JP4015933B2 - Method for manufacturing concrete structure - Google Patents

Method for manufacturing concrete structure Download PDF

Info

Publication number
JP4015933B2
JP4015933B2 JP2002339521A JP2002339521A JP4015933B2 JP 4015933 B2 JP4015933 B2 JP 4015933B2 JP 2002339521 A JP2002339521 A JP 2002339521A JP 2002339521 A JP2002339521 A JP 2002339521A JP 4015933 B2 JP4015933 B2 JP 4015933B2
Authority
JP
Japan
Prior art keywords
electrode
concrete
anode
metal
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002339521A
Other languages
Japanese (ja)
Other versions
JP2003213804A (en
Inventor
浩司 石井
Original Assignee
株式会社ピーエス三菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピーエス三菱 filed Critical 株式会社ピーエス三菱
Priority to JP2002339521A priority Critical patent/JP4015933B2/en
Publication of JP2003213804A publication Critical patent/JP2003213804A/en
Application granted granted Critical
Publication of JP4015933B2 publication Critical patent/JP4015933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼構造物やコンクリート構造物の鉄筋などの鋼材の防食に用いられる電極体に関し、更に詳しくは外部電源方式電気防食法に使用される陽極(アノード)電極の構造に関する。
【0002】
【従来の技術】
古来人類は、地球上に大量に存在し、比較的簡単に精錬でき加工性が良く安価で安定性のある金属として、大量の鉄(Fe)を利用してきた。しかし、近年、塩や酸性環境下の鋼構造物やコンクリート構造物中の鉄筋などの腐食が社会的な問題となっている。これは鋼構造物や鉄筋として使用される鉄(Fe)の化学的な性状が、通常の環境下ではその表面に薄い酸化鉄の不動態膜で覆われ安定しているが、海洋などの塩分環境下や環境汚染などによる酸性環境下ではその不動態膜が破壊され酸化が内部にまで進行し、ついには構造物の破壊にまで至る事態が発生するからである。
【0003】
このことは古くから認識されており、その対策として、鉄の表面に異種金属をメッキするなどの腐食を防止する手段が実施されてきた。この手段には二通りあって、鉄(Fe)と化学的性質(イオン化傾向)の異なる亜鉛(Zn)や錫(Sn)をメッキしたもので、前者はトタン板、後者はブリキ板として知られている。トタン板は鉄よりイオン化傾向の大きい(腐食し易い)亜鉛をメッキすることによって、鉄自体よりも先に亜鉛を腐食させ、亜鉛を犠牲にして鉄を腐食から守ろうとするのに対し、後者のブリキ板は鉄よりイオン化傾向の小さい(腐食し難い)錫をメッキすることによって、鉄自体を覆い鉄を腐食から守ろうとする違いがある。
【0004】
近年金属の腐食のメカニズムが解明され、金属の持つ固有の化学的性質(自然電位差)を積極的に利用して化学的性質の異なる異種金属を組合せて電気的に腐食を防止する電気防食技術が開発されている。電気防食技術には流電陽極方式、外部電源方式の二通りの方法があり、いずれも鉄を陰極(カソード)とし、これに対する異種金属を陽極(アノード)として利用するものである。
【0005】
流電陽極方式は、鉄よりイオン化傾向の大きい(低電位の)、亜鉛やアルミニウム合金、マグネシウム合金などの犠牲電極片を陽極として、鉄の被防食体に添設しておき、自然界の電界質例えば海水中に浸漬し電気的回路を形成するものである。この電気回路が形成されると金属のもつ固有の電位差によって電流が流れ、鉄よりイオン化傾向の大きい亜鉛などの陽極がイオン化して溶出し、その陽極を犠牲にして被防食体である鉄の腐食が防止される。この方式は設置が簡単で特別な設備を必要しないこと等の利点はあるものの、犠牲となる陽極金属片の定期的な交換の必要性があり、また制御が難しいという欠点がある。
【0006】
外部電源方式は、被防食体の鉄よりイオン化傾向の小さい金属、例えば白金などの貴金属を用いることが望ましいが高価であることから、白金メッキチタン線や鉛合金、黒鉛などを陽極片として用いる。そして、被防食体及び陽極片からそれぞれリード線を引き出し、これらを直流電源に接続し、電源から防食電流を流すことによって被防食体の腐食を防止するものである。防食の制御は直流電源の出力電圧を制御することによって簡単に行うことができる。電源のメンテナンスなどを必要とするが、電極体の交換などを必要としない利点がある。
【0007】
本発明者は、外部電源方式の防食技術を橋桁に適用する技術を開示した。この技術は陽極として白金メッキチタン線の不溶性電極線条を被防食材である鋼材と一定間隔を保持するように電極線条に張力を付与し展張する技術である(例えば、特許文献1参照。)。このようにしたのは電極間の間隔が変動すると流れる防食電流が不均一になり防食効果を阻害するためである。従来の電極は細線状、細線をメッシュ状に織ったもの、又は薄いリボン状の形状のものが用いられていた。これらの電極は剛性が小さく変形し易く被防食体と均一な間隔に配設するには問題があった。
【0008】
従来、エキスパンデッド不溶性金属メッシュの周縁部に電気防食用陽極材及び周縁部に電気的接続用の端子を取り付けたエキスパンデッド不溶性金属メッシュを、端子を露出させて電導性被覆材内に埋設した電気防食用陽極材が知らされている(例えば、特許文献2参照。)。すなわち、外部電極方式の防食技術において、エキスパンデッドメタルからなる不溶性金属メッシュは公知である。
【0009】
イオン導通セメントを含むコンクリートブロックに包まれた陽極を備え、その中に活性層で包まれ両方に突出したバルブメタルコアを備え、鉄筋コンクリート中に固定し、鉄筋の周囲にコンクリートを打設して養生し、コアと鉄筋とを直流電源に接続した鉄筋コンクリート保護技術がある。(例えば、特許文献3参照。)。ここでは、電極を鉄筋コンクリート中に固定している。しかしアノード電極体をスペーサとして用いることは記載されていない。
【0010】
【特許文献1】
特開平6−158365号公報(第2−3頁、図4〜6)
【特許文献2】
実開平5−56955号(第1−2頁、図1)
【特許文献3】
米国特許第5609748号明細書(1997年3月11日)(第1−4欄、図2)
【0011】
【発明が解決しようとする課題】
本発明は簡単に配設することが可能で、被防食体との間隔を均一に保持することができ、被防食体と電極が直接接触することのないアノード電極体を用いたコンクリート構造物の製造方法提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、金属薄板からなる電極、または金属細線をメッシュ状に織って帯状に形成した電極であってTiを主成分とする非消耗電極を、モルタル又はコンクリートで被覆して長さ1m程度、電極断面積0.1cm 2 程度、モルタル厚さ2.5cm程度の角棒を形成し、該角棒の長手方向端面に該電極の端部が露出した接続片を設けたアノード電極体を製作し、このアノード電極体をスペーサとして鉄筋を組込み、側型枠を建て込み、コンクリート構造物を製造することを特徴とするコンクリート構造物の製造方法である。
【0013】
前記金属薄板からなる電極、または金属細線をメッシュ状に織って帯状に形成した電極に代えて公知のエキスパンドメタルから成る電極を用いてもよい。
【0014】
また、前記アノード電極体をスペーサとすることに代えて鉄筋に結束固定することとしてもよい。
【0015】
前記アノード電極体は長さ1m程度のものを所定の長さに接続したものとし、電極断面積0.1cm2程度、モルタル厚さ2.5cm程度とする。スペーサとしてアノード電極と鉄筋との間隔が一定になるので好適である。
【0016】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を説明する。図1は本発明の実施例のアノード電極体1を示す斜視図である。帯状電極2をモルタル3で角棒状に被覆してある。帯状電極2は金属細線をメッシュ状に織って帯状に形成したものでもよく、金属薄板からなるものでもよく、エキスパンデッドメタルでもよい。アノード電極体1の長さは製造容易で取り扱い容易の観点から、約1m程度に成形されている、帯状電極の断面積は、例えば0.1cm2程度でよく、モルタルの被覆角棒の寸法は、厚さ2.5cm程度とする。角棒端部から電極の端部を露出して接続片4としておき、構造物に電極体を配設するときは接続片4同士をスポット溶接等の手段で接続し、所望の長さとして使用すればよい。電極金属として被防食体である鉄筋の鉄(Fe)より自然電位が高く耐久性に富むチタン(Ti)細線をメッシュ(グリッド)状に形成した電極を使用したが、材料はこれに限定するものではない。使用可能な電極金属としては、鉄より電位の高い材料であればよく、ニッケル、錫、鉛、銅、銀、金、白金など及びこれらの合金材、メッキ材などをコストを勘案して選択すればよい。
【0017】
図2は橋桁10の断面図で、新規に桁を製作する場合のアノード電極体の配設図である。橋桁10の底面近傍のコンクリート中にアノード電極体1を配設してある。これは、橋桁10の製作時に橋桁10の底版型枠の上にモルタルで被覆したアノード電極体1を所定の長さに接続して配置し、アノード電極体1をスペーサとして利用して桁の必要な鉄筋11及びPC鋼材12を組み込み、側型枠を建て込み、通常の方法でコンクリート13を打設し成形したものである。このアノード電極体1をスペーサとするのではなく鉄筋11に結束線で固定し、別体のスペーサを使用してもよい。
【0018】
図3は鉄筋の腐食によってコンクリートが剥離したコンクリート桁10の補修にアノード電極体1を適用した参考例を示した。剥離部分の桁10のコンクリート13をはつり取り、鉄筋11及びPC鋼材12の除錆を行い。さらに必要であれば防食塗装を施し、健全部分のコンクリートにインサート15を埋設して正規のコンクリート断面に復元するための型枠14をボルト16で取付け、骨材17及び充填モルタルを充填して補修した例である。この場合補修後の鉄筋などの腐食が再発しないように、防食のためにアノード電極体1を埋装した。
【0019】
図4は本発明のアノード電極体1を使用する外部電源方式の電気防食法の説明図である。コンクリート13中に埋装されたアノード電極から及びコンクリート桁10の構造鉄筋11からそれぞれリード線24、25を引き出し、外部に設置された直流電源21に接続する。アノード電極体1の電極のリード線24は、直流電源21のプラス(+)端子22に、鉄筋11からのリード線25は直流電源21のマイナス(−)端子23に接続する。このようにすることにより、直流電源21のプラス側からアノード電極1に防食電流が流れ鉄筋11の腐食が防止される。この直流電源21は大容量のものが必要な場合は、商用交流電源を整流して用いるとよい。
【0020】
以上はコンクリート桁に適用した例で説明したが、桁に限らず他のコンクリート構造物の鉄筋の防食が可能である。更にコンクリート構造物に限定されず鋼構造物の鋼部材にアノード電極を添設配置することによって鋼部材そのものの防食を図ることも可能である。
【0021】
【発明の効果】
本発明のアノード電極体は、鉄筋より自然電位の高いチタンを使用した外部電源方式の陽極電極を用い、薄板帯状の金属板、又は金属細線をメッシュ状に織った帯状の電極又はエキスパンドメタルから成る電極を、モルタルまたはコンクリートで角棒状に被覆し、角棒の長手方向端面から電極の端部を露出して接続片としたもので、モルタルで被覆することにより電極自体が鉄筋に直接接触することもなく、正確な電極間の間隔を確保することができ、均一な防食電流を流すことが可能となり、鉄筋などの被防食体の確実な腐食の防止が可能となる。
【図面の簡単な説明】
【図1】実施例のアノード電極体の斜視図である。
【図2】橋桁の断面図である。
【図3】鉄筋の腐食によってコンクリートが剥離したコンクリート桁の補修に適用した例の説明図である。
【図4】アノード電極体を使用する外部電源方式の電気防食法の説明図である。
【符号の説明】
1 アノード電極体
2 電極
3 被覆体(モルタル又はコンクリート)
4 接続片
10 コンクリート桁(橋桁)
11 鉄筋
12 PC鋼材
13 コンクリート
14 型枠
15 インサート
16 ボルト
17 骨材
21 直流電源
22 (+)極端子
23 (−)極端子
24、25 リード線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode body used for corrosion protection of steel materials such as steel bars and steel bars of concrete structures, and more particularly to a structure of an anode electrode used for an external power source type anticorrosion method.
[0002]
[Prior art]
Ancient humans have used a large amount of iron (Fe) as a metal that exists in large quantities on the earth, can be refined relatively easily, has good workability, is inexpensive and stable. However, in recent years, corrosion of steel and steel bars in an acidic environment and rebar in concrete structures has become a social problem. This is because the chemical properties of iron (Fe) used as steel structures and reinforcing bars are covered with a thin passive film of iron oxide on the surface under normal circumstances, but are stable. This is because, in an acidic environment due to the environment or environmental pollution, the passive film is destroyed, oxidation proceeds to the inside, and finally a situation that leads to destruction of the structure occurs.
[0003]
This has been recognized for a long time, and as a countermeasure, means for preventing corrosion such as plating of a different metal on the surface of iron has been implemented. There are two ways to do this: zinc (Zn) and tin (Sn), which have different chemical properties (ionization tendency) from iron (Fe), and the former is known as a tin plate and the latter as a tin plate. ing. The tin plate is plated with zinc which is more ionized than iron (which is more likely to corrode) to corrode zinc before iron itself, and at the expense of zinc to protect iron from corrosion. The tin plate is plated with tin that has a lower ionization tendency (harder to corrode) than iron, so that there is a difference in that the iron plate itself is covered and the iron is protected from corrosion.
[0004]
In recent years, the mechanism of metal corrosion has been elucidated, and an anti-corrosion technology that prevents the corrosion electrically by combining dissimilar metals with different chemical properties by actively utilizing the inherent chemical properties (natural potential difference) of metals. Has been developed. There are two types of cathodic protection techniques, the galvanic anode method and the external power supply method, both of which use iron as a cathode and a different metal as an anode.
[0005]
The galvanic anode method uses a sacrificial electrode piece of zinc, aluminum alloy, magnesium alloy, etc., which has a higher ionization tendency than iron (as a low potential), as an anode, and is attached to an iron corroded body. For example, it is immersed in seawater to form an electrical circuit. When this electric circuit is formed, current flows due to the inherent potential difference of the metal, and the anode such as zinc, which has a higher ionization tendency than iron, ionizes and elutes, and the corrosion of iron, which is the object to be protected, is sacrificed at the sacrifice of the anode. Is prevented. Although this method has advantages such as easy installation and no special equipment, there is a drawback that it is necessary to periodically replace the sacrificial anode metal piece and it is difficult to control.
[0006]
In the external power source system, it is desirable to use a metal having a lower ionization tendency than iron of the corrosion-protected body, for example, a noble metal such as platinum, but since it is expensive, platinum-plated titanium wire, lead alloy, graphite or the like is used as the anode piece. Then, lead wires are drawn out from the object to be protected and the anode piece, connected to a DC power source, and a corrosion current is passed from the power source to prevent corrosion of the object to be protected. The anticorrosion control can be easily performed by controlling the output voltage of the DC power supply. There is an advantage that the maintenance of the power source is required, but the electrode body is not required to be replaced.
[0007]
The present inventor has disclosed a technique of applying an external power supply type anticorrosion technique to a bridge girder. This technique is a technique in which an insoluble electrode filament of a platinum-plated titanium wire is applied as an anode and stretched by applying tension to the electrode filament so as to maintain a certain distance from a steel material that is an anticorrosive material (see, for example, Patent Document 1). ). This is because the anticorrosion current that flows when the distance between the electrodes fluctuates becomes non-uniform and inhibits the anticorrosion effect. Conventional electrodes have been used in the form of fine wires, fine wires woven in a mesh shape, or thin ribbon shapes. These electrodes have a problem in that they have a small rigidity and are easily deformed so that they are arranged at a uniform distance from the object to be protected.
[0008]
Conventionally, an expanded insoluble metal mesh with an anti-corrosion anode material attached to the periphery of the expanded insoluble metal mesh and an electrical connection terminal attached to the periphery is embedded in the conductive coating with the terminals exposed. An anode material for cathodic protection is known (for example, see Patent Document 2). That is, in an external electrode type anticorrosion technique, an insoluble metal mesh made of expanded metal is known.
[0009]
Equipped with an anode encased in a concrete block containing ion-conducting cement, with a valve metal core encased in an active layer and protruding on both sides, fixed in reinforced concrete, and placed around the rebar for curing. There is a reinforced concrete protection technology in which a core and a reinforcing bar are connected to a DC power source. (For example, refer to Patent Document 3). Here, the electrodes are fixed in reinforced concrete. However, use of the anode electrode body as a spacer is not described.
[0010]
[Patent Document 1]
JP-A-6-158365 (page 2-3, FIGS. 4 to 6)
[Patent Document 2]
Japanese Utility Model Publication No. 5-56955 (page 1-2, Fig. 1)
[Patent Document 3]
US Pat. No. 5,609,748 (March 11, 1997) (column 1-4, FIG. 2)
[0011]
[Problems to be solved by the invention]
The present invention can be easily arranged, can maintain a uniform distance from the object to be protected, and can be used for a concrete structure using an anode electrode body in which the object to be protected and the electrode are not in direct contact. An object is to provide a manufacturing method.
[0012]
[Means for Solving the Problems]
The present invention is an electrode made of a thin metal plate, or an electrode formed by weaving a fine metal wire in a mesh shape into a strip shape, and covering a non-consumable electrode mainly composed of Ti with mortar or concrete, and having a length of about 1 m, An anode electrode body is manufactured in which a square bar having an electrode cross-sectional area of about 0.1 cm 2 and a mortar thickness of about 2.5 cm is formed, and a connecting piece having an exposed end of the electrode is provided on the longitudinal end face of the square bar. The method of manufacturing a concrete structure is characterized in that a reinforcing bar is incorporated using the anode electrode body as a spacer, a side mold is built, and a concrete structure is manufactured.
[0013]
An electrode made of a known expanded metal may be used instead of the electrode made of the metal thin plate or the electrode formed by woven metal fine wires in a mesh shape into a band shape.
[0014]
Further, instead of using the anode electrode body as a spacer, the anode electrode body may be bound and fixed to a reinforcing bar.
[0015]
The anode electrode is assumed to connected ones having a length of about 1m to length, the electrode cross-sectional area 0.1 cm 2 about, mortar thickness 2.5cm about. The spacer is suitable because the distance between the anode electrode and the reinforcing bar is constant.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an anode electrode body 1 according to an embodiment of the present invention. The strip electrode 2 is covered with a mortar 3 in a square bar shape. The strip electrode 2 may be formed by weaving fine metal wires in a mesh shape, may be formed of a thin metal plate, or may be an expanded metal. From the viewpoint of easy manufacture and easy handling, the length of the anode electrode body 1 is formed to about 1 m. The cross-sectional area of the strip electrode may be about 0.1 cm 2 , for example. The thickness is about 2.5 cm. The end of the electrode is exposed from the end of the square bar to form the connection piece 4, and when the electrode body is disposed on the structure, the connection pieces 4 are connected to each other by means such as spot welding and used as the desired length do it. As the electrode metal, an electrode in which a titanium (Ti) fine wire having a higher natural potential and higher durability than the iron (Fe), which is an anticorrosive object, is formed in a mesh (grid) shape was used, but the material is limited to this. is not. The electrode metal that can be used may be any material that has a higher potential than iron, and nickel, tin, lead, copper, silver, gold, platinum, etc., and their alloy materials and plating materials should be selected in consideration of cost. That's fine.
[0017]
FIG. 2 is a cross-sectional view of the bridge girder 10 and is an arrangement view of anode electrode bodies when a new girder is manufactured. The anode electrode body 1 is disposed in the concrete near the bottom surface of the bridge girder 10. This is because when the bridge girder 10 is manufactured, the anode electrode body 1 covered with mortar is connected to a predetermined length on the bottom form of the bridge girder 10, and the girder is required by using the anode electrode body 1 as a spacer. A rebar 11 and a PC steel material 12 are incorporated, a side mold is built, and concrete 13 is cast and molded by a normal method. Instead of using the anode electrode body 1 as a spacer, the anode electrode body 1 may be fixed to the reinforcing bar 11 with a binding wire, and a separate spacer may be used.
[0018]
FIG. 3 shows a reference example in which the anode electrode body 1 is applied to repair a concrete girder 10 from which concrete has been peeled off due to corrosion of reinforcing bars. The concrete 13 of the spar 10 at the peeling part is removed, and the reinforcing bars 11 and the PC steel material 12 are derusted. If necessary, apply anti-corrosion coating, and insert the insert 15 into the sound concrete and attach the mold 14 to restore the normal concrete section with bolts 16, and fill the aggregate 17 and filling mortar for repair. This is an example. In this case, the anode electrode body 1 was embedded for corrosion prevention so that the corrosion of the reinforcing steel bars after repair did not recur.
[0019]
FIG. 4 is an explanatory view of an external anti-corrosion method using the anode electrode body 1 of the present invention. Lead wires 24 and 25 are pulled out from the anode electrode embedded in the concrete 13 and the structural reinforcing bar 11 of the concrete girder 10, respectively, and connected to a DC power source 21 installed outside. The lead wire 24 of the electrode of the anode electrode body 1 is connected to the plus (+) terminal 22 of the DC power source 21, and the lead wire 25 from the reinforcing bar 11 is connected to the minus (−) terminal 23 of the DC power source 21. By doing so, the anticorrosion current flows from the positive side of the DC power supply 21 to the anode electrode 1 and corrosion of the reinforcing bars 11 is prevented. If the DC power source 21 needs to have a large capacity, a commercial AC power source may be rectified and used.
[0020]
The above is an example applied to a concrete girder, but it is possible to prevent corrosion of reinforcing bars of other concrete structures as well as girder. Furthermore, the present invention is not limited to a concrete structure, and it is possible to prevent corrosion of the steel member itself by arranging an anode electrode on the steel member of the steel structure.
[0021]
【The invention's effect】
The anode electrode body of the present invention uses an external power source type anode electrode using titanium having a natural potential higher than that of a reinforcing bar, and is composed of a strip-shaped metal plate, or a strip-shaped electrode in which metal fine wires are woven in a mesh shape or an expanded metal. The electrode is covered with a mortar or concrete in the form of a square bar, and the end of the electrode is exposed from the longitudinal end face of the square bar to form a connecting piece. By covering with the mortar, the electrode itself directly contacts the reinforcing bar. Therefore, it is possible to ensure an accurate gap between the electrodes, to allow a uniform corrosion-proof current to flow, and to surely prevent corrosion of an object to be protected such as a reinforcing bar.
[Brief description of the drawings]
FIG. 1 is a perspective view of an anode electrode body according to an embodiment.
FIG. 2 is a cross-sectional view of a bridge girder.
FIG. 3 is an explanatory view of an example applied to repair of a concrete girder in which concrete is peeled off due to corrosion of reinforcing bars.
FIG. 4 is an explanatory diagram of an external power supply type anti-corrosion method using an anode electrode body.
[Explanation of symbols]
1 Anode electrode body 2 Electrode 3 Covering body (mortar or concrete)
4 Connection piece 10 Concrete girder (bridge girder)
11 Reinforcing bar 12 PC steel 13 Concrete 14 Form 15 Insert 16 Bolt 17 Aggregate 21 DC power source 22 (+) Electrode terminal 23 (-) Electrode terminals 24, 25 Lead wire

Claims (2)

金属薄板からなる電極、または金属細線をメッシュ状に織って帯状に形成した電極であってTiを主成分とする非消耗電極を、モルタル又はコンクリートで被覆して長さ1m程度、電極断面積0.1cm 2 程度、モルタル厚さ2.5cm程度の角棒を形成し、該角棒の長手方向端面に該電極の端部が露出した接続片を設けたアノード電極体を製作し、このアノード電極体をスペーサとして鉄筋を組込み、側型枠を建て込み、コンクリート構造物を製造することを特徴とするコンクリート構造物の製造方法。An electrode made of a thin metal plate, or an electrode formed by weaving fine metal wires in a mesh shape into a band shape, and covering a non-consumable electrode mainly composed of Ti with mortar or concrete, and having a length of about 1 m and an electrode cross-sectional area of 0 An anode electrode body in which a square bar having a thickness of about 1 cm 2 and a mortar thickness of about 2.5 cm is formed and a connecting piece having an exposed end of the electrode is provided on the longitudinal end surface of the square bar is manufactured. A method for producing a concrete structure, characterized by incorporating a reinforcing bar with a body as a spacer, building a side mold, and producing a concrete structure. 前記金属薄板からなる電極、または金属細線をメッシュ状に織って帯状に形成した電極に代えてエキスパンドメタルから成る電極を用いることを特徴とする請求項1記載のコンクリート構造物の製造方法。  2. The method for producing a concrete structure according to claim 1, wherein an electrode made of expanded metal is used in place of the electrode made of the thin metal plate or the electrode formed by woven metal fine wires in a mesh shape into a band shape.
JP2002339521A 2002-11-22 2002-11-22 Method for manufacturing concrete structure Expired - Lifetime JP4015933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339521A JP4015933B2 (en) 2002-11-22 2002-11-22 Method for manufacturing concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339521A JP4015933B2 (en) 2002-11-22 2002-11-22 Method for manufacturing concrete structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18281999A Division JP3798189B2 (en) 1999-06-29 1999-06-29 Repair method for concrete structures

Publications (2)

Publication Number Publication Date
JP2003213804A JP2003213804A (en) 2003-07-30
JP4015933B2 true JP4015933B2 (en) 2007-11-28

Family

ID=27655844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339521A Expired - Lifetime JP4015933B2 (en) 2002-11-22 2002-11-22 Method for manufacturing concrete structure

Country Status (1)

Country Link
JP (1) JP4015933B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824737B2 (en) * 2008-11-26 2011-11-30 株式会社東京興業貿易商会 Anode body for cathodic protection, concrete structure provided with the anode body, and method for producing anode body for cathodic protection
JP5798877B2 (en) * 2011-10-13 2015-10-21 三井住友建設株式会社 Electrical protection method for bridge girder edge

Also Published As

Publication number Publication date
JP2003213804A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
USRE46862E1 (en) Sacrificial anode assembly
US8211289B2 (en) Sacrificial anode and treatment of concrete
CA2880235C (en) Galvanic anode and method of corrosion protection
WO2005121760B1 (en) Anode assembly for cathodic protection
CZ20031118A3 (en) Concrete structure with double protected reinforcing elements
CN107988603B (en) Device and method for protecting cable from corrosion by using externally applied current of rainwater conduction
US20140251793A1 (en) Cathodic protection current distribution method and apparatus for corrosion control of reinforcing steel in concrete structures
EP0222829B2 (en) Cathodic protection system for a steel-reinforced concrete structure and method of installation
JP3798189B2 (en) Repair method for concrete structures
JP4015933B2 (en) Method for manufacturing concrete structure
JPH05500393A (en) Novel electrode and cathodic protection systems
CA1314518C (en) Cathodic protection system for reinforced concrete including anode of valve metal mesh
EP0534392B1 (en) Anode structure for cathodic protection of steel reinforced concrete and relevant method of use
JP6640573B2 (en) Galvanic anode unit and anticorrosion structure of concrete structure using it
JP7483190B2 (en) Sacrificial anode monitoring sensor and monitoring method
CA2316983A1 (en) Connector for use in cathodic protection and method of use
JP4201394B2 (en) Concrete steel structure covered with composite film electrode
JPH11293792A (en) Concrete structure having excellent corrosion resistance
JPH1129952A (en) Concrete structure, and its electric anticorrosion method
AU2015279056B2 (en) Galvanic anode system for the corrosion protection of steel in concrete
JPH0468393B2 (en)
JPS609243Y2 (en) galvanic anode
JPH0826466B2 (en) Electrocorrosion method for rebar
KR20070022276A (en) Sacrificial anode assembly
SK4962003A3 (en) Doubly-protected reinforcing members in concrete

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4015933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term