限要素法
により検討した。有限要素法は解析領域を有限の要素に
分割して離散化方程式を解くことにより、それぞれの要
素の状態量を求めるものである。図3は有限要素法によ
るコンクリート鉄筋の電位分布解析条件(境界条件)を
示す。図3において、10は活性化されたチタン溶射皮膜
またはチタンと亜鉛の複合溶射膜であり、そのアノード
分極パラメーターを1×(1/105)kΩ・cm2とし、5
はコンクリート面であり、その抵抗値を20kΩ・cmと
し、6は鉄筋であり、そのカソード分極パラメーターを
50kΩ・cm2とした。このような条件下で、複合溶射膜ま
たはチタン溶射被膜10と鉄筋6の間に1Vの電圧を印加
した時の鉄筋6の電位分布を表3に示す。なお、溶射膜
厚に関する解析条件は、実施例3及び比較例1と同一と
した。表3より、コンクリート鉄筋の電位分布は、複合
皮膜電極によって均一化されることが確認された。
Embodiment 4 The potential distribution of a concrete reinforcing bar was examined by the finite element method. The finite element method obtains a state quantity of each element by dividing an analysis region into finite elements and solving a discretized equation. FIG. 3 shows potential distribution analysis conditions (boundary conditions) of concrete reinforcing bars by the finite element method. In FIG. 3, reference numeral 10 denotes an activated titanium sprayed coating or a composite sprayed coating of titanium and zinc, the anode polarization parameter of which is 1 × (1/10 5 ) kΩ · cm 2 ,
Is a concrete surface, the resistance of which is 20 kΩ · cm, 6 is a reinforcing bar, and its cathode polarization parameter is
50 kΩ · cm 2 . Table 3 shows the potential distribution of the reinforcing bar 6 when a voltage of 1 V was applied between the composite sprayed film or the titanium sprayed coating 10 and the reinforcing bar 6 under such conditions. The analysis conditions for the sprayed film thickness were the same as those in Example 3 and Comparative Example 1. From Table 3, it was confirmed that the potential distribution of the concrete reinforcing bar was made uniform by the composite coating electrode.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】以上のような本発明によれば、以下のよ
うな効果を有する。 (1) 耐食性金属溶射膜の膜厚を減少させることができる
ので、耐食性金属溶射皮膜の付着力が向上するととも
に、高価なチタン等の材料費が低減する。 (2) コンクリート鉄筋の電位分布が改善されるととも
に、分極量の変動要因となる施工のバラツキ(耐食性金
属溶射膜厚のバラツキ)の影響が抑制される。 (3) 電位分布の均一化により、防食効果に優れた信頼性
の高い電気防食法の施工が可能になる。
According to the present invention as described above, the following effects can be obtained. (1) Since the thickness of the corrosion-resistant metal sprayed film can be reduced, the adhesive force of the corrosion-resistant metal sprayed film is improved, and the cost of materials such as expensive titanium is reduced. (2) The potential distribution of the concrete reinforcing bars is improved, and the influence of the variation in the construction (variation in the corrosion-resistant metal sprayed film thickness) which causes the variation of the polarization amount is suppressed. (3) By making the potential distribution uniform, it is possible to implement a highly reliable cathodic protection method with an excellent anticorrosion effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる複合溶射皮膜電極とアノード接
点の構成を示す説明図である。
FIG. 1 is an explanatory view showing a configuration of a composite sprayed coating electrode and an anode contact according to the present invention.

【図2】本発明実施例2における供試体形状と電位測定
位置を示す説明図であり、(a)は供試体の断面を示し、
(b)は側面を示す。
FIGS. 2A and 2B are explanatory diagrams showing a specimen shape and a potential measurement position in Example 2 of the present invention, and FIG. 2A shows a cross section of the specimen;
(b) shows a side view.

【図3】本発明実施例3における有限要素法による鉄筋
電位分布解析条件を示す説明図である。
FIG. 3 is an explanatory view showing conditions for analyzing a rebar potential distribution by a finite element method according to Embodiment 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 第一皮膜層 2 第二皮膜層 3 金属製プレート 4 合成樹脂製ボルト 5 コンクリート面 6 鉄筋 7 アノード接点 8 橋桁 9 電位計測用基準電極 10 複合溶射膜またはチタン溶射被膜 DESCRIPTION OF SYMBOLS 1 First coating layer 2 Second coating layer 3 Metal plate 4 Synthetic resin bolt 5 Concrete surface 6 Reinforcing bar 7 Anode contact 8 Bridge girder 9 Reference electrode for potential measurement 10 Composite spray coating or titanium spray coating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井川 一弘 埼玉県上尾市中新井417−16 株式会社ナ カボーテック技術開発研究所内 (72)発明者 田中 健一郎 埼玉県上尾市中新井417−16 株式会社ナ カボーテック技術開発研究所内 (72)発明者 矢島 秀治 埼玉県上尾市中新井417−16 株式会社ナ カボーテック技術開発研究所内 Fターム(参考) 2E176 AA01 BB05 BB25 4G028 AA00  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazuhiro Igawa 417-16 Nakaarai, Ageo City, Saitama Prefecture Inside Nakabo Tech R & D Laboratories, Inc. (72) Kenichiro Tanaka 417-16 Nakaarai, Ageo City, Saitama Prefecture Na Corporation Inside Cabotech R & D Laboratory (72) Inventor Hideharu Yajima 417-16 Nakaarai, Ageo-shi, Saitama Na Cabotech R & D Laboratory F-term (reference) 2E176 AA01 BB05 BB25 4G028 AA00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート鋼構造物表面に被覆された
外部電源方式に用いるための皮膜電極が該コンクリート
鋼構造物表面に被覆され、該皮膜電極が、耐食性金属溶
射皮膜に活性化処理が施された第一皮膜層と、その上に
電気伝導度の高い金属体皮膜からなる第二皮膜層が被覆
されてなる複合皮膜電極で構成されることを特徴とする
複合皮膜電極で被覆されたコンクリート鋼構造物。
1. A coating electrode for use in an external power supply system coated on a surface of a concrete steel structure is coated on the surface of the concrete steel structure, and the coating electrode is subjected to an activation treatment on a corrosion-resistant metal sprayed coating. Concrete steel coated with a composite coating electrode, characterized by comprising a composite coating electrode comprising a first coating layer and a second coating layer made of a metal film having high electrical conductivity on the first coating layer. Structure.
【請求項2】 前記第一皮膜層が、30〜90μmの厚さで
ある請求項1記載の複合皮膜電極で被覆されたコンクリ
ート鋼構造物。
2. A concrete steel structure coated with a composite coated electrode according to claim 1, wherein said first coating layer has a thickness of 30 to 90 μm.
【請求項3】 前記第二皮膜層が、金属溶射によって生
成され、その厚さが50〜250μmである請求項1記載の
複合皮膜電極で被覆されたコンクリート鋼構造物。
3. A concrete steel structure coated with a composite coated electrode according to claim 1, wherein said second coating layer is formed by metal spraying and has a thickness of 50 to 250 μm.
【請求項4】 前記第二皮膜層が、亜鉛、アルミニウ
ム、銅およびそれらの合金の1種または2種以上からな
る請求項1乃至3記載の複合皮膜電極で被覆されたコン
クリート鋼構造物。
4. A concrete steel structure coated with a composite coated electrode according to claim 1, wherein said second coating layer is made of one or more of zinc, aluminum, copper and alloys thereof.
JP21043398A 1998-07-09 1998-07-09 Concrete steel structure covered with composite film electrode Expired - Fee Related JP4201394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21043398A JP4201394B2 (en) 1998-07-09 1998-07-09 Concrete steel structure covered with composite film electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21043398A JP4201394B2 (en) 1998-07-09 1998-07-09 Concrete steel structure covered with composite film electrode

Publications (2)

Publication Number Publication Date
JP2000026173A true JP2000026173A (en) 2000-01-25
JP4201394B2 JP4201394B2 (en) 2008-12-24

Family

ID=16589253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21043398A Expired - Fee Related JP4201394B2 (en) 1998-07-09 1998-07-09 Concrete steel structure covered with composite film electrode

Country Status (1)

Country Link
JP (1) JP4201394B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340782A (en) * 2001-05-14 2002-11-27 Okumura Corp Method for predicting degradation of concrete structure
JP2022147887A (en) * 2021-03-24 2022-10-06 東日本旅客鉄道株式会社 Conductive paint, concrete structure electric protection method using the same, and anode material repair method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340782A (en) * 2001-05-14 2002-11-27 Okumura Corp Method for predicting degradation of concrete structure
JP2022147887A (en) * 2021-03-24 2022-10-06 東日本旅客鉄道株式会社 Conductive paint, concrete structure electric protection method using the same, and anode material repair method
JP7382361B2 (en) 2021-03-24 2023-11-16 東日本旅客鉄道株式会社 Conductive paint, method for cathodic protection of concrete structures using the same, and method for repairing anode materials

Also Published As

Publication number Publication date
JP4201394B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
US6358397B1 (en) Doubly-protected reinforcing members in concrete
JP2011503365A (en) Anticorrosion management method and equipment for reinforcing bars in concrete
WO1995032320A1 (en) Galvanic protection of rebar by zinc wire and insulating coating
JP4641025B2 (en) Concrete anticorrosion method and concrete structure obtained by implementing the same
JP2966926B2 (en) New electrode and cathodic protection system
JP4201394B2 (en) Concrete steel structure covered with composite film electrode
JP5052881B2 (en) Concrete anticorrosion method and concrete structure obtained by implementing the same
JP6274955B2 (en) Method of cathodic protection for concrete structures
Galvanic Galvanic cathodic protection of reinforced and prestressed concrete using a thermally sprayed aluminum coating
JP2006063439A (en) Sprayed coating for corrosion prevention to reinforcing bar in concrete structure
JP4602719B2 (en) Anticorrosion and repair methods for reinforced concrete structures
JP3798189B2 (en) Repair method for concrete structures
JPH04297643A (en) Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
JPH09296526A (en) Method and structure of electric corrosion protection of reinforcement in reinforced concrete structure
JP7261387B2 (en) Coating material for anode material, concrete structure, and cathodic protection method
JPH1181502A (en) Anti-corrosion method of reinforcement in reinforced concrete
Holcomb et al. Cost of impressed current cathodic protection for coastal Oregon bridges
Funahashi et al. Three year performance of aluminum alloy galvanic cathodic protection system
JP3766043B2 (en) Anticorrosion reinforced concrete assembly and its anticorrosion method
JPH1129952A (en) Concrete structure, and its electric anticorrosion method
JP4015933B2 (en) Method for manufacturing concrete structure
SK4962003A3 (en) Doubly-protected reinforcing members in concrete
CA2170332C (en) Cathodically protected concrete article, anode, and process for production thereof
JPS62263984A (en) Electrolytic protection method for concrete structure
JP2019066300A (en) Method for detecting effects of electrolytic protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees